test_efuse.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872
  1. /*
  2. * SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdio.h>
  7. #include <ctype.h>
  8. #include <errno.h>
  9. #include <stdlib.h>
  10. #include <stdio.h>
  11. #include "unity.h"
  12. #include "esp_log.h"
  13. #include <string.h>
  14. #include "esp_efuse.h"
  15. #include "esp_efuse_table.h"
  16. #include "esp_efuse_utility.h"
  17. #include "esp_efuse_test_table.h"
  18. #include "bootloader_random.h"
  19. #include "freertos/FreeRTOS.h"
  20. #include "freertos/task.h"
  21. #include "freertos/semphr.h"
  22. #include "test_utils.h"
  23. #include "sdkconfig.h"
  24. #include "esp_rom_efuse.h"
  25. #include "bootloader_common.h"
  26. #ifdef CONFIG_IDF_TARGET_ESP32
  27. #define MAC_FACTORY_HAS_CRC 1
  28. #endif
  29. __attribute__((unused)) static const char* TAG = "efuse_test";
  30. static void test_read_blob(void)
  31. {
  32. esp_efuse_utility_update_virt_blocks();
  33. esp_efuse_utility_debug_dump_blocks();
  34. uint8_t mac[6];
  35. ESP_LOGI(TAG, "1. Read MAC address");
  36. memset(mac, 0, sizeof(mac));
  37. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  38. TEST_ASSERT_EQUAL_INT(sizeof(mac) * 8, esp_efuse_get_field_size(ESP_EFUSE_MAC_FACTORY));
  39. ESP_LOGI(TAG, "MAC: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  40. #ifdef MAC_FACTORY_HAS_CRC
  41. ESP_LOGI(TAG, "2. Check CRC by MAC");
  42. uint8_t crc;
  43. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY_CRC, &crc, 8));
  44. TEST_ASSERT_EQUAL_HEX8(crc, esp_rom_efuse_mac_address_crc8(mac, sizeof(mac)));
  45. #endif
  46. ESP_LOGI(TAG, "3. Test check args");
  47. uint32_t test_var;
  48. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, NULL, 1));
  49. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &test_var, 0));
  50. uint8_t half_byte;
  51. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &half_byte, 4));
  52. TEST_ASSERT_EQUAL_HEX8(mac[0]&0x0F, half_byte);
  53. uint8_t buff[7] = {0x59};
  54. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &buff, sizeof(buff) * 8));
  55. TEST_ASSERT_TRUE_MESSAGE(memcmp(mac, buff, sizeof(mac)) == 0, "Operation read blob is not success");
  56. TEST_ASSERT_EQUAL_HEX8(0, buff[6]);
  57. }
  58. TEST_CASE("efuse test read_field_blob", "[efuse]")
  59. {
  60. test_read_blob();
  61. }
  62. static void test_read_cnt(void)
  63. {
  64. esp_efuse_utility_update_virt_blocks();
  65. esp_efuse_utility_debug_dump_blocks();
  66. ESP_LOGI(TAG, "1. Test check args");
  67. size_t cnt;
  68. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_cnt(ESP_EFUSE_MAC_FACTORY, NULL));
  69. ESP_LOGI(TAG, "2. Read MAC address");
  70. uint8_t mac[6];
  71. memset(mac, 0, sizeof(mac));
  72. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, 48));
  73. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_MAC_FACTORY, &cnt));
  74. size_t cnt_summ = 0;
  75. for (int i = 0; i < sizeof(mac); ++i) {
  76. cnt_summ += __builtin_popcount(mac[i]);
  77. }
  78. TEST_ASSERT_EQUAL_INT(cnt_summ, cnt);
  79. }
  80. TEST_CASE("efuse test read_field_cnt", "[efuse]")
  81. {
  82. test_read_cnt();
  83. }
  84. // If using efuse is real, then turn off writing tests.
