uart.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #include "driver/uart_select.h"
  32. #define XOFF (char)0x13
  33. #define XON (char)0x11
  34. static const char* UART_TAG = "uart";
  35. #define UART_CHECK(a, str, ret_val) \
  36. if (!(a)) { \
  37. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  38. return (ret_val); \
  39. }
  40. #define UART_EMPTY_THRESH_DEFAULT (10)
  41. #define UART_FULL_THRESH_DEFAULT (120)
  42. #define UART_TOUT_THRESH_DEFAULT (10)
  43. #define UART_TX_IDLE_NUM_DEFAULT (0)
  44. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  45. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  46. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  47. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  48. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  49. // Check actual UART mode set
  50. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  51. typedef struct {
  52. uart_event_type_t type; /*!< UART TX data type */
  53. struct {
  54. int brk_len;
  55. size_t size;
  56. uint8_t data[0];
  57. } tx_data;
  58. } uart_tx_data_t;
  59. typedef struct {
  60. int wr;
  61. int rd;
  62. int len;
  63. int* data;
  64. } uart_pat_rb_t;
  65. typedef struct {
  66. uart_port_t uart_num; /*!< UART port number*/
  67. int queue_size; /*!< UART event queue size*/
  68. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  69. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  70. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  71. bool coll_det_flg; /*!< UART collision detection flag */
  72. //rx parameters
  73. int rx_buffered_len; /*!< UART cached data length */
  74. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  75. int rx_buf_size; /*!< RX ring buffer size */
  76. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  77. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  78. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  79. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  80. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  81. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  82. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  83. uart_pat_rb_t rx_pattern_pos;
  84. //tx parameters
  85. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  86. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  87. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  88. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  89. int tx_buf_size; /*!< TX ring buffer size */
  90. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  91. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  92. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  93. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  94. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  95. uint32_t tx_len_cur;
  96. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  97. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  98. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  99. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  100. } uart_obj_t;
  101. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  102. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  103. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  104. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  105. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  106. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  107. {
  108. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  109. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  110. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  111. UART[uart_num]->conf0.bit_num = data_bit;
  112. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  113. return ESP_OK;
  114. }
  115. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  116. {
  117. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  118. *(data_bit) = UART[uart_num]->conf0.bit_num;
  119. return ESP_OK;
  120. }
  121. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  122. {
  123. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  124. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  125. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  126. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  127. if (stop_bit == UART_STOP_BITS_2) {
  128. stop_bit = UART_STOP_BITS_1;
  129. UART[uart_num]->rs485_conf.dl1_en = 1;
  130. } else {
  131. UART[uart_num]->rs485_conf.dl1_en = 0;
  132. }
  133. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  134. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  135. return ESP_OK;
  136. }
  137. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  138. {
  139. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  140. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  141. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  142. (*stop_bit) = UART_STOP_BITS_2;
  143. } else {
  144. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  145. }
  146. return ESP_OK;
  147. }
  148. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  149. {
  150. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  151. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  152. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  153. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  154. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  155. return ESP_OK;
  156. }
  157. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  158. {
  159. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  160. int val = UART[uart_num]->conf0.val;
  161. if(val & UART_PARITY_EN_M) {
  162. if(val & UART_PARITY_M) {
  163. (*parity_mode) = UART_PARITY_ODD;
  164. } else {
  165. (*parity_mode) = UART_PARITY_EVEN;
  166. }
  167. } else {
  168. (*parity_mode) = UART_PARITY_DISABLE;
  169. }
  170. return ESP_OK;
  171. }
  172. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  173. {
  174. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  175. esp_err_t ret = ESP_OK;
  176. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  177. int uart_clk_freq;
  178. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  179. /* this UART has been configured to use REF_TICK */
  180. uart_clk_freq = REF_CLK_FREQ;
  181. } else {
  182. uart_clk_freq = esp_clk_apb_freq();
  183. }
  184. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  185. if (clk_div < 16) {
