adc_hal.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. /*
  2. * SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <sys/param.h>
  7. #include "sdkconfig.h"
  8. #include "hal/adc_hal.h"
  9. #include "hal/adc_hal_conf.h"
  10. #include "hal/assert.h"
  11. #include "soc/lldesc.h"
  12. #include "soc/soc_caps.h"
  13. #if CONFIG_IDF_TARGET_ESP32
  14. //ADC utilises I2S0 DMA on ESP32
  15. #include "hal/i2s_ll.h"
  16. #include "hal/i2s_types.h"
  17. #include "soc/i2s_struct.h"
  18. #endif
  19. #if CONFIG_IDF_TARGET_ESP32S2
  20. //ADC utilises SPI3 DMA on ESP32S2
  21. #include "hal/spi_ll.h"
  22. #include "soc/spi_struct.h"
  23. #endif
  24. #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
  25. /*---------------------------------------------------------------
  26. Single Read
  27. ---------------------------------------------------------------*/
  28. /**
  29. * For chips without RTC controller, Digital controller is used to trigger an ADC single read.
  30. */
  31. #include "esp_rom_sys.h"
  32. #endif //SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
  33. /*---------------------------------------------------------------
  34. Define all ADC DMA required operations here
  35. ---------------------------------------------------------------*/
  36. #if SOC_GDMA_SUPPORTED
  37. #define adc_dma_ll_rx_clear_intr(dev, chan, mask) gdma_ll_rx_clear_interrupt_status(dev, chan, mask)
  38. #define adc_dma_ll_rx_enable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, true)
  39. #define adc_dma_ll_rx_disable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, false)
  40. #define adc_dma_ll_rx_reset_channel(dev, chan) gdma_ll_rx_reset_channel(dev, chan)
  41. #define adc_dma_ll_rx_stop(dev, chan) gdma_ll_rx_stop(dev, chan)
  42. #define adc_dma_ll_rx_start(dev, chan, addr) do { \
  43. gdma_ll_rx_set_desc_addr(dev, chan, (uint32_t)addr); \
  44. gdma_ll_rx_start(dev, chan); \
  45. } while (0)
  46. #define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
  47. #define adc_ll_digi_reset(dev) adc_ll_digi_reset()
  48. #define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
  49. #define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
  50. //ADC utilises SPI3 DMA on ESP32S2
  51. #elif CONFIG_IDF_TARGET_ESP32S2
  52. #define adc_dma_ll_rx_get_intr(dev, mask) spi_ll_get_intr(dev, mask)
  53. #define adc_dma_ll_rx_clear_intr(dev, chan, mask) spi_ll_clear_intr(dev, mask)
  54. #define adc_dma_ll_rx_enable_intr(dev, chan, mask) spi_ll_enable_intr(dev, mask)
  55. #define adc_dma_ll_rx_disable_intr(dev, chan, mask) spi_ll_disable_intr(dev, mask)
  56. #define adc_dma_ll_rx_reset_channel(dev, chan) spi_dma_ll_rx_reset(dev, chan)
  57. #define adc_dma_ll_rx_stop(dev, chan) spi_dma_ll_rx_stop(dev, chan)
  58. #define adc_dma_ll_rx_start(dev, chan, addr) spi_dma_ll_rx_start(dev, chan, addr)
  59. #define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) spi_dma_ll_get_in_suc_eof_desc_addr(dev, chan)
  60. #define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
  61. #define adc_ll_digi_reset(dev) adc_ll_digi_reset()
  62. #define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
  63. #define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
  64. //ADC utilises I2S0 DMA on ESP32
  65. #else //CONFIG_IDF_TARGET_ESP32
  66. #define adc_dma_ll_rx_get_intr(dev, mask) ({i2s_ll_get_intr_status(dev) & mask;})
  67. #define adc_dma_ll_rx_clear_intr(dev, chan, mask) i2s_ll_clear_intr_status(dev, mask)
  68. #define adc_dma_ll_rx_enable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val |= mask;} while (0)
  69. #define adc_dma_ll_rx_disable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val &= ~mask;} while (0)
  70. #define adc_dma_ll_rx_reset_channel(dev, chan) i2s_ll_rx_reset_dma(dev)
  71. #define adc_dma_ll_rx_stop(dev, chan) i2s_ll_rx_stop_link(dev)
  72. #define adc_dma_ll_rx_start(dev, chan, address) do { \
  73. ((i2s_dev_t *)(dev))->in_link.addr = (uint32_t)(address); \
  74. i2s_ll_enable_dma(dev, 1); \
  75. ((i2s_dev_t *)(dev))->in_link.start = 1; \
  76. } while (0)
  77. #define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) ({uint32_t addr; i2s_ll_rx_get_eof_des_addr(dev, &addr); addr;})
  78. #define adc_ll_digi_dma_set_eof_num(dev, num) do {((i2s_dev_t *)(dev))->rx_eof_num = num;} while (0)
  79. #define adc_ll_digi_reset(dev) do { \
  80. i2s_ll_rx_reset(dev); \
  81. i2s_ll_rx_reset_fifo(dev); \
  82. } while (0)
  83. #define adc_ll_digi_trigger_enable(dev) i2s_ll_rx_start(dev)
  84. #define adc_ll_digi_trigger_disable(dev) i2s_ll_rx_stop(dev)
  85. #define adc_ll_digi_dma_enable() adc_ll_digi_set_data_source(1) //Will this influence I2S0
  86. #define adc_ll_digi_dma_disable() adc_ll_digi_set_data_source(0)
  87. //ESP32 ADC uses the DMA through I2S. The I2S needs to be configured.