  85. #ifdef CONFIG_EFUSE_VIRTUAL
  86. static void test_write_blob(void)
  87. {
  88. esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(EFUSE_BLK1);
  89. esp_efuse_utility_erase_virt_blocks();
  90. esp_efuse_utility_debug_dump_blocks();
  91. ESP_LOGI(TAG, "1. Test check args");
  92. uint16_t test1_len_8 = 0x5FAA;
  93. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_blob(ESP_EFUSE_MAC_FACTORY, &test1_len_8, 0));
  94. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, NULL, 8));
  95. TEST_ASSERT_EQUAL_HEX16(0x5FAA, test1_len_8);
  96. ESP_LOGI(TAG, "2. Test write operation");
  97. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 7));
  98. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 9));
  99. uint16_t val_read1 = 0;
  100. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST1_LEN_8, &val_read1, 8));
  101. TEST_ASSERT_EQUAL_HEX16(test1_len_8&((1 << 7) - 1), val_read1);
  102. uint16_t test1_len_8_hi = test1_len_8 & ~((1 << 7) - 1);
  103. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  104. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8_hi, 8));
  105. } else {
  106. TEST_ESP_ERR(ESP_ERR_CODING, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8_hi, 8));
  107. }
  108. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 8));
  109. val_read1 = 0;
  110. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST1_LEN_8, &val_read1, 16));
  111. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  112. TEST_ASSERT_EQUAL_HEX16(test1_len_8&0x00FF, val_read1);
  113. } else {
  114. TEST_ASSERT_EQUAL_HEX16(test1_len_8&0x007F, val_read1);
  115. }
  116. if (scheme != EFUSE_CODING_SCHEME_NONE) {
  117. esp_efuse_utility_erase_virt_blocks();
  118. ESP_LOGI(TAG, "erase virt blocks");
  119. }
  120. uint16_t test2_len_16 = 0xAA55;
  121. uint32_t val_32 = test2_len_16;
  122. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST2_LEN_16, &val_32, 17));
  123. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST2_LEN_16, &test2_len_16, 16));
  124. uint16_t test_16 = 0;
  125. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST2_LEN_16, &test_16, 16));
  126. TEST_ASSERT_EQUAL_HEX16(test2_len_16, test_16);
  127. ESP_LOGI(TAG, "3. Test field with one bit");
  128. uint8_t test5_len_1;
  129. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  130. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  131. test5_len_1 = 0;
  132. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  133. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  134. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  135. test5_len_1 = 1;
  136. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  137. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  138. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  139. test5_len_1 = 1;
  140. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  141. esp_efuse_utility_debug_dump_blocks();
  142. }
  143. TEST_CASE("efuse test write_field_blob", "[efuse]")
  144. {
  145. test_write_blob();
  146. }
  147. static void test_write_cnt(void)
  148. {
  149. esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(EFUSE_BLK1);
  150. esp_efuse_utility_erase_virt_blocks();
  151. esp_efuse_utility_debug_dump_blocks();
  152. ESP_LOGI(TAG, "1. Test check args");
  153. size_t test3_len_6 = 5;
  154. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(ESP_EFUSE_MAC_FACTORY, 0));
  155. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(NULL, 5));
  156. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 0));
  157. ESP_LOGI(TAG, "2. Test write operation");
  158. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  159. TEST_ASSERT_EQUAL_INT(0, test3_len_6);
  160. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 1));
  161. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  162. TEST_ASSERT_EQUAL_INT(1, test3_len_6);
  163. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  164. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 1));
  165. } else {
  166. esp_efuse_utility_erase_virt_blocks();
  167. ESP_LOGI(TAG, "erase virt blocks");
  168. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 2));
  169. }
  170. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  171. TEST_ASSERT_EQUAL_INT(2, test3_len_6);
  172. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  173. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 3));
  174. } else {
  175. esp_efuse_utility_erase_virt_blocks();
  176. ESP_LOGI(TAG, "erase virt blocks");
  177. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 5));
  178. }
  179. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  180. TEST_ASSERT_EQUAL_INT(5, test3_len_6);
  181. esp_efuse_utility_debug_dump_blocks();
  182. ESP_LOGI(TAG, "3. Test field is full set");
  183. int max_bits = esp_efuse_get_field_size(ESP_EFUSE_TEST4_LEN_182);
  184. size_t test4_len_182;
  185. esp_efuse_utility_debug_dump_blocks();