  186. /* baud rate is too high for this clock frequency */
  187. ret = ESP_ERR_INVALID_ARG;
  188. } else {
  189. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  190. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  191. }
  192. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  193. return ret;
  194. }
  195. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  196. {
  197. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  198. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  199. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  200. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  201. uint32_t uart_clk_freq = esp_clk_apb_freq();
  202. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  203. uart_clk_freq = REF_CLK_FREQ;
  204. }
  205. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  206. return ESP_OK;
  207. }
  208. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  209. {
  210. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  211. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  212. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  213. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  214. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  215. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  216. return ESP_OK;
  217. }
  218. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  219. {
  220. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  221. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  222. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  223. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  224. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  225. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  226. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  227. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  228. UART[uart_num]->swfc_conf.xon_char = XON;
  229. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  230. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  231. return ESP_OK;
  232. }
  233. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  234. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  235. {
  236. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  237. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  238. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  239. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  240. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  241. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  242. UART[uart_num]->conf1.rx_flow_en = 1;
  243. } else {
  244. UART[uart_num]->conf1.rx_flow_en = 0;
  245. }
  246. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  247. UART[uart_num]->conf0.tx_flow_en = 1;
  248. } else {
  249. UART[uart_num]->conf0.tx_flow_en = 0;
  250. }
  251. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  252. return ESP_OK;
  253. }
  254. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  255. {
  256. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  257. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  258. if(UART[uart_num]->conf1.rx_flow_en) {
  259. val |= UART_HW_FLOWCTRL_RTS;
  260. }
  261. if(UART[uart_num]->conf0.tx_flow_en) {
  262. val |= UART_HW_FLOWCTRL_CTS;
  263. }
  264. (*flow_ctrl) = val;
  265. return ESP_OK;
  266. }
  267. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  268. {
  269. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  270. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  271. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  272. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  273. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  274. READ_PERI_REG(UART_FIFO_REG(uart_num));
  275. }
  276. return ESP_OK;
  277. }
  278. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  279. {
  280. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  281. //intr_clr register is write-only
  282. UART[uart_num]->int_clr.val = clr_mask;
  283. return ESP_OK;
  284. }
  285. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  286. {
  287. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  288. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  289. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  290. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  291. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  292. return ESP_OK;
  293. }
  294. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  295. {
  296. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  297. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  298. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  299. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  300. return ESP_OK;
  301. }
  302. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  303. {
  304. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  305. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  306. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  307. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  308. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  309. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  310. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  311. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  312. free(pdata);
  313. }
  314. return ESP_OK;
  315. }
  316. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  317. {
  318. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  319. esp_err_t ret = ESP_OK;
  320. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  321. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  322. int next = p_pos->wr + 1;
  323. if (next >= p_pos->len) {
  324. next = 0;
  325. }
  326. if (next == p_pos->rd) {
  327. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  328. ret = ESP_FAIL;
  329. } else {
  330. p_pos->data[p_pos->wr] = pos;
  331. p_pos->wr = next;
  332. ret = ESP_OK;
  333. }
  334. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  335. return ret;
  336. }
  337. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  338. {
  339. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  340. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  341. return ESP_ERR_INVALID_STATE;
  342. } else {
  343. esp_err_t ret = ESP_OK;
