uart.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/ringbuf.h"
  24. #include "hal/uart_hal.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "driver/periph_ctrl.h"
  30. #include "sdkconfig.h"
  31. #include "esp_rom_gpio.h"
  32. #if CONFIG_IDF_TARGET_ESP32
  33. #include "esp32/clk.h"
  34. #elif CONFIG_IDF_TARGET_ESP32S2
  35. #include "esp32s2/clk.h"
  36. #elif CONFIG_IDF_TARGET_ESP32S3
  37. #include "esp32s3/clk.h"
  38. #endif
  39. #ifdef CONFIG_UART_ISR_IN_IRAM
  40. #define UART_ISR_ATTR IRAM_ATTR
  41. #else
  42. #define UART_ISR_ATTR
  43. #endif
  44. #define XOFF (0x13)
  45. #define XON (0x11)
  46. static const char* UART_TAG = "uart";
  47. #define UART_CHECK(a, str, ret_val) \
  48. if (!(a)) { \
  49. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  50. return (ret_val); \
  51. }
  52. #define UART_EMPTY_THRESH_DEFAULT (10)
  53. #define UART_FULL_THRESH_DEFAULT (120)
  54. #define UART_TOUT_THRESH_DEFAULT (10)
  55. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  56. #define UART_TX_IDLE_NUM_DEFAULT (0)
  57. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  58. #define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
  59. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  60. | (UART_INTR_RXFIFO_TOUT) \
  61. | (UART_INTR_RXFIFO_OVF) \
  62. | (UART_INTR_BRK_DET) \
  63. | (UART_INTR_PARITY_ERR))
  64. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  65. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  66. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  67. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  68. // Check actual UART mode set
  69. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  70. #define UART_CONTEX_INIT_DEF(uart_num) {\
  71. .hal.dev = UART_LL_GET_HW(uart_num),\
  72. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  73. .hw_enabled = false,\
  74. }
  75. typedef struct {
  76. uart_event_type_t type; /*!< UART TX data type */
  77. struct {
  78. int brk_len;
  79. size_t size;
  80. uint8_t data[0];
  81. } tx_data;
  82. } uart_tx_data_t;
  83. typedef struct {
  84. int wr;
  85. int rd;
  86. int len;
  87. int* data;
  88. } uart_pat_rb_t;
  89. typedef struct {
  90. uart_port_t uart_num; /*!< UART port number*/
  91. int queue_size; /*!< UART event queue size*/
  92. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  93. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  94. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  95. bool coll_det_flg; /*!< UART collision detection flag */
  96. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  97. //rx parameters
  98. int rx_buffered_len; /*!< UART cached data length */
  99. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  100. int rx_buf_size; /*!< RX ring buffer size */
  101. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  102. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  103. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  104. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  105. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  106. uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  107. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  108. uart_pat_rb_t rx_pattern_pos;
  109. //tx parameters
  110. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  111. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  112. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  113. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  114. int tx_buf_size; /*!< TX ring buffer size */
  115. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  116. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  117. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  118. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  119. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  120. uint32_t tx_len_cur;
  121. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  122. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  123. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  124. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  125. } uart_obj_t;
  126. typedef struct {
  127. uart_hal_context_t hal; /*!< UART hal context*/
  128. portMUX_TYPE spinlock;
  129. bool hw_enabled;
  130. } uart_context_t;
  131. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  132. static uart_context_t uart_context[UART_NUM_MAX] = {
  133. UART_CONTEX_INIT_DEF(UART_NUM_0),
  134. UART_CONTEX_INIT_DEF(UART_NUM_1),
  135. #if UART_NUM_MAX > 2
  136. UART_CONTEX_INIT_DEF(UART_NUM_2),
  137. #endif
  138. };
  139. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  140. static void uart_module_enable(uart_port_t uart_num)
  141. {
  142. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  143. if (uart_context[uart_num].hw_enabled != true) {
  144. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  145. periph_module_reset(uart_periph_signal[uart_num].module);
  146. }
  147. periph_module_enable(uart_periph_signal[uart_num].module);
  148. uart_context[uart_num].hw_enabled = true;
  149. }
  150. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  151. }
  152. static void uart_module_disable(uart_port_t uart_num)
  153. {
  154. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  155. if (uart_context[uart_num].hw_enabled != false) {
  156. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  157. periph_module_disable(uart_periph_signal[uart_num].module);
  158. }
  159. uart_context[uart_num].hw_enabled = false;
  160. }
  161. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  162. }
  163. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  164. {
  165. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  166. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  167. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  168. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  169. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  170. return ESP_OK;
  171. }
  172. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  173. {
  174. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  175. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  176. return ESP_OK;
  177. }
  178. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  179. {
  180. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  181. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  182. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  183. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  184. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  185. return ESP_OK;
  186. }
  187. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  188. {
  189. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  190. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  191. return ESP_OK;
  192. }
  193. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  194. {
  195. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  196. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  197. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  198. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  199. return ESP_OK;
  200. }
  201. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  202. {
  203. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  204. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  205. return ESP_OK;
  206. }
  207. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  208. {
  209. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  210. uart_sclk_t source_clk = 0;
  211. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  212. uart_hal_get_sclk(&(uart_context[uart_num].hal), &source_clk);
  213. uart_hal_set_baudrate(&(uart_context[uart_num].hal), source_clk, baud_rate);
  214. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  215. return ESP_OK;
  216. }
  217. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  218. {