  186. for (int i = 0; i < max_bits / 26; ++i) {
  187. ESP_LOGD(TAG, "# %d", i);
  188. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  189. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST4_LEN_182, 26));
  190. } else {
  191. esp_efuse_utility_erase_virt_blocks();
  192. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST4_LEN_182, (i + 1) * 26));
  193. }
  194. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST4_LEN_182, &test4_len_182));
  195. esp_efuse_utility_debug_dump_blocks();
  196. TEST_ASSERT_EQUAL_INT((i + 1) * 26, test4_len_182);
  197. }
  198. esp_efuse_utility_debug_dump_blocks();
  199. ESP_LOGI(TAG, "4. Test field ESP_EFUSE_TEST4_LEN_182 is full");
  200. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_write_field_cnt(ESP_EFUSE_TEST4_LEN_182, 1));
  201. ESP_LOGI(TAG, "3. Test field with one bit");
  202. size_t test5_len_1;
  203. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST5_LEN_1, &test5_len_1));
  204. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  205. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  206. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  207. if (scheme != EFUSE_CODING_SCHEME_NONE) {
  208. esp_efuse_utility_erase_virt_blocks();
  209. ESP_LOGI(TAG, "erase virt blocks");
  210. }
  211. test5_len_1 = 1;
  212. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST5_LEN_1, test5_len_1));
  213. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST5_LEN_1, &test5_len_1));
  214. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  215. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  216. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  217. test5_len_1 = 1;
  218. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_write_field_cnt(ESP_EFUSE_TEST5_LEN_1, test5_len_1));
  219. esp_efuse_utility_debug_dump_blocks();
  220. ESP_LOGI(TAG, "4. Test field test2_len_16");
  221. size_t test2_len_16 = 11;
  222. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST2_LEN_16, test2_len_16));
  223. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST2_LEN_16, &test2_len_16));
  224. TEST_ASSERT_EQUAL_HEX16(11, test2_len_16);
  225. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST2_LEN_16, &test2_len_16, 16));
  226. TEST_ASSERT_EQUAL_HEX16(0x07FF, test2_len_16);
  227. esp_efuse_utility_debug_dump_blocks();
  228. }
  229. TEST_CASE("efuse test write_field_cnt", "[efuse]")
  230. {
  231. test_write_cnt();
  232. }
  233. TEST_CASE("efuse test single bit functions", "[efuse]")
  234. {
  235. esp_efuse_utility_erase_virt_blocks();
  236. esp_efuse_utility_debug_dump_blocks();
  237. uint8_t test_bit;
  238. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test_bit, 1));
  239. TEST_ASSERT_EQUAL_HEX8(0, test_bit);
  240. test_bit = esp_efuse_read_field_bit(ESP_EFUSE_TEST5_LEN_1);
  241. TEST_ASSERT_EQUAL_HEX8(0, test_bit);
  242. TEST_ESP_OK(esp_efuse_write_field_bit(ESP_EFUSE_TEST5_LEN_1));
  243. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test_bit, 1));
  244. TEST_ASSERT_EQUAL_HEX8(1, test_bit);
  245. test_bit = esp_efuse_read_field_bit(ESP_EFUSE_TEST5_LEN_1);
  246. TEST_ASSERT_EQUAL_HEX8(1, test_bit);
  247. // Can write the bit again and it's a no-op
  248. TEST_ESP_OK(esp_efuse_write_field_bit(ESP_EFUSE_TEST5_LEN_1));
  249. TEST_ASSERT_EQUAL_HEX8(1, esp_efuse_read_field_bit(ESP_EFUSE_TEST5_LEN_1));
  250. esp_efuse_utility_debug_dump_blocks();
  251. }
  252. void cut_tail_arr(uint8_t *arr, int num_used_bits, size_t count_bits)
  253. {
  254. if ((num_used_bits + count_bits) % 8) {
  255. int start_used_item = (num_used_bits - 1) / 8;
  256. int last_used_item = ((num_used_bits + count_bits) - 1) / 8;
  257. int shift = 0;
  258. int mask = num_used_bits + count_bits;
  259. if (last_used_item == start_used_item) {
  260. shift = (num_used_bits) % 8;
  261. mask = count_bits;
  262. }
  263. arr[last_used_item] &= ((1 << (mask % 8)) - 1) << shift;
  264. }
  265. }
  266. void cut_start_arr(uint8_t *arr, size_t num_used_bits)
  267. {
  268. if (num_used_bits % 8) {
  269. int start_used_item = (num_used_bits - 1) / 8;
  270. arr[start_used_item] &= ~((1 << (num_used_bits % 8)) - 1);
  271. }
  272. }
  273. void get_part_arr(uint8_t *arr_in, uint8_t *arr_out, int num_used_bits, int count_bits)
  274. {
  275. int num_items = esp_efuse_utility_get_number_of_items(num_used_bits + count_bits, 8);
  276. memcpy(arr_out, arr_in, num_items);
  277. memset(arr_out, 0, num_used_bits / 8);
  278. cut_start_arr(arr_out, num_used_bits);
  279. cut_tail_arr(arr_out, num_used_bits, count_bits);
  280. }
  281. void fill_part_arr(uint8_t *arr_in, uint8_t *arr_out, int count_bits)
  282. {
  283. int num_items = esp_efuse_utility_get_number_of_items(count_bits, 8);
  284. memcpy(arr_out, arr_in, num_items);
  285. cut_tail_arr(arr_out, 0, count_bits);
  286. }
  287. // Writes a random array to efuse, then reads and compares it.