  88. #define I2S_BASE_CLK (2*APB_CLK_FREQ)
  89. #define SAMPLE_BITS 16
  90. #define ADC_LL_CLKM_DIV_NUM_DEFAULT 2
  91. #define ADC_LL_CLKM_DIV_B_DEFAULT 0
  92. #define ADC_LL_CLKM_DIV_A_DEFAULT 1
  93. #endif
  94. void adc_hal_dma_ctx_config(adc_hal_dma_ctx_t *hal, const adc_hal_dma_config_t *config)
  95. {
  96. hal->desc_dummy_head.next = hal->rx_desc;
  97. hal->dev = config->dev;
  98. hal->desc_max_num = config->desc_max_num;
  99. hal->dma_chan = config->dma_chan;
  100. hal->eof_num = config->eof_num;
  101. }
  102. void adc_hal_digi_init(adc_hal_dma_ctx_t *hal)
  103. {
  104. // Set internal FSM wait time, fixed value.
  105. adc_ll_digi_set_fsm_time(ADC_HAL_FSM_RSTB_WAIT_DEFAULT, ADC_HAL_FSM_START_WAIT_DEFAULT,
  106. ADC_HAL_FSM_STANDBY_WAIT_DEFAULT);
  107. adc_ll_set_sample_cycle(ADC_HAL_SAMPLE_CYCLE_DEFAULT);
  108. adc_hal_pwdet_set_cct(ADC_HAL_PWDET_CCT_DEFAULT);
  109. adc_ll_digi_output_invert(ADC_UNIT_1, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_1));
  110. adc_ll_digi_output_invert(ADC_UNIT_2, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_2));
  111. adc_ll_digi_set_clk_div(ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT);
  112. adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
  113. adc_dma_ll_rx_enable_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
  114. adc_ll_digi_dma_set_eof_num(hal->dev, hal->eof_num);
  115. #if CONFIG_IDF_TARGET_ESP32
  116. i2s_ll_rx_set_sample_bit(hal->dev, SAMPLE_BITS, SAMPLE_BITS);
  117. i2s_ll_rx_enable_mono_mode(hal->dev, 1);
  118. i2s_ll_rx_force_enable_fifo_mod(hal->dev, 1);
  119. i2s_ll_enable_builtin_adc(hal->dev, 1);
  120. #endif
  121. adc_oneshot_ll_disable_all_unit();
  122. }
  123. void adc_hal_digi_deinit(adc_hal_dma_ctx_t *hal)
  124. {
  125. adc_ll_digi_trigger_disable(hal->dev);
  126. adc_ll_digi_dma_disable();
  127. adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
  128. adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
  129. adc_ll_digi_reset(hal->dev);
  130. adc_ll_digi_controller_clk_disable();
  131. }
  132. /*---------------------------------------------------------------
  133. DMA read
  134. ---------------------------------------------------------------*/
  135. static adc_ll_digi_convert_mode_t get_convert_mode(adc_digi_convert_mode_t convert_mode)
  136. {
  137. #if CONFIG_IDF_TARGET_ESP32
  138. return ADC_LL_DIGI_CONV_ONLY_ADC1;
  139. #endif
  140. #if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
  141. return ADC_LL_DIGI_CONV_ALTER_UNIT;
  142. #elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
  143. switch (convert_mode) {
  144. case ADC_CONV_SINGLE_UNIT_1:
  145. return ADC_LL_DIGI_CONV_ONLY_ADC1;
  146. case ADC_CONV_SINGLE_UNIT_2:
  147. return ADC_LL_DIGI_CONV_ONLY_ADC2;
  148. case ADC_CONV_BOTH_UNIT:
  149. return ADC_LL_DIGI_CONV_BOTH_UNIT;
  150. case ADC_CONV_ALTER_UNIT:
  151. return ADC_LL_DIGI_CONV_ALTER_UNIT;
  152. default:
  153. abort();
  154. }
  155. #endif
  156. }
  157. /**
  158. * For esp32s2 and later chips
  159. * - Set ADC digital controller clock division factor. The clock is divided from `APLL` or `APB` clock.