  219. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  220. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  221. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  222. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  223. return ESP_OK;
  224. }
  225. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  226. {
  227. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  228. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  229. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  230. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  231. return ESP_OK;
  232. }
  233. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  234. {
  235. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  236. UART_CHECK((rx_thresh_xon < SOC_UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  237. UART_CHECK((rx_thresh_xoff < SOC_UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  238. uart_sw_flowctrl_t sw_flow_ctl = {
  239. .xon_char = XON,
  240. .xoff_char = XOFF,
  241. .xon_thrd = rx_thresh_xon,
  242. .xoff_thrd = rx_thresh_xoff,
  243. };
  244. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  245. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  246. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  247. return ESP_OK;
  248. }
  249. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  250. {
  251. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  252. UART_CHECK((rx_thresh < SOC_UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  253. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  254. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  255. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  256. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  257. return ESP_OK;
  258. }
  259. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  260. {
  261. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
  262. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  263. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  264. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  265. return ESP_OK;
  266. }
  267. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  268. {
  269. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  270. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  271. return ESP_OK;
  272. }
  273. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  274. {
  275. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  276. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  277. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  278. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  279. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  280. return ESP_OK;
  281. }
  282. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  283. {
  284. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  285. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  286. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  287. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  288. return ESP_OK;
  289. }
  290. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  291. {
  292. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  293. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  294. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  295. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  296. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  297. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  298. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  299. free(pdata);
  300. }
  301. return ESP_OK;
  302. }
  303. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  304. {
  305. esp_err_t ret = ESP_OK;
  306. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  307. int next = p_pos->wr + 1;
  308. if (next >= p_pos->len) {
  309. next = 0;
  310. }
  311. if (next == p_pos->rd) {
  312. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  313. ret = ESP_FAIL;
  314. } else {
  315. p_pos->data[p_pos->wr] = pos;
  316. p_pos->wr = next;
  317. ret = ESP_OK;
  318. }
  319. return ret;
  320. }
  321. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  322. {
  323. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  324. return ESP_ERR_INVALID_STATE;
  325. } else {
  326. esp_err_t ret = ESP_OK;
  327. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  328. if (p_pos->rd == p_pos->wr) {
  329. ret = ESP_FAIL;
  330. } else {
  331. p_pos->rd++;
  332. }
  333. if (p_pos->rd >= p_pos->len) {
  334. p_pos->rd = 0;
  335. }
  336. return ret;
  337. }
  338. }
  339. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  340. {
  341. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  342. int rd = p_pos->rd;
  343. while(rd != p_pos->wr) {
  344. p_pos->data[rd] -= diff_len;
  345. int rd_rec = rd;
  346. rd ++;
  347. if (rd >= p_pos->len) {
  348. rd = 0;
  349. }
  350. if (p_pos->data[rd_rec] < 0) {
  351. p_pos->rd = rd;
  352. }
  353. }
  354. return ESP_OK;
  355. }
  356. int uart_pattern_pop_pos(uart_port_t uart_num)
  357. {
  358. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  359. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  360. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  361. int pos = -1;
  362. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  363. pos = pat_pos->data[pat_pos->rd];
  364. uart_pattern_dequeue(uart_num);
  365. }
  366. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  367. return pos;
  368. }
  369. int uart_pattern_get_pos(uart_port_t uart_num)
  370. {
  371. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  372. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  373. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  374. int pos = -1;
  375. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  376. pos = pat_pos->data[pat_pos->rd];
  377. }
  378. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  379. return pos;
  380. }
  381. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  382. {
  383. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  384. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  385. int* pdata = (int*) malloc(queue_length * sizeof(int));
  386. if(pdata == NULL) {
  387. return ESP_ERR_NO_MEM;
  388. }
  389. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  390. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  391. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  392. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  393. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  394. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  395. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  396. free(ptmp);
  397. return ESP_OK;
  398. }
  399. #if CONFIG_IDF_TARGET_ESP32
  400. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  401. {
  402. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  403. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  404. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  405. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  406. uart_at_cmd_t at_cmd = {0};
  407. at_cmd.cmd_char = pattern_chr;
  408. at_cmd.char_num = chr_num;
  409. at_cmd.gap_tout = chr_tout;
  410. at_cmd.pre_idle = pre_idle;
  411. at_cmd.post_idle = post_idle;
  412. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  413. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  414. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  415. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  416. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  417. return ESP_OK;
  418. }
  419. #endif
  420. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  421. {
  422. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  423. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  424. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  425. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  426. uart_at_cmd_t at_cmd = {0};
  427. at_cmd.cmd_char = pattern_chr;
  428. at_cmd.char_num = chr_num;
  429. #if CONFIG_IDF_TARGET_ESP32
  430. int apb_clk_freq = 0;
  431. uint32_t uart_baud = 0;
  432. uint32_t uart_div = 0;