  288. void test_blob(const esp_efuse_desc_t* field[], uint8_t *arr_w, uint8_t *arr_r, uint8_t *arr_temp, int arr_size, size_t field_size)
  289. {
  290. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_w, arr_size, ESP_LOG_INFO);
  291. TEST_ESP_OK(esp_efuse_write_field_blob(field, arr_w, field_size));
  292. memset(arr_r, 0, arr_size);
  293. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  294. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_r, arr_size, ESP_LOG_INFO);
  295. esp_efuse_utility_debug_dump_blocks();
  296. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_w, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  297. int count_once = 0;
  298. for (int i = 0; i < arr_size; ++i) {
  299. count_once += __builtin_popcount(arr_w[i]);
  300. }
  301. size_t num_bits_r = 0;
  302. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  303. TEST_ASSERT_EQUAL_INT(count_once, num_bits_r);
  304. size_t num_bits_w = field_size - count_once;
  305. if (num_bits_w == 0) {
  306. esp_efuse_utility_erase_virt_blocks();
  307. num_bits_w = field_size;
  308. }
  309. TEST_ESP_OK(esp_efuse_write_field_cnt(field, num_bits_w));
  310. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  311. esp_efuse_utility_debug_dump_blocks();
  312. TEST_ASSERT_EQUAL_INT(field_size, num_bits_r);
  313. memset(arr_r, 0, arr_size);
  314. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  315. memset(arr_temp, 0xFF, arr_size);
  316. cut_tail_arr(arr_temp, 0, field_size);
  317. esp_efuse_utility_debug_dump_blocks();
  318. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_temp, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  319. }
  320. // Records a random number of bits (as "1") in the efuse field, then reads and compares.
  321. void test_cnt_part(const esp_efuse_desc_t* field[], uint8_t *arr_r, int arr_size, size_t field_size)
  322. {
  323. size_t num_bits_r = 0;
  324. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  325. TEST_ASSERT_EQUAL_INT(0, num_bits_r);
  326. TEST_ESP_OK(esp_efuse_write_field_cnt(field, field_size));
  327. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  328. TEST_ASSERT_EQUAL_INT(field_size, num_bits_r);
  329. esp_efuse_utility_erase_virt_blocks();
  330. int num_bits_summ_r = 0;
  331. int num_bits_w = 0;
  332. while(field_size > num_bits_summ_r) {
  333. num_bits_w = 0;
  334. while(num_bits_w == 0 || (num_bits_summ_r + num_bits_w) > field_size) {
  335. bootloader_random_enable();
  336. bootloader_fill_random(&num_bits_w, 1);
  337. bootloader_random_disable();
  338. num_bits_w = num_bits_w * field_size / 255;
  339. if (num_bits_w != 0 && (num_bits_summ_r + num_bits_w) <= field_size) {
  340. break;
  341. }
  342. }
  343. TEST_ESP_OK(esp_efuse_write_field_cnt(field, num_bits_w));
  344. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  345. num_bits_summ_r += num_bits_w;
  346. TEST_ASSERT_EQUAL_INT(num_bits_summ_r, num_bits_r);
  347. memset(arr_r, 0, arr_size);
  348. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  349. int count_once = 0;
  350. for (int i = 0; i < arr_size; ++i) {
  351. count_once += __builtin_popcount(arr_r[i]);
  352. }
  353. TEST_ASSERT_EQUAL_INT(num_bits_summ_r, count_once);
  354. ESP_LOGI(TAG, "Once bits=%d, step=%d", num_bits_summ_r, num_bits_w);
  355. }
  356. esp_efuse_utility_debug_dump_blocks();
  357. }
  358. // From a random array takes a random number of bits and write to efuse, it repeats until the entire length of the field is written down.
  359. void test_blob_part(const esp_efuse_desc_t* field[], uint8_t *arr_w, uint8_t *arr_r, uint8_t *arr_temp, int arr_size, size_t field_size)
  360. {
  361. esp_efuse_utility_debug_dump_blocks();
  362. int num_bits_summ_r = 0;
  363. int num_bits_w = 0;
  364. memset(arr_w, 0, arr_size);
  365. bootloader_random_enable();