  344. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  345. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  346. if (p_pos->rd == p_pos->wr) {
  347. ret = ESP_FAIL;
  348. } else {
  349. p_pos->rd++;
  350. }
  351. if (p_pos->rd >= p_pos->len) {
  352. p_pos->rd = 0;
  353. }
  354. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  355. return ret;
  356. }
  357. }
  358. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  359. {
  360. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  361. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  362. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  363. int rd = p_pos->rd;
  364. while(rd != p_pos->wr) {
  365. p_pos->data[rd] -= diff_len;
  366. int rd_rec = rd;
  367. rd ++;
  368. if (rd >= p_pos->len) {
  369. rd = 0;
  370. }
  371. if (p_pos->data[rd_rec] < 0) {
  372. p_pos->rd = rd;
  373. }
  374. }
  375. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  376. return ESP_OK;
  377. }
  378. int uart_pattern_pop_pos(uart_port_t uart_num)
  379. {
  380. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  381. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  382. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  383. int pos = -1;
  384. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  385. pos = pat_pos->data[pat_pos->rd];
  386. uart_pattern_dequeue(uart_num);
  387. }
  388. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  389. return pos;
  390. }
  391. int uart_pattern_get_pos(uart_port_t uart_num)
  392. {
  393. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  394. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  395. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  396. int pos = -1;
  397. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  398. pos = pat_pos->data[pat_pos->rd];
  399. }
  400. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  401. return pos;
  402. }
  403. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  404. {
  405. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  406. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  407. int* pdata = (int*) malloc(queue_length * sizeof(int));
  408. if(pdata == NULL) {
  409. return ESP_ERR_NO_MEM;
  410. }
  411. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  412. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  413. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  414. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  415. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  416. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  417. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  418. free(ptmp);
  419. return ESP_OK;
  420. }
  421. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  422. {
  423. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  424. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  425. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  426. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  427. UART[uart_num]->at_cmd_char.data = pattern_chr;
  428. UART[uart_num]->at_cmd_char.char_num = chr_num;
  429. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  430. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  431. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  432. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  433. }
  434. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  435. {
  436. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  437. }
  438. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  439. {
  440. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  441. }
  442. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  443. {
  444. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  445. }
  446. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  447. {
  448. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  449. }
  450. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  451. {
  452. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  453. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  454. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  455. UART[uart_num]->int_clr.txfifo_empty = 1;
  456. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  457. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  458. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  459. return ESP_OK;
  460. }
  461. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  462. {
  463. int ret;
  464. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  465. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  466. switch(uart_num) {
  467. case UART_NUM_1:
  468. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  469. break;
  470. case UART_NUM_2:
  471. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  472. break;
  473. case UART_NUM_0:
  474. default:
  475. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  476. break;
  477. }
  478. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  479. return ret;
  480. }
  481. esp_err_t uart_isr_free(uart_port_t uart_num)
  482. {
  483. esp_err_t ret;
  484. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  485. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  486. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  487. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  488. p_uart_obj[uart_num]->intr_handle=NULL;
  489. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  490. return ret;
  491. }
  492. //internal signal can be output to multiple GPIO pads
  493. //only one GPIO pad can connect with input signal
  494. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  495. {
  496. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  497. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  498. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  499. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  500. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  501. int tx_sig, rx_sig, rts_sig, cts_sig;
  502. switch(uart_num) {
  503. case UART_NUM_0:
  504. tx_sig = U0TXD_OUT_IDX;
  505. rx_sig = U0RXD_IN_IDX;
  506. rts_sig = U0RTS_OUT_IDX;
  507. cts_sig = U0CTS_IN_IDX;
  508. break;
  509. case UART_NUM_1:
  510. tx_sig = U1TXD_OUT_IDX;
  511. rx_sig = U1RXD_IN_IDX;
  512. rts_sig = U1RTS_OUT_IDX;
  513. cts_sig = U1CTS_IN_IDX;
  514. break;
  515. case UART_NUM_2:
  516. tx_sig = U2TXD_OUT_IDX;
  517. rx_sig = U2RXD_IN_IDX;