  433. uart_get_baudrate(uart_num, &uart_baud);
  434. apb_clk_freq = esp_clk_apb_freq();
  435. uart_div = apb_clk_freq / uart_baud;
  436. at_cmd.gap_tout = chr_tout * uart_div;
  437. at_cmd.pre_idle = pre_idle * uart_div;
  438. at_cmd.post_idle = post_idle * uart_div;
  439. #elif CONFIG_IDF_TARGET_ESP32S2
  440. at_cmd.gap_tout = chr_tout;
  441. at_cmd.pre_idle = pre_idle;
  442. at_cmd.post_idle = post_idle;
  443. #endif
  444. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  445. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  446. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  447. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  448. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  449. return ESP_OK;
  450. }
  451. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  452. {
  453. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  454. }
  455. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  456. {
  457. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  458. }
  459. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  460. {
  461. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  462. }
  463. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  464. {
  465. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  466. }
  467. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  468. {
  469. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  470. UART_CHECK((thresh < SOC_UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  471. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  472. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  473. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  474. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  475. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  476. return ESP_OK;
  477. }
  478. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  479. {
  480. int ret;
  481. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  482. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  483. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  484. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  485. return ret;
  486. }
  487. esp_err_t uart_isr_free(uart_port_t uart_num)
  488. {
  489. esp_err_t ret;
  490. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  491. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  492. UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
  493. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  494. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  495. p_uart_obj[uart_num]->intr_handle=NULL;
  496. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  497. return ret;
  498. }
  499. //internal signal can be output to multiple GPIO pads
  500. //only one GPIO pad can connect with input signal
  501. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  502. {
  503. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  504. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  505. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  506. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  507. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  508. if(tx_io_num >= 0) {
  509. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  510. gpio_set_level(tx_io_num, 1);
  511. esp_rom_gpio_connect_out_signal(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  512. }
  513. if(rx_io_num >= 0) {
  514. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  515. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  516. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  517. esp_rom_gpio_connect_in_signal(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  518. }
  519. if(rts_io_num >= 0) {
  520. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  521. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  522. esp_rom_gpio_connect_out_signal(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  523. }
  524. if(cts_io_num >= 0) {
  525. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  526. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  527. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  528. esp_rom_gpio_connect_in_signal(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  529. }
  530. return ESP_OK;
  531. }
  532. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  533. {
  534. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  535. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), "disable hw flowctrl before using sw control", ESP_FAIL);
  536. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  537. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  538. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  539. return ESP_OK;
  540. }
  541. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  542. {
  543. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  544. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  545. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  546. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  547. return ESP_OK;
  548. }
  549. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  550. {
  551. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  552. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  553. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  554. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  555. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  556. return ESP_OK;
  557. }
  558. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  559. {
  560. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  561. UART_CHECK((uart_config), "param null", ESP_FAIL);
  562. UART_CHECK((uart_config->rx_flow_ctrl_thresh < SOC_UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  563. UART_CHECK((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  564. UART_CHECK((uart_config->data_bits < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  565. uart_module_enable(uart_num);
  566. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  567. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  568. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->source_clk, uart_config->baud_rate);
  569. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  570. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  571. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  572. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  573. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  574. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  575. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  576. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  577. return ESP_OK;
  578. }
  579. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  580. {
  581. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  582. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  583. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  584. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  585. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  586. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  587. } else {
  588. //Disable rx_tout intr
  589. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  590. }
  591. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  592. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  593. }
  594. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  595. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  596. }
  597. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  598. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  599. return ESP_OK;
  600. }
  601. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  602. {
  603. int cnt = 0;
  604. int len = length;
  605. while (len >= 0) {
  606. if (buf[len] == pat_chr) {
  607. cnt++;
  608. } else {
  609. cnt = 0;
  610. }
  611. if (cnt >= pat_num) {
  612. break;
  613. }
  614. len --;
  615. }
  616. return len;
  617. }
  618. //internal isr handler for default driver code.