  160. * Expression: controller_clk = APLL/APB * (div_num + div_a / div_b + 1).
  161. * - Enable clock and select clock source for ADC digital controller.
  162. * For esp32, use I2S clock
  163. */
  164. static void adc_hal_digi_sample_freq_config(adc_hal_dma_ctx_t *hal, uint32_t freq)
  165. {
  166. #if !CONFIG_IDF_TARGET_ESP32
  167. uint32_t interval = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1) / 2 / freq;
  168. //set sample interval
  169. adc_ll_digi_set_trigger_interval(interval);
  170. //Here we set the clock divider factor to make the digital clock to 5M Hz
  171. adc_ll_digi_controller_clk_div(ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT);
  172. adc_ll_digi_clk_sel(0); //use APB
  173. #else
  174. i2s_ll_rx_clk_set_src(hal->dev, I2S_CLK_D2CLK); /*!< Clock from PLL_D2_CLK(160M)*/
  175. uint32_t bck = I2S_BASE_CLK / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_B_DEFAULT / ADC_LL_CLKM_DIV_A_DEFAULT) / 2 / freq;
  176. i2s_ll_set_raw_mclk_div(hal->dev, ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT);
  177. i2s_ll_rx_set_bck_div_num(hal->dev, bck);
  178. #endif
  179. }
  180. void adc_hal_digi_controller_config(adc_hal_dma_ctx_t *hal, const adc_hal_digi_ctrlr_cfg_t *cfg)
  181. {
  182. #if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
  183. //Only one pattern table, this variable is for readability
  184. const int pattern_both = 0;
  185. adc_ll_digi_clear_pattern_table(pattern_both);
  186. adc_ll_digi_set_pattern_table_len(pattern_both, cfg->adc_pattern_len);
  187. for (int i = 0; i < cfg->adc_pattern_len; i++) {
  188. adc_ll_digi_set_pattern_table(pattern_both, i, cfg->adc_pattern[i]);
  189. }
  190. #elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
  191. uint32_t adc1_pattern_idx = 0;
  192. uint32_t adc2_pattern_idx = 0;
  193. adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
  194. adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
  195. for (int i = 0; i < cfg->adc_pattern_len; i++) {
  196. if (cfg->adc_pattern[i].unit == ADC_UNIT_1) {
  197. adc_ll_digi_set_pattern_table(ADC_UNIT_1, adc1_pattern_idx, cfg->adc_pattern[i]);
  198. adc1_pattern_idx++;
  199. } else if (cfg->adc_pattern[i].unit == ADC_UNIT_2) {
  200. adc_ll_digi_set_pattern_table(ADC_UNIT_2, adc2_pattern_idx, cfg->adc_pattern[i]);
  201. adc2_pattern_idx++;
  202. } else {
  203. abort();
  204. }
  205. }
  206. adc_ll_digi_set_pattern_table_len(ADC_UNIT_1, adc1_pattern_idx);
  207. adc_ll_digi_set_pattern_table_len(ADC_UNIT_2, adc2_pattern_idx);
  208. #endif
  209. if (cfg->conv_limit_en) {
  210. adc_ll_digi_set_convert_limit_num(cfg->conv_limit_num);
  211. adc_ll_digi_convert_limit_enable();
  212. } else {
  213. adc_ll_digi_convert_limit_disable();
  214. }
  215. adc_ll_digi_set_convert_mode(get_convert_mode(cfg->conv_mode));
  216. //clock and sample frequency
  217. adc_hal_digi_sample_freq_config(hal, cfg->sample_freq_hz);
  218. }
  219. static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
  220. {
  221. HAL_ASSERT(((uint32_t)data_buf % 4) == 0);
  222. HAL_ASSERT((size % 4) == 0);
  223. uint32_t n = 0;
  224. while (num--) {
  225. desc[n] = (dma_descriptor_t) {
  226. .dw0.size = size,
  227. .dw0.length = 0,
  228. .dw0.suc_eof = 0,
  229. .dw0.owner = 1,
  230. .buffer = data_buf,
  231. .next = &desc[n+1]
  232. };
  233. data_buf += size;
  234. n++;
  235. }
  236. desc[n-1].next = NULL;
  237. }
  238. void adc_hal_digi_start(adc_hal_dma_ctx_t *hal, uint8_t *data_buf)
  239. {
  240. //stop peripheral and DMA
  241. adc_hal_digi_stop(hal);
  242. //reset DMA
  243. adc_dma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
  244. //reset peripheral
  245. adc_ll_digi_reset(hal->dev);
  246. //reset the current descriptor address
  247. hal->cur_desc_ptr = &hal->desc_dummy_head;
  248. adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * ADC_HAL_DATA_LEN_PER_CONV, hal->desc_max_num);