  366. bootloader_fill_random(arr_w, arr_size);
  367. bootloader_random_disable();
  368. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_w, arr_size, ESP_LOG_INFO);
  369. while(field_size > num_bits_summ_r) {
  370. num_bits_w = 0;
  371. while(num_bits_w == 0 || (num_bits_summ_r + num_bits_w) > field_size) {
  372. bootloader_random_enable();
  373. bootloader_fill_random(&num_bits_w, 1);
  374. bootloader_random_disable();
  375. num_bits_w = num_bits_w * field_size / 255;
  376. if (num_bits_w != 0 && (num_bits_summ_r + num_bits_w) <= field_size) {
  377. break;
  378. }
  379. }
  380. ESP_LOGI(TAG, "Summ bits=%d, step=%d", num_bits_summ_r, num_bits_w);
  381. memset(arr_temp, 0, arr_size);
  382. get_part_arr(arr_w, arr_temp, num_bits_summ_r, num_bits_w);
  383. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_temp, arr_size, ESP_LOG_INFO);
  384. TEST_ESP_OK(esp_efuse_write_field_blob(field, arr_temp, field_size));
  385. memset(arr_r, 0, arr_size);
  386. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  387. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_r, arr_size, ESP_LOG_INFO);
  388. esp_efuse_utility_debug_dump_blocks();
  389. num_bits_summ_r += num_bits_w;
  390. memset(arr_temp, 0, arr_size);
  391. fill_part_arr(arr_w, arr_temp, num_bits_summ_r);
  392. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_temp, arr_size, ESP_LOG_INFO);
  393. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_temp, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  394. }
  395. }
  396. void check_efuse_table_test(int cycle)
  397. {
  398. int num_test = 0;
  399. while(1) {
  400. const esp_efuse_desc_t** field;
  401. switch (num_test++) {
  402. case 0: field = ESP_EFUSE_TEST1_LEN_8; break;
  403. case 1: field = ESP_EFUSE_TEST2_LEN_16; break;
  404. case 2: field = ESP_EFUSE_TEST3_LEN_6; break;
  405. case 3: field = ESP_EFUSE_TEST4_LEN_182; break;
  406. case 4: field = ESP_EFUSE_TEST5_LEN_1; break;
  407. case 5: field = ESP_EFUSE_TEST6_LEN_17; break;
  408. default:
  409. return;
  410. break;
  411. }
  412. size_t field_size = esp_efuse_get_field_size(field);
  413. int arr_size = esp_efuse_utility_get_number_of_items(field_size, 8);
  414. uint8_t *arr_w = (uint8_t *) malloc(arr_size);
  415. uint8_t *arr_r = (uint8_t *) malloc(arr_size);
  416. uint8_t *arr_temp = (uint8_t *) malloc(arr_size);
  417. ESP_LOGI(TAG, "Test#%d", num_test);
  418. for (int c = 1; c <= cycle; ++c) {
  419. ESP_LOGI(TAG, "Cycle#%d/%d", c, cycle);
  420. memset(arr_w, 0, arr_size);
  421. bootloader_random_enable();
  422. bootloader_fill_random(arr_w, arr_size);
  423. bootloader_random_disable();
  424. cut_tail_arr(arr_w, 0, field_size);
  425. esp_efuse_utility_erase_virt_blocks();
  426. ESP_LOGI(TAG, "1) blob write/read");
  427. test_blob(field, arr_w, arr_r, arr_temp, arr_size, field_size);
  428. esp_efuse_utility_erase_virt_blocks();
  429. ESP_LOGI(TAG, "2) cnt part write/read");
  430. test_cnt_part(field, arr_r, arr_size, field_size);
  431. esp_efuse_utility_erase_virt_blocks();
  432. ESP_LOGI(TAG, "3) blob part write/read");
  433. test_blob_part(field, arr_w, arr_r, arr_temp, arr_size, field_size);
  434. }
  435. free(arr_temp);
  436. free(arr_r);
  437. free(arr_w);
  438. }
  439. }
  440. TEST_CASE("efuse esp_efuse_table_test", "[efuse]")
  441. {
  442. esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(EFUSE_BLK2);
  443. if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
  444. check_efuse_table_test(2);
  445. } else {
  446. ESP_LOGI(TAG, "This test is applicable only to the EFUSE_CODING_SCHEME_NONE. Skip this test.");
  447. }
  448. }
  449. TEST_CASE("Test esp_efuse_read_block esp_efuse_write_block functions", "[efuse]")
  450. {
  451. int count_useful_reg = 0;
  452. esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(EFUSE_BLK2);