  619. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  620. {
  621. uart_obj_t *p_uart = (uart_obj_t*) param;
  622. uint8_t uart_num = p_uart->uart_num;
  623. int rx_fifo_len = 0;
  624. uint32_t uart_intr_status = 0;
  625. uart_event_t uart_event;
  626. portBASE_TYPE HPTaskAwoken = 0;
  627. static uint8_t pat_flg = 0;
  628. while(1) {
  629. // The `continue statement` may cause the interrupt to loop infinitely
  630. // we exit the interrupt here
  631. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  632. //Exit form while loop
  633. if(uart_intr_status == 0){
  634. break;
  635. }
  636. uart_event.type = UART_EVENT_MAX;
  637. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  638. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  639. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  640. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  641. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  642. if(p_uart->tx_waiting_brk) {
  643. continue;
  644. }
  645. //TX semaphore will only be used when tx_buf_size is zero.
  646. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  647. p_uart->tx_waiting_fifo = false;
  648. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  649. } else {
  650. //We don't use TX ring buffer, because the size is zero.
  651. if(p_uart->tx_buf_size == 0) {
  652. continue;
  653. }
  654. bool en_tx_flg = false;
  655. int tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  656. //We need to put a loop here, in case all the buffer items are very short.
  657. //That would cause a watch_dog reset because empty interrupt happens so often.
  658. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  659. while(tx_fifo_rem) {
  660. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  661. size_t size;
  662. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  663. if(p_uart->tx_head) {
  664. //The first item is the data description
  665. //Get the first item to get the data information
  666. if(p_uart->tx_len_tot == 0) {
  667. p_uart->tx_ptr = NULL;
  668. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  669. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  670. p_uart->tx_brk_flg = 1;
  671. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  672. }
  673. //We have saved the data description from the 1st item, return buffer.
  674. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  675. } else if(p_uart->tx_ptr == NULL) {
  676. //Update the TX item pointer, we will need this to return item to buffer.
  677. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  678. en_tx_flg = true;
  679. p_uart->tx_len_cur = size;
  680. }
  681. } else {
  682. //Can not get data from ring buffer, return;
  683. break;
  684. }
  685. }
  686. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  687. //To fill the TX FIFO.
  688. uint32_t send_len = 0;
  689. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  690. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  691. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  692. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  693. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  694. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  695. }
  696. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  697. (const uint8_t *)p_uart->tx_ptr,
  698. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  699. &send_len);
  700. p_uart->tx_ptr += send_len;
  701. p_uart->tx_len_tot -= send_len;
  702. p_uart->tx_len_cur -= send_len;
  703. tx_fifo_rem -= send_len;
  704. if (p_uart->tx_len_cur == 0) {
  705. //Return item to ring buffer.
  706. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  707. p_uart->tx_head = NULL;
  708. p_uart->tx_ptr = NULL;
  709. //Sending item done, now we need to send break if there is a record.