  249. //start DMA
  250. adc_dma_ll_rx_start(hal->dev, hal->dma_chan, (lldesc_t *)hal->rx_desc);
  251. //connect DMA and peripheral
  252. adc_ll_digi_dma_enable();
  253. //start ADC
  254. adc_ll_digi_trigger_enable(hal->dev);
  255. }
  256. #if !SOC_GDMA_SUPPORTED
  257. intptr_t adc_hal_get_desc_addr(adc_hal_dma_ctx_t *hal)
  258. {
  259. return adc_dma_ll_get_in_suc_eof_desc_addr(hal->dev, hal->dma_chan);
  260. }
  261. bool adc_hal_check_event(adc_hal_dma_ctx_t *hal, uint32_t mask)
  262. {
  263. return adc_dma_ll_rx_get_intr(hal->dev, mask);
  264. }
  265. #endif //#if !SOC_GDMA_SUPPORTED
  266. adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_dma_ctx_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
  267. {
  268. HAL_ASSERT(hal->cur_desc_ptr);
  269. if (!hal->cur_desc_ptr->next) {
  270. return ADC_HAL_DMA_DESC_NULL;
  271. }
  272. if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
  273. return ADC_HAL_DMA_DESC_WAITING;
  274. }
  275. hal->cur_desc_ptr = hal->cur_desc_ptr->next;
  276. *cur_desc = hal->cur_desc_ptr;
  277. return ADC_HAL_DMA_DESC_VALID;
  278. }
  279. void adc_hal_digi_clr_intr(adc_hal_dma_ctx_t *hal, uint32_t mask)
  280. {
  281. adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, mask);
  282. }
  283. void adc_hal_digi_dis_intr(adc_hal_dma_ctx_t *hal, uint32_t mask)
  284. {
  285. adc_dma_ll_rx_disable_intr(hal->dev, hal->dma_chan, mask);
  286. }
  287. void adc_hal_digi_stop(adc_hal_dma_ctx_t *hal)
  288. {
  289. //stop ADC
  290. adc_ll_digi_trigger_disable(hal->dev);
  291. //stop DMA
  292. adc_dma_ll_rx_stop(hal->dev, hal->dma_chan);
  293. //disconnect DMA and peripheral
  294. adc_ll_digi_dma_disable();
  295. }
  296. /*---------------------------------------------------------------
  297. Single Read
  298. ---------------------------------------------------------------*/
  299. /**
  300. * For chips without RTC controller, Digital controller is used to trigger an ADC single read.
  301. */
  302. //--------------------Single Read-------------------------------//
  303. static void adc_hal_onetime_start(adc_unit_t adc_n)
  304. {
  305. #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
  306. (void)adc_n;
  307. /**
  308. * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
  309. * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
  310. * clock cycle.
  311. *
  312. * This limitation will be removed in hardware future versions.
  313. *
  314. */
  315. uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
  316. //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
  317. uint32_t delay = (1000 * 1000) / digi_clk + 1;
  318. //3 ADC digital controller clock cycle
  319. delay = delay * 3;
  320. //This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
  321. if (digi_clk >= APB_CLK_FREQ/8) {
  322. delay = 0;
  323. }
  324. adc_oneshot_ll_start(false);
  325. esp_rom_delay_us(delay);
  326. adc_oneshot_ll_start(true);
  327. //No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
  328. #else
  329. adc_oneshot_ll_start(adc_n);
  330. #endif
  331. }
  332. esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, int *out_raw)
  333. {
  334. uint32_t event = (adc_n == ADC_UNIT_1) ? ADC_LL_EVENT_ADC1_ONESHOT_DONE : ADC_LL_EVENT_ADC2_ONESHOT_DONE;
  335. adc_oneshot_ll_clear_event(event);
  336. adc_oneshot_ll_disable_all_unit();
  337. adc_oneshot_ll_enable(adc_n);
  338. adc_oneshot_ll_set_channel(adc_n, channel);
  339. adc_hal_onetime_start(adc_n);
  340. while (adc_oneshot_ll_get_event(event) != true) {
  341. ;
  342. }
  343. *out_raw = adc_oneshot_ll_get_raw_result(adc_n);
  344. if (adc_oneshot_ll_raw_check_valid(adc_n, *out_raw) == false) {
  345. return ESP_ERR_INVALID_STATE;
  346. }
  347. //HW workaround: when enabling periph clock, this should be false
  348. adc_oneshot_ll_disable_all_unit();
  349. return ESP_OK;
  350. }