  453. if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
  454. printf("EFUSE_CODING_SCHEME_NONE\n");
  455. count_useful_reg = 8;
  456. }
  457. #if CONFIG_IDF_TARGET_ESP32
  458. if (coding_scheme == EFUSE_CODING_SCHEME_3_4) {
  459. printf("EFUSE_CODING_SCHEME_3_4\n");
  460. count_useful_reg = 6;
  461. } else if (coding_scheme == EFUSE_CODING_SCHEME_REPEAT) {
  462. printf("EFUSE_CODING_SCHEME_REPEAT\n");
  463. count_useful_reg = 4;
  464. }
  465. #else
  466. if (coding_scheme == EFUSE_CODING_SCHEME_RS) {
  467. printf("EFUSE_CODING_SCHEME_RS\n");
  468. count_useful_reg = 8;
  469. }
  470. #endif
  471. esp_efuse_utility_reset();
  472. esp_efuse_utility_erase_virt_blocks();
  473. uint8_t src_key[32] = { 0 };
  474. uint8_t dst_key[32] = { 0 };
  475. int offset_in_bits = 0;
  476. for (int i = 0; i < count_useful_reg * 4; ++i) {
  477. src_key[i] = 0xAB + i;
  478. }
  479. TEST_ESP_OK(esp_efuse_write_block(EFUSE_BLK2, src_key, offset_in_bits, count_useful_reg * 32));
  480. TEST_ESP_OK(esp_efuse_read_block(EFUSE_BLK2, dst_key, offset_in_bits, count_useful_reg * 32));
  481. esp_efuse_utility_debug_dump_blocks();
  482. TEST_ASSERT_EQUAL_HEX8_ARRAY(src_key, dst_key, sizeof(src_key));
  483. esp_efuse_utility_erase_virt_blocks();
  484. memset(src_key, 0, sizeof(src_key));
  485. memset(dst_key, 0, sizeof(dst_key));
  486. offset_in_bits = count_useful_reg * 32 / 2;
  487. for (int i = 0; i < count_useful_reg * 4 / 2; ++i) {
  488. src_key[i] = 0xCD + i;
  489. }
  490. TEST_ESP_OK(esp_efuse_write_block(EFUSE_BLK2, src_key, offset_in_bits, count_useful_reg * 32 / 2));
  491. TEST_ESP_OK(esp_efuse_read_block(EFUSE_BLK2, dst_key, offset_in_bits, count_useful_reg * 32 / 2));
  492. esp_efuse_utility_debug_dump_blocks();
  493. TEST_ASSERT_EQUAL_HEX8_ARRAY(src_key, dst_key, count_useful_reg * 4 / 2);
  494. esp_efuse_utility_erase_virt_blocks();
  495. }
  496. TEST_CASE("Test Bits are not empty. Write operation is forbidden", "[efuse]")
  497. {
  498. esp_efuse_utility_update_virt_blocks();
  499. esp_efuse_utility_debug_dump_blocks();
  500. int count_useful_reg = 0;
  501. uint8_t r_buff[32];
  502. int st_offset = -1;
  503. int num_block;
  504. for (num_block = EFUSE_BLK_KEY0; num_block < EFUSE_BLK_KEY_MAX; ++num_block) {
  505. memset(r_buff, 0, sizeof(r_buff));
  506. esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(num_block);
  507. if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
  508. printf("EFUSE_CODING_SCHEME_NONE. The test is not applicable.\n");
  509. count_useful_reg = 8;
  510. return;
  511. }
  512. #if CONFIG_IDF_TARGET_ESP32
  513. if (coding_scheme == EFUSE_CODING_SCHEME_3_4) {
  514. printf("EFUSE_CODING_SCHEME_3_4\n");
  515. count_useful_reg = 6;
  516. } else if (coding_scheme == EFUSE_CODING_SCHEME_REPEAT) {
  517. printf("EFUSE_CODING_SCHEME_REPEAT\n");
  518. count_useful_reg = 4;
  519. }
  520. #else
  521. if (coding_scheme == EFUSE_CODING_SCHEME_RS) {
  522. printf("EFUSE_CODING_SCHEME_RS\n");
  523. if (num_block == EFUSE_BLK_KEY0) {
  524. count_useful_reg = 6;
  525. } else {
  526. count_useful_reg = 8;
  527. }
  528. }
  529. #endif
  530. TEST_ESP_OK(esp_efuse_read_block(num_block, r_buff, 0, count_useful_reg * 32));
  531. for (int i = 0; i < count_useful_reg * 4; ++i) {
  532. if (r_buff[i] != 0) {
  533. // found used byte
  534. for (int j = 0; j < 8; ++j) {
  535. if ((r_buff[i] & (1 << j)) == 0) {
  536. // found empty bit into this byte
  537. st_offset = i * 8 + j;
  538. printf("Byte = 0x%02x. offset is = %d\n", r_buff[i], st_offset);
  539. break;
  540. }
  541. }
  542. if (st_offset != -1) {
  543. break;
  544. }
  545. }
  546. }
  547. if (st_offset != -1) {
  548. break;
  549. }
  550. }
  551. if (st_offset != -1) {
  552. // write 1 bit to empty place.