  710. //Set TX break signal after FIFO is empty
  711. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  712. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  713. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  714. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  715. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  716. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  717. p_uart->tx_waiting_brk = 1;
  718. //do not enable TX empty interrupt
  719. en_tx_flg = false;
  720. } else {
  721. //enable TX empty interrupt
  722. en_tx_flg = true;
  723. }
  724. } else {
  725. //enable TX empty interrupt
  726. en_tx_flg = true;
  727. }
  728. }
  729. }
  730. if (en_tx_flg) {
  731. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  732. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  733. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  734. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  735. }
  736. }
  737. }
  738. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  739. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  740. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  741. ) {
  742. if(pat_flg == 1) {
  743. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  744. pat_flg = 0;
  745. }
  746. if (p_uart->rx_buffer_full_flg == false) {
  747. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  748. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  749. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  750. }
  751. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  752. uint8_t pat_chr = 0;
  753. uint8_t pat_num = 0;
  754. int pat_idx = -1;
  755. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  756. //Get the buffer from the FIFO
  757. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  758. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  759. uart_event.type = UART_PATTERN_DET;
  760. uart_event.size = rx_fifo_len;
  761. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  762. } else {
  763. //After Copying the Data From FIFO ,Clear intr_status
  764. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  765. uart_event.type = UART_DATA;
  766. uart_event.size = rx_fifo_len;
  767. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  768. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  769. if (p_uart->uart_select_notif_callback) {
  770. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  771. }
  772. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  773. }
  774. p_uart->rx_stash_len = rx_fifo_len;
  775. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  776. //Mainly for applications that uses flow control or small ring buffer.
  777. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  778. p_uart->rx_buffer_full_flg = true;
  779. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  780. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  781. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  782. if (uart_event.type == UART_PATTERN_DET) {
  783. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  784. if (rx_fifo_len < pat_num) {
  785. //some of the characters are read out in last interrupt
  786. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  787. } else {
  788. uart_pattern_enqueue(uart_num,
  789. pat_idx <= -1 ?
  790. //can not find the pattern in buffer,
  791. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  792. // find the pattern in buffer
  793. p_uart->rx_buffered_len + pat_idx);
  794. }
  795. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  796. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  797. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  798. }
  799. }
  800. uart_event.type = UART_BUFFER_FULL;
  801. } else {
  802. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  803. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  804. if (rx_fifo_len < pat_num) {
  805. //some of the characters are read out in last interrupt
  806. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  807. } else if(pat_idx >= 0) {
  808. // find the pattern in stash buffer.
  809. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  810. }
  811. }
  812. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  813. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  814. }
  815. } else {
  816. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  817. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  818. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  819. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  820. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  821. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  822. uart_event.type = UART_PATTERN_DET;
  823. uart_event.size = rx_fifo_len;
  824. pat_flg = 1;
  825. }
  826. }
  827. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  828. // When fifo overflows, we reset the fifo.
  829. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  830. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  831. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  832. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  833. if (p_uart->uart_select_notif_callback) {
  834. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  835. }
  836. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  837. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  838. uart_event.type = UART_FIFO_OVF;
  839. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  840. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  841. uart_event.type = UART_BREAK;
  842. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  843. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  844. if (p_uart->uart_select_notif_callback) {
  845. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  846. }
  847. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  848. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  849. uart_event.type = UART_FRAME_ERR;
  850. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  851. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  852. if (p_uart->uart_select_notif_callback) {
  853. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  854. }
  855. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  856. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  857. uart_event.type = UART_PARITY_ERR;
  858. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  859. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  860. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  861. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  862. if(p_uart->tx_brk_flg == 1) {
  863. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  864. }
  865. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  866. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  867. if(p_uart->tx_brk_flg == 1) {
  868. p_uart->tx_brk_flg = 0;
  869. p_uart->tx_waiting_brk = 0;
  870. } else {
  871. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  872. }
  873. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  874. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  875. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  876. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  877. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  878. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  879. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  880. uart_event.type = UART_PATTERN_DET;
  881. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  882. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  883. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  884. // RS485 collision or frame error interrupt triggered
  885. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  886. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  887. // Set collision detection flag
  888. p_uart_obj[uart_num]->coll_det_flg = true;
  889. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  890. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  891. uart_event.type = UART_EVENT_MAX;
  892. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  893. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  894. // The TX_DONE interrupt is triggered but transmit is active