  518. rts_sig = U2RTS_OUT_IDX;
  519. cts_sig = U2CTS_IN_IDX;
  520. break;
  521. case UART_NUM_MAX:
  522. default:
  523. tx_sig = U0TXD_OUT_IDX;
  524. rx_sig = U0RXD_IN_IDX;
  525. rts_sig = U0RTS_OUT_IDX;
  526. cts_sig = U0CTS_IN_IDX;
  527. break;
  528. }
  529. if(tx_io_num >= 0) {
  530. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  531. gpio_set_level(tx_io_num, 1);
  532. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  533. }
  534. if(rx_io_num >= 0) {
  535. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  536. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  537. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  538. gpio_matrix_in(rx_io_num, rx_sig, 0);
  539. }
  540. if(rts_io_num >= 0) {
  541. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  542. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  543. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  544. }
  545. if(cts_io_num >= 0) {
  546. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  547. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  548. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  549. gpio_matrix_in(cts_io_num, cts_sig, 0);
  550. }
  551. return ESP_OK;
  552. }
  553. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  554. {
  555. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  556. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  557. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  558. UART[uart_num]->conf0.sw_rts = level & 0x1;
  559. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  560. return ESP_OK;
  561. }
  562. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  563. {
  564. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  565. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  566. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  567. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  568. return ESP_OK;
  569. }
  570. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  571. {
  572. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  573. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  574. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  575. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  576. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  577. return ESP_OK;
  578. }
  579. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  580. {
  581. esp_err_t r;
  582. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  583. UART_CHECK((uart_config), "param null", ESP_FAIL);
  584. if(uart_num == UART_NUM_0) {
  585. periph_module_enable(PERIPH_UART0_MODULE);
  586. } else if(uart_num == UART_NUM_1) {
  587. periph_module_enable(PERIPH_UART1_MODULE);
  588. } else if(uart_num == UART_NUM_2) {
  589. periph_module_enable(PERIPH_UART2_MODULE);
  590. }
  591. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  592. if (r != ESP_OK) return r;
  593. UART[uart_num]->conf0.val =
  594. (uart_config->parity << UART_PARITY_S)
  595. | (uart_config->data_bits << UART_BIT_NUM_S)
  596. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  597. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  598. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  599. if (r != ESP_OK) return r;
  600. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  601. if (r != ESP_OK) return r;
  602. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  603. //A hardware reset does not reset the fifo,
  604. //so we need to reset the fifo manually.
  605. uart_reset_rx_fifo(uart_num);
  606. return r;
  607. }
  608. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  609. {
  610. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  611. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  612. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  613. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  614. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  615. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  616. UART[uart_num]->conf1.rx_tout_en = 1;
  617. } else {
  618. UART[uart_num]->conf1.rx_tout_en = 0;
  619. }
  620. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  621. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  622. }
  623. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  624. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  625. }
  626. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  627. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  628. return ESP_OK;
  629. }
  630. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  631. {
  632. int cnt = 0;
  633. int len = length;
  634. while (len >= 0) {
  635. if (buf[len] == pat_chr) {
  636. cnt++;
  637. } else {
  638. cnt = 0;
  639. }
  640. if (cnt >= pat_num) {
  641. break;
  642. }
  643. len --;
  644. }
  645. return len;
  646. }
  647. //internal isr handler for default driver code.
  648. static void uart_rx_intr_handler_default(void *param)
  649. {
  650. uart_obj_t *p_uart = (uart_obj_t*) param;
  651. uint8_t uart_num = p_uart->uart_num;
  652. uart_dev_t* uart_reg = UART[uart_num];
  653. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  654. uint8_t buf_idx = 0;
  655. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  656. uart_event_t uart_event;
  657. portBASE_TYPE HPTaskAwoken = 0;
  658. static uint8_t pat_flg = 0;
  659. while(uart_intr_status != 0x0) {
  660. buf_idx = 0;
  661. uart_event.type = UART_EVENT_MAX;
  662. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  663. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  664. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  665. if(p_uart->tx_waiting_brk) {
  666. continue;
  667. }
  668. //TX semaphore will only be used when tx_buf_size is zero.
  669. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  670. p_uart->tx_waiting_fifo = false;
  671. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  672. if(HPTaskAwoken == pdTRUE) {
  673. portYIELD_FROM_ISR();
  674. }
  675. } else {
  676. //We don't use TX ring buffer, because the size is zero.
  677. if(p_uart->tx_buf_size == 0) {
  678. continue;
  679. }
  680. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  681. bool en_tx_flg = false;
  682. //We need to put a loop here, in case all the buffer items are very short.
  683. //That would cause a watch_dog reset because empty interrupt happens so often.