  553. uint8_t val = 1;
  554. TEST_ESP_ERR(ESP_ERR_CODING, esp_efuse_write_block(num_block, &val, st_offset, 1));
  555. } else {
  556. printf("Test skipped. It is not applicable, the device has no written bits.\n");
  557. }
  558. }
  559. #ifndef CONFIG_FREERTOS_UNICORE
  560. static const int delay_ms = 2000;
  561. static SemaphoreHandle_t sema;
  562. static void task1(void* arg)
  563. {
  564. TEST_ESP_OK(esp_efuse_batch_write_begin());
  565. ESP_LOGI(TAG, "Start work in batch mode");
  566. xSemaphoreGive(sema);
  567. vTaskDelay((delay_ms + 100) / portTICK_PERIOD_MS);
  568. ESP_LOGI(TAG, "Finish work in batch mode");
  569. TEST_ESP_OK(esp_efuse_batch_write_cancel());
  570. vTaskDelete(NULL);
  571. }
  572. static void task2(void* arg)
  573. {
  574. xSemaphoreTake(sema, portMAX_DELAY);
  575. uint8_t mac[6];
  576. int64_t t1 = esp_timer_get_time();
  577. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  578. int64_t t2 = esp_timer_get_time();
  579. int diff_ms = (t2 - t1) / 1000;
  580. TEST_ASSERT_GREATER_THAN(diff_ms, delay_ms);
  581. ESP_LOGI(TAG, "read MAC address: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  582. xSemaphoreGive(sema);
  583. vTaskDelete(NULL);
  584. }
  585. static void task3(void* arg)
  586. {
  587. xSemaphoreTake(sema, portMAX_DELAY);
  588. size_t test3_len_6 = 2;
  589. int64_t t1 = esp_timer_get_time();
  590. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, test3_len_6));
  591. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  592. int64_t t2 = esp_timer_get_time();
  593. ESP_LOGI(TAG, "write&read test3_len_6: %d", test3_len_6);
  594. int diff_ms = (t2 - t1) / 1000;
  595. TEST_ASSERT_GREATER_THAN(delay_ms, diff_ms);
  596. TEST_ASSERT_EQUAL_INT(2, test3_len_6);
  597. xSemaphoreGive(sema);
  598. vTaskDelete(NULL);
  599. }
  600. TEST_CASE("Batch mode is thread-safe", "[efuse]")
  601. {
  602. // Batch mode blocks work with efuse on other tasks.
  603. esp_efuse_utility_update_virt_blocks();
  604. esp_efuse_utility_debug_dump_blocks();
  605. sema = xSemaphoreCreateBinary();
  606. printf("\n");
  607. xTaskCreatePinnedToCore(task1, "task1", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
  608. xTaskCreatePinnedToCore(task2, "task2", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
  609. vTaskDelay(3000 / portTICK_PERIOD_MS);
  610. xSemaphoreTake(sema, portMAX_DELAY);
  611. esp_efuse_utility_reset();
  612. esp_efuse_utility_erase_virt_blocks();
  613. printf("\n");
  614. xTaskCreatePinnedToCore(task1, "task1", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
  615. xTaskCreatePinnedToCore(task3, "task3", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
  616. vTaskDelay(3000 / portTICK_PERIOD_MS);
  617. xSemaphoreTake(sema, portMAX_DELAY);
  618. printf("\n");
  619. vSemaphoreDelete(sema);
  620. esp_efuse_utility_reset();
  621. esp_efuse_utility_erase_virt_blocks();
  622. }
  623. #endif // #ifndef CONFIG_FREERTOS_UNICORE
  624. static volatile bool cmd_stop_reset_task1;
  625. static void efuse_burn_task(void* arg)
  626. {
  627. SemaphoreHandle_t sema = (SemaphoreHandle_t) arg;
  628. ESP_LOGI(TAG, "Start burn task");
  629. size_t test3_len_6 = 2;
  630. while (!cmd_stop_reset_task1) {
  631. esp_efuse_utility_update_virt_blocks();
  632. esp_efuse_utility_reset();
  633. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, test3_len_6));
  634. }
  635. xSemaphoreGive(sema);
  636. ESP_LOGI(TAG, "Stop burn task");
  637. vTaskDelete(NULL);
  638. }
  639. static void efuse_read_task(void* arg)
  640. {
  641. SemaphoreHandle_t sema = (SemaphoreHandle_t) arg;
  642. ESP_LOGI(TAG, "Start read task");
  643. size_t test3_len_6 = 0;
  644. while (!cmd_stop_reset_task1) {
  645. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST3_LEN_6, &test3_len_6, 6));
  646. }
  647. xSemaphoreGive(sema);
  648. ESP_LOGI(TAG, "Stop read task");
  649. vTaskDelete(NULL);
  650. }
  651. TEST_CASE("Check a case when ESP_ERR_DAMAGED_READING occurs and read and burn are not blocked", "[efuse]")
  652. {
  653. cmd_stop_reset_task1 = false;
  654. TaskHandle_t read_task_hdl;
  655. SemaphoreHandle_t sema[2];
  656. sema[0] = xSemaphoreCreateBinary();
  657. sema[1] = xSemaphoreCreateBinary();
  658. esp_efuse_utility_update_virt_blocks();