  895. // then postpone interrupt processing for next interrupt
  896. uart_event.type = UART_EVENT_MAX;
  897. } else {
  898. // Workaround for RS485: If the RS485 half duplex mode is active
  899. // and transmitter is in idle state then reset received buffer and reset RTS pin
  900. // skip this behavior for other UART modes
  901. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  902. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  903. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  904. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  905. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  906. }
  907. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  908. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  909. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  910. }
  911. } else {
  912. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  913. uart_event.type = UART_EVENT_MAX;
  914. }
  915. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  916. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  917. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  918. }
  919. }
  920. }
  921. if(HPTaskAwoken == pdTRUE) {
  922. portYIELD_FROM_ISR();
  923. }
  924. }
  925. /**************************************************************/
  926. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  927. {
  928. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  929. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  930. BaseType_t res;
  931. portTickType ticks_start = xTaskGetTickCount();
  932. //Take tx_mux
  933. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  934. if(res == pdFALSE) {
  935. return ESP_ERR_TIMEOUT;
  936. }
  937. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  938. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  939. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  940. return ESP_OK;
  941. }
  942. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  943. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  944. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  945. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  946. TickType_t ticks_end = xTaskGetTickCount();
  947. if (ticks_end - ticks_start > ticks_to_wait) {
  948. ticks_to_wait = 0;
  949. } else {
  950. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  951. }
  952. //take 2nd tx_done_sem, wait given from ISR
  953. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  954. if(res == pdFALSE) {
  955. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  956. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  957. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  958. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  959. return ESP_ERR_TIMEOUT;
  960. }
  961. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  962. return ESP_OK;
  963. }
  964. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  965. {
  966. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  967. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  968. UART_CHECK(buffer, "buffer null", (-1));
  969. if(len == 0) {
  970. return 0;
  971. }
  972. int tx_len = 0;
  973. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  974. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  975. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  976. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  977. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  978. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  979. }
  980. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  981. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  982. return tx_len;
  983. }
  984. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  985. {
  986. if(size == 0) {
  987. return 0;
  988. }
  989. size_t original_size = size;
  990. //lock for uart_tx
  991. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  992. p_uart_obj[uart_num]->coll_det_flg = false;
  993. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  994. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  995. int offset = 0;
  996. uart_tx_data_t evt;
  997. evt.tx_data.size = size;
  998. evt.tx_data.brk_len = brk_len;
  999. if(brk_en) {
  1000. evt.type = UART_DATA_BREAK;
  1001. } else {
  1002. evt.type = UART_DATA;
  1003. }
  1004. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1005. while(size > 0) {
  1006. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1007. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1008. size -= send_size;
  1009. offset += send_size;
  1010. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1011. }
  1012. } else {
  1013. while(size) {
  1014. //semaphore for tx_fifo available
  1015. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1016. uint32_t sent = 0;
  1017. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1018. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1019. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1020. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1021. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1022. }
  1023. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1024. if(sent < size) {
  1025. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1026. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1027. }
  1028. size -= sent;
  1029. src += sent;
  1030. }
  1031. }
  1032. if(brk_en) {
  1033. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1034. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1035. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1036. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1037. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1038. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1039. }
  1040. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1041. }
  1042. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1043. return original_size;
  1044. }
  1045. int uart_write_bytes(uart_port_t uart_num, const void* src, size_t size)
  1046. {
  1047. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1048. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1049. UART_CHECK(src, "buffer null", (-1));
  1050. return uart_tx_all(uart_num, src, size, 0, 0);
  1051. }
  1052. int uart_write_bytes_with_break(uart_port_t uart_num, const void* src, size_t size, int brk_len)
  1053. {
  1054. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1055. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1056. UART_CHECK((size > 0), "uart size error", (-1));
  1057. UART_CHECK((src), "uart data null", (-1));
  1058. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1059. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1060. }
  1061. static bool uart_check_buf_full(uart_port_t uart_num)
  1062. {
  1063. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1064. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1065. if(res == pdTRUE) {
  1066. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1067. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1068. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1069. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1070. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1071. return true;
  1072. }
  1073. }
  1074. return false;
  1075. }
  1076. int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t ticks_to_wait)
  1077. {
  1078. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1079. UART_CHECK((buf), "uart data null", (-1));
  1080. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1081. uint8_t* data = NULL;
  1082. size_t size;
  1083. size_t copy_len = 0;
  1084. int len_tmp;
  1085. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1086. return -1;
  1087. }
  1088. while(length) {
  1089. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1090. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1091. if(data) {
  1092. p_uart_obj[uart_num]->rx_head_ptr = data;
  1093. p_uart_obj[uart_num]->rx_ptr = data;
  1094. p_uart_obj[uart_num]->rx_cur_remain = size;
  1095. } else {
  1096. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1097. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1098. //to solve the possible asynchronous issues.