  684. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  685. while(tx_fifo_rem) {
  686. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  687. size_t size;
  688. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  689. if(p_uart->tx_head) {
  690. //The first item is the data description
  691. //Get the first item to get the data information
  692. if(p_uart->tx_len_tot == 0) {
  693. p_uart->tx_ptr = NULL;
  694. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  695. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  696. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  697. p_uart->tx_brk_flg = 1;
  698. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  699. }
  700. //We have saved the data description from the 1st item, return buffer.
  701. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  702. if(HPTaskAwoken == pdTRUE) {
  703. portYIELD_FROM_ISR();
  704. }
  705. }else if(p_uart->tx_ptr == NULL) {
  706. //Update the TX item pointer, we will need this to return item to buffer.
  707. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  708. en_tx_flg = true;
  709. p_uart->tx_len_cur = size;
  710. }
  711. }
  712. else {
  713. //Can not get data from ring buffer, return;
  714. break;
  715. }
  716. }
  717. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  718. //To fill the TX FIFO.
  719. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  720. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  721. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  722. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  723. uart_reg->conf0.sw_rts = 0;
  724. uart_reg->int_ena.tx_done = 1;
  725. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  726. }
  727. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  728. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  729. *(p_uart->tx_ptr++) & 0xff);
  730. }
  731. p_uart->tx_len_tot -= send_len;
  732. p_uart->tx_len_cur -= send_len;
  733. tx_fifo_rem -= send_len;
  734. if (p_uart->tx_len_cur == 0) {
  735. //Return item to ring buffer.
  736. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  737. if(HPTaskAwoken == pdTRUE) {
  738. portYIELD_FROM_ISR();
  739. }
  740. p_uart->tx_head = NULL;
  741. p_uart->tx_ptr = NULL;
  742. //Sending item done, now we need to send break if there is a record.
  743. //Set TX break signal after FIFO is empty
  744. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  745. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  746. uart_reg->int_ena.tx_brk_done = 0;
  747. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  748. uart_reg->conf0.txd_brk = 1;
  749. uart_reg->int_clr.tx_brk_done = 1;
  750. uart_reg->int_ena.tx_brk_done = 1;
  751. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  752. p_uart->tx_waiting_brk = 1;
  753. } else {
  754. //enable TX empty interrupt
  755. en_tx_flg = true;
  756. }
  757. } else {
  758. //enable TX empty interrupt
  759. en_tx_flg = true;
  760. }
  761. }
  762. }
  763. if (en_tx_flg) {
  764. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  765. uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  766. }
  767. }
  768. }
  769. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  770. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  771. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  772. ) {
  773. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  774. if(pat_flg == 1) {
  775. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  776. pat_flg = 0;
  777. }
  778. if (p_uart->rx_buffer_full_flg == false) {
  779. //We have to read out all data in RX FIFO to clear the interrupt signal
  780. while (buf_idx < rx_fifo_len) {
  781. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  782. }
  783. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  784. int pat_num = uart_reg->at_cmd_char.char_num;
  785. int pat_idx = -1;
  786. //Get the buffer from the FIFO
  787. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  788. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  789. uart_event.type = UART_PATTERN_DET;
  790. uart_event.size = rx_fifo_len;
  791. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  792. } else {
  793. //After Copying the Data From FIFO ,Clear intr_status
  794. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  795. uart_event.type = UART_DATA;
  796. uart_event.size = rx_fifo_len;
  797. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  798. if (p_uart->uart_select_notif_callback) {
  799. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  800. }
  801. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  802. }
  803. p_uart->rx_stash_len = rx_fifo_len;
  804. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  805. //Mainly for applications that uses flow control or small ring buffer.
  806. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  807. uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  808. if (uart_event.type == UART_PATTERN_DET) {
  809. if (rx_fifo_len < pat_num) {
  810. //some of the characters are read out in last interrupt
  811. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  812. } else {
  813. uart_pattern_enqueue(uart_num,
  814. pat_idx <= -1 ?