  659. esp_efuse_utility_debug_dump_blocks();
  660. xTaskCreatePinnedToCore(efuse_burn_task, "efuse_burn_task", 3072, sema[0], 2, NULL, 0);
  661. xTaskCreatePinnedToCore(efuse_read_task, "efuse_read_task", 3072, sema[1], 2, &read_task_hdl, 0);
  662. vTaskDelay(10 / portTICK_PERIOD_MS);
  663. for (unsigned i = 1; i < 30; ++i) {
  664. vTaskPrioritySet(read_task_hdl, 2 + i % 2);
  665. vTaskDelay(10 / portTICK_PERIOD_MS);
  666. }
  667. vTaskDelay(10 / portTICK_PERIOD_MS);
  668. cmd_stop_reset_task1 = true;
  669. vTaskDelay(10 / portTICK_PERIOD_MS);
  670. TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(sema[0], 1000 / portTICK_PERIOD_MS));
  671. TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(sema[1], 1000 / portTICK_PERIOD_MS));
  672. vSemaphoreDelete(sema[0]);
  673. vSemaphoreDelete(sema[1]);
  674. }
  675. #endif // #ifdef CONFIG_EFUSE_VIRTUAL
  676. #ifndef CONFIG_FREERTOS_UNICORE
  677. static volatile bool cmd_stop_reset_task;
  678. static void reset_task(void* arg)
  679. {
  680. ESP_LOGI(TAG, "Start reset task");
  681. while (!cmd_stop_reset_task) {
  682. esp_efuse_utility_reset();
  683. vTaskDelay(2);
  684. }
  685. vTaskDelete(NULL);
  686. }
  687. TEST_CASE("Check a case when ESP_ERR_DAMAGED_READING occurs during reading efuses", "[efuse]")
  688. {
  689. cmd_stop_reset_task = false;
  690. esp_efuse_utility_update_virt_blocks();
  691. esp_efuse_utility_debug_dump_blocks();
  692. uint8_t mac[6];
  693. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  694. ESP_LOGI(TAG, "read MAC address: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  695. xTaskCreatePinnedToCore(reset_task, "reset_task", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
  696. uint8_t new_mac[6];
  697. for (int i = 0; i < 1000; ++i) {
  698. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &new_mac, sizeof(new_mac) * 8));
  699. TEST_ASSERT_EQUAL_HEX8_ARRAY(mac, new_mac, sizeof(mac));
  700. }
  701. cmd_stop_reset_task = true;
  702. ESP_LOGI(TAG, "read new MAC address: %02x:%02x:%02x:%02x:%02x:%02x", new_mac[0], new_mac[1], new_mac[2], new_mac[3], new_mac[4], new_mac[5]);
  703. vTaskDelay(100 / portTICK_PERIOD_MS);
  704. }
  705. #endif // if not CONFIG_FREERTOS_UNICORE
  706. #ifdef CONFIG_IDF_ENV_FPGA
  707. TEST_CASE("Test a real write (FPGA)", "[efuse]")
  708. {
  709. ESP_LOGI(TAG, "1. Write MAC address");
  710. esp_efuse_utility_debug_dump_blocks();
  711. uint8_t mac[6];
  712. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  713. ESP_LOGI(TAG, "MAC: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  714. uint8_t new_mac[6];
  715. if (mac[0] == 0) {
  716. new_mac[0] = 0x71;
  717. new_mac[1] = 0x62;
  718. new_mac[2] = 0x53;
  719. new_mac[3] = 0x44;
  720. new_mac[4] = 0x35;
  721. new_mac[5] = 0x26;
  722. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_MAC_FACTORY, &new_mac, sizeof(new_mac) * 8));
  723. ESP_LOGI(TAG, "new MAC: %02x:%02x:%02x:%02x:%02x:%02x", new_mac[0], new_mac[1], new_mac[2], new_mac[3], new_mac[4], new_mac[5]);
  724. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  725. TEST_ASSERT_EQUAL_HEX8_ARRAY(new_mac, mac, sizeof(new_mac));
  726. esp_efuse_utility_debug_dump_blocks();
  727. }
  728. ESP_LOGI(TAG, "4. Write SECURE_VERSION");
  729. int max_bits = esp_efuse_get_field_size(ESP_EFUSE_SECURE_VERSION);
  730. size_t read_sec_version;
  731. esp_efuse_utility_debug_dump_blocks();
  732. for (int i = 0; i < max_bits; ++i) {
  733. ESP_LOGI(TAG, "# %d", i);
  734. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_SECURE_VERSION, 1));
  735. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_SECURE_VERSION, &read_sec_version));
  736. esp_efuse_utility_debug_dump_blocks();
  737. TEST_ASSERT_EQUAL_INT(i + 1, read_sec_version);
  738. }
  739. }
  740. #endif // CONFIG_IDF_ENV_FPGA
  741. TEST_CASE("Test chip_ver_pkg APIs return the same value", "[efuse]")
  742. {
  743. esp_efuse_utility_update_virt_blocks();
  744. TEST_ASSERT_EQUAL_INT(esp_efuse_get_pkg_ver(), bootloader_common_get_chip_ver_pkg());
  745. }
  746. TEST_CASE("Test chip_revision APIs return the same value", "[efuse]")
  747. {
  748. esp_efuse_utility_update_virt_blocks();
  749. TEST_ASSERT_EQUAL_INT(esp_efuse_get_chip_ver(), bootloader_common_get_chip_revision());
  750. }