  1099. if(uart_check_buf_full(uart_num)) {
  1100. //This condition will never be true if `uart_read_bytes`
  1101. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1102. continue;
  1103. } else {
  1104. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1105. return copy_len;
  1106. }
  1107. }
  1108. }
  1109. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1110. len_tmp = length;
  1111. } else {
  1112. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1113. }
  1114. memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1115. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1116. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1117. uart_pattern_queue_update(uart_num, len_tmp);
  1118. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1119. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1120. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1121. copy_len += len_tmp;
  1122. length -= len_tmp;
  1123. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1124. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1125. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1126. p_uart_obj[uart_num]->rx_ptr = NULL;
  1127. uart_check_buf_full(uart_num);
  1128. }
  1129. }
  1130. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1131. return copy_len;
  1132. }
  1133. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1134. {
  1135. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1136. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1137. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1138. return ESP_OK;
  1139. }
  1140. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1141. esp_err_t uart_flush_input(uart_port_t uart_num)
  1142. {
  1143. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1144. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1145. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1146. uint8_t* data;
  1147. size_t size;
  1148. //rx sem protect the ring buffer read related functions
  1149. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1150. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1151. while(true) {
  1152. if(p_uart->rx_head_ptr) {
  1153. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1154. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1155. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1156. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1157. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1158. p_uart->rx_ptr = NULL;
  1159. p_uart->rx_cur_remain = 0;
  1160. p_uart->rx_head_ptr = NULL;
  1161. }
  1162. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1163. if(data == NULL) {
  1164. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1165. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1166. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1167. }
  1168. //We also need to clear the `rx_buffer_full_flg` here.
  1169. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1170. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1171. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1172. break;
  1173. }
  1174. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1175. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1176. uart_pattern_queue_update(uart_num, size);
  1177. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1178. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1179. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1180. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1181. if(res == pdTRUE) {
  1182. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1183. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1184. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1185. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1186. }
  1187. }
  1188. }
  1189. p_uart->rx_ptr = NULL;
  1190. p_uart->rx_cur_remain = 0;
  1191. p_uart->rx_head_ptr = NULL;
  1192. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1193. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1194. xSemaphoreGive(p_uart->rx_mux);
  1195. return ESP_OK;
  1196. }
  1197. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1198. {
  1199. esp_err_t r;
  1200. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1201. UART_CHECK((rx_buffer_size > SOC_UART_FIFO_LEN), "uart rx buffer length error", ESP_FAIL);
  1202. UART_CHECK((tx_buffer_size > SOC_UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error", ESP_FAIL);
  1203. #if CONFIG_UART_ISR_IN_IRAM
  1204. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1205. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1206. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1207. }
  1208. #else
  1209. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1210. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1211. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1212. }
  1213. #endif
  1214. if(p_uart_obj[uart_num] == NULL) {
  1215. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1216. if(p_uart_obj[uart_num] == NULL) {
  1217. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1218. return ESP_FAIL;
  1219. }
  1220. p_uart_obj[uart_num]->uart_num = uart_num;
  1221. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1222. p_uart_obj[uart_num]->coll_det_flg = false;
  1223. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1224. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1225. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1226. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1227. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1228. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1229. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1230. p_uart_obj[uart_num]->queue_size = queue_size;
  1231. p_uart_obj[uart_num]->tx_ptr = NULL;
  1232. p_uart_obj[uart_num]->tx_head = NULL;
  1233. p_uart_obj[uart_num]->tx_len_tot = 0;
  1234. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1235. p_uart_obj[uart_num]->tx_brk_len = 0;
  1236. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1237. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1238. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1239. if(uart_queue) {
  1240. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1241. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1242. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1243. } else {
  1244. p_uart_obj[uart_num]->xQueueUart = NULL;
  1245. }
  1246. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1247. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1248. p_uart_obj[uart_num]->rx_ptr = NULL;
  1249. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1250. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1251. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1252. if(tx_buffer_size > 0) {
  1253. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1254. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1255. } else {
  1256. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1257. p_uart_obj[uart_num]->tx_buf_size = 0;
  1258. }
  1259. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1260. } else {
  1261. ESP_LOGE(UART_TAG, "UART driver already installed");
  1262. return ESP_FAIL;
  1263. }
  1264. uart_intr_config_t uart_intr = {
  1265. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1266. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1267. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1268. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
  1269. };
  1270. uart_module_enable(uart_num);
  1271. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1272. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1273. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1274. if (r!=ESP_OK) goto err;
  1275. r=uart_intr_config(uart_num, &uart_intr);