  815. //can not find the pattern in buffer,
  816. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  817. // find the pattern in buffer
  818. p_uart->rx_buffered_len + pat_idx);
  819. }
  820. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  821. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  822. }
  823. }
  824. uart_event.type = UART_BUFFER_FULL;
  825. p_uart->rx_buffer_full_flg = true;
  826. } else {
  827. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  828. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  829. if (rx_fifo_len < pat_num) {
  830. //some of the characters are read out in last interrupt
  831. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  832. } else if(pat_idx >= 0) {
  833. // find pattern in statsh buffer.
  834. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  835. }
  836. }
  837. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  838. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  839. }
  840. if(HPTaskAwoken == pdTRUE) {
  841. portYIELD_FROM_ISR();
  842. }
  843. } else {
  844. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  845. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  846. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  847. uart_reg->int_clr.at_cmd_char_det = 1;
  848. uart_event.type = UART_PATTERN_DET;
  849. uart_event.size = rx_fifo_len;
  850. pat_flg = 1;
  851. }
  852. }
  853. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  854. // When fifo overflows, we reset the fifo.
  855. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  856. uart_reset_rx_fifo(uart_num);
  857. uart_reg->int_clr.rxfifo_ovf = 1;
  858. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  859. uart_event.type = UART_FIFO_OVF;
  860. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  861. if (p_uart->uart_select_notif_callback) {
  862. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  863. }
  864. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  865. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  866. uart_reg->int_clr.brk_det = 1;
  867. uart_event.type = UART_BREAK;
  868. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  869. uart_reg->int_clr.frm_err = 1;
  870. uart_event.type = UART_FRAME_ERR;
  871. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  872. if (p_uart->uart_select_notif_callback) {
  873. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  874. }
  875. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  876. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  877. uart_reg->int_clr.parity_err = 1;
  878. uart_event.type = UART_PARITY_ERR;
  879. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  880. if (p_uart->uart_select_notif_callback) {
  881. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  882. }
  883. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  884. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  885. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  886. uart_reg->conf0.txd_brk = 0;
  887. uart_reg->int_ena.tx_brk_done = 0;
  888. uart_reg->int_clr.tx_brk_done = 1;
  889. if(p_uart->tx_brk_flg == 1) {
  890. uart_reg->int_ena.txfifo_empty = 1;
  891. }
  892. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  893. if(p_uart->tx_brk_flg == 1) {
  894. p_uart->tx_brk_flg = 0;
  895. p_uart->tx_waiting_brk = 0;
  896. } else {
  897. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  898. if(HPTaskAwoken == pdTRUE) {
  899. portYIELD_FROM_ISR();
  900. }
  901. }
  902. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  903. uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  904. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  905. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  906. uart_reg->int_clr.at_cmd_char_det = 1;
  907. uart_event.type = UART_PATTERN_DET;
  908. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  909. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  910. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  911. // RS485 collision or frame error interrupt triggered
  912. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  913. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  914. uart_reset_rx_fifo(uart_num);
  915. // Set collision detection flag
  916. p_uart_obj[uart_num]->coll_det_flg = true;
  917. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  918. uart_event.type = UART_EVENT_MAX;
  919. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  920. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  921. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  922. // If RS485 half duplex mode is enable then reset FIFO and
  923. // reset RTS pin to start receiver driver
  924. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  925. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  926. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  927. uart_reg->conf0.sw_rts = 1;
  928. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  929. }
  930. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  931. if (HPTaskAwoken == pdTRUE) {
  932. portYIELD_FROM_ISR();
  933. }
  934. } else {
  935. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  936. uart_event.type = UART_EVENT_MAX;
  937. }
  938. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  939. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  940. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  941. }
  942. if(HPTaskAwoken == pdTRUE) {
  943. portYIELD_FROM_ISR();
  944. }
  945. }
  946. uart_intr_status = uart_reg->int_st.val;
  947. }
  948. }
  949. /**************************************************************/
  950. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  951. {
  952. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  953. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  954. BaseType_t res;
  955. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  956. //Take tx_mux
  957. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  958. if(res == pdFALSE) {
  959. return ESP_ERR_TIMEOUT;
  960. }
  961. ticks_to_wait = ticks_end - xTaskGetTickCount();
  962. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  963. ticks_to_wait = ticks_end - xTaskGetTickCount();
  964. if(UART[uart_num]->status.txfifo_cnt == 0) {
  965. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  966. return ESP_OK;
  967. }
  968. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  969. //take 2nd tx_done_sem, wait given from ISR
  970. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  971. if(res == pdFALSE) {
  972. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  973. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  974. return ESP_ERR_TIMEOUT;
  975. }
  976. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  977. return ESP_OK;
  978. }
  979. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  980. {
  981. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  982. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  983. UART[uart_num]->conf0.txd_brk = 1;
  984. UART[uart_num]->int_clr.tx_brk_done = 1;
  985. UART[uart_num]->int_ena.tx_brk_done = 1;
  986. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  987. return ESP_OK;
  988. }
  989. //Fill UART tx_fifo and return a number,
  990. //This function by itself is not thread-safe, always call from within a muxed section.
  991. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  992. {
  993. uint8_t i = 0;
  994. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  995. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  996. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  997. // Set the RTS pin if RS485 mode is enabled
  998. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  999. UART[uart_num]->conf0.sw_rts = 0;
  1000. UART[uart_num]->int_ena.tx_done = 1;
  1001. }
  1002. for (i = 0; i < copy_cnt; i++) {
  1003. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1004. }
  1005. return copy_cnt;
  1006. }
  1007. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1008. {
  1009. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1010. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1011. UART_CHECK(buffer, "buffer null", (-1));
  1012. if(len == 0) {
  1013. return 0;
  1014. }
  1015. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1016. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1017. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1018. return tx_len;
  1019. }
  1020. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1021. {
  1022. if(size == 0) {
  1023. return 0;
  1024. }
  1025. size_t original_size = size;
  1026. //lock for uart_tx
  1027. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1028. p_uart_obj[uart_num]->coll_det_flg = false;
  1029. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1030. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1031. int offset = 0;
  1032. uart_tx_data_t evt;
  1033. evt.tx_data.size = size;
  1034. evt.tx_data.brk_len = brk_len;
  1035. if(brk_en) {
  1036. evt.type = UART_DATA_BREAK;
  1037. } else {
  1038. evt.type = UART_DATA;
  1039. }
  1040. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1041. while(size > 0) {
  1042. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1043. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1044. size -= send_size;
  1045. offset += send_size;
  1046. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1047. }
  1048. } else {
  1049. while(size) {
  1050. //semaphore for tx_fifo available
  1051. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1052. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1053. if(sent < size) {
  1054. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1055. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1056. }
  1057. size -= sent;
  1058. src += sent;
  1059. }
  1060. }
  1061. if(brk_en) {
  1062. uart_set_break(uart_num, brk_len);
  1063. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1064. }
  1065. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1066. }
  1067. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1068. return original_size;
  1069. }
  1070. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1071. {
  1072. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1073. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1074. UART_CHECK(src, "buffer null", (-1));
  1075. return uart_tx_all(uart_num, src, size, 0, 0);
  1076. }
  1077. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1078. {
  1079. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1080. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1081. UART_CHECK((size > 0), "uart size error", (-1));
  1082. UART_CHECK((src), "uart data null", (-1));
  1083. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1084. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1085. }
  1086. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1087. {
  1088. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1089. UART_CHECK((buf), "uart data null", (-1));
  1090. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1091. uint8_t* data = NULL;
  1092. size_t size;
  1093. size_t copy_len = 0;
  1094. int len_tmp;
  1095. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1096. return -1;
  1097. }
  1098. while(length) {
  1099. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1100. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1101. if(data) {
  1102. p_uart_obj[uart_num]->rx_head_ptr = data;
  1103. p_uart_obj[uart_num]->rx_ptr = data;
  1104. p_uart_obj[uart_num]->rx_cur_remain = size;
  1105. } else {
  1106. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1107. return copy_len;
  1108. }
  1109. }
  1110. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1111. len_tmp = length;
  1112. } else {
  1113. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1114. }
  1115. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1116. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1117. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1118. uart_pattern_queue_update(uart_num, len_tmp);
  1119. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1120. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1121. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1122. copy_len += len_tmp;
  1123. length -= len_tmp;
  1124. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1125. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1126. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1127. p_uart_obj[uart_num]->rx_ptr = NULL;
  1128. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1129. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1130. if(res == pdTRUE) {
  1131. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1132. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1133. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1134. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1135. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1136. }
  1137. }
  1138. }
  1139. }