  1276. if (r!=ESP_OK) goto err;
  1277. return r;
  1278. err:
  1279. uart_driver_delete(uart_num);
  1280. return r;
  1281. }
  1282. //Make sure no other tasks are still using UART before you call this function
  1283. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1284. {
  1285. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1286. if(p_uart_obj[uart_num] == NULL) {
  1287. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1288. return ESP_OK;
  1289. }
  1290. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1291. uart_disable_rx_intr(uart_num);
  1292. uart_disable_tx_intr(uart_num);
  1293. uart_pattern_link_free(uart_num);
  1294. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1295. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1296. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1297. }
  1298. if(p_uart_obj[uart_num]->tx_done_sem) {
  1299. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1300. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1301. }
  1302. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1303. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1304. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1305. }
  1306. if(p_uart_obj[uart_num]->tx_mux) {
  1307. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1308. p_uart_obj[uart_num]->tx_mux = NULL;
  1309. }
  1310. if(p_uart_obj[uart_num]->rx_mux) {
  1311. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1312. p_uart_obj[uart_num]->rx_mux = NULL;
  1313. }
  1314. if(p_uart_obj[uart_num]->xQueueUart) {
  1315. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1316. p_uart_obj[uart_num]->xQueueUart = NULL;
  1317. }
  1318. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1319. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1320. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1321. }
  1322. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1323. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1324. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1325. }
  1326. heap_caps_free(p_uart_obj[uart_num]);
  1327. p_uart_obj[uart_num] = NULL;
  1328. uart_module_disable(uart_num);
  1329. return ESP_OK;
  1330. }
  1331. bool uart_is_driver_installed(uart_port_t uart_num)
  1332. {
  1333. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1334. }
  1335. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1336. {
  1337. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1338. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1339. }
  1340. }
  1341. portMUX_TYPE *uart_get_selectlock(void)
  1342. {
  1343. return &uart_selectlock;
  1344. }
  1345. // Set UART mode
  1346. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1347. {
  1348. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1349. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1350. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1351. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1352. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
  1353. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1354. }
  1355. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1356. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1357. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1358. // This mode allows read while transmitting that allows collision detection
  1359. p_uart_obj[uart_num]->coll_det_flg = false;
  1360. // Enable collision detection interrupts
  1361. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1362. | UART_INTR_RXFIFO_FULL
  1363. | UART_INTR_RS485_CLASH
  1364. | UART_INTR_RS485_FRM_ERR
  1365. | UART_INTR_RS485_PARITY_ERR);
  1366. }
  1367. p_uart_obj[uart_num]->uart_mode = mode;
  1368. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1369. return ESP_OK;
  1370. }
  1371. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1372. {
  1373. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1374. UART_CHECK((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0),
  1375. "rx fifo full threshold value error", ESP_ERR_INVALID_ARG);
  1376. if (p_uart_obj[uart_num] == NULL) {
  1377. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1378. return ESP_ERR_INVALID_STATE;
  1379. }
  1380. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1381. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1382. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1383. }
  1384. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1385. return ESP_OK;
  1386. }
  1387. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1388. {
  1389. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1390. UART_CHECK((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0),
  1391. "tx fifo empty threshold value error", ESP_ERR_INVALID_ARG);
  1392. if (p_uart_obj[uart_num] == NULL) {
  1393. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1394. return ESP_ERR_INVALID_STATE;
  1395. }
  1396. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1397. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1398. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1399. }
  1400. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1401. return ESP_OK;
  1402. }
  1403. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1404. {
  1405. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1406. // get maximum timeout threshold
  1407. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1408. if (tout_thresh > tout_max_thresh) {
  1409. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1410. return ESP_ERR_INVALID_ARG;
  1411. }
  1412. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1413. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1414. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1415. return ESP_OK;
  1416. }
  1417. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1418. {
  1419. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1420. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1421. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1422. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1423. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1424. "wrong mode", ESP_ERR_INVALID_ARG);
  1425. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1426. return ESP_OK;
  1427. }
  1428. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1429. {
  1430. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1431. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1432. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1433. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1434. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1435. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1436. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1437. return ESP_OK;
  1438. }
  1439. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1440. {
  1441. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1442. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1443. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1444. return ESP_OK;
  1445. }
  1446. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1447. {
  1448. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1449. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1450. return ESP_OK;
  1451. }
  1452. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1453. {
  1454. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1455. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1456. return ESP_OK;
  1457. }
  1458. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1459. {
  1460. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1461. if (rx_tout) {
  1462. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1463. } else {
  1464. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1465. }
  1466. }