  1140. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1141. return copy_len;
  1142. }
  1143. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1144. {
  1145. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1146. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1147. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1148. return ESP_OK;
  1149. }
  1150. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1151. esp_err_t uart_flush_input(uart_port_t uart_num)
  1152. {
  1153. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1154. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1155. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1156. uint8_t* data;
  1157. size_t size;
  1158. //rx sem protect the ring buffer read related functions
  1159. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1160. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1161. while(true) {
  1162. if(p_uart->rx_head_ptr) {
  1163. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1164. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1165. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1166. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1167. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1168. p_uart->rx_ptr = NULL;
  1169. p_uart->rx_cur_remain = 0;
  1170. p_uart->rx_head_ptr = NULL;
  1171. }
  1172. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1173. if(data == NULL) {
  1174. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1175. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1176. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1177. }
  1178. //We also need to clear the `rx_buffer_full_flg` here.
  1179. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1180. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1181. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1182. break;
  1183. }
  1184. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1185. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1186. uart_pattern_queue_update(uart_num, size);
  1187. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1188. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1189. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1190. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1191. if(res == pdTRUE) {
  1192. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1193. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1194. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1195. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1196. }
  1197. }
  1198. }
  1199. p_uart->rx_ptr = NULL;
  1200. p_uart->rx_cur_remain = 0;
  1201. p_uart->rx_head_ptr = NULL;
  1202. uart_reset_rx_fifo(uart_num);
  1203. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1204. xSemaphoreGive(p_uart->rx_mux);
  1205. return ESP_OK;
  1206. }
  1207. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1208. {
  1209. esp_err_t r;
  1210. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1211. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1212. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1213. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1214. if(p_uart_obj[uart_num] == NULL) {
  1215. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1216. if(p_uart_obj[uart_num] == NULL) {
  1217. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1218. return ESP_FAIL;
  1219. }
  1220. p_uart_obj[uart_num]->uart_num = uart_num;
  1221. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1222. p_uart_obj[uart_num]->coll_det_flg = false;
  1223. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1224. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1225. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1226. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1227. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1228. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1229. p_uart_obj[uart_num]->queue_size = queue_size;
  1230. p_uart_obj[uart_num]->tx_ptr = NULL;
  1231. p_uart_obj[uart_num]->tx_head = NULL;
  1232. p_uart_obj[uart_num]->tx_len_tot = 0;
  1233. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1234. p_uart_obj[uart_num]->tx_brk_len = 0;
  1235. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1236. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1237. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1238. if(uart_queue) {
  1239. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1240. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1241. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1242. } else {
  1243. p_uart_obj[uart_num]->xQueueUart = NULL;
  1244. }
  1245. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1246. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1247. p_uart_obj[uart_num]->rx_ptr = NULL;
  1248. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1249. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1250. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1251. if(tx_buffer_size > 0) {
  1252. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1253. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1254. } else {
  1255. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1256. p_uart_obj[uart_num]->tx_buf_size = 0;
  1257. }
  1258. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1259. } else {
  1260. ESP_LOGE(UART_TAG, "UART driver already installed");
  1261. return ESP_FAIL;
  1262. }
  1263. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1264. if (r!=ESP_OK) goto err;
  1265. uart_intr_config_t uart_intr = {
  1266. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1267. | UART_RXFIFO_TOUT_INT_ENA_M
  1268. | UART_FRM_ERR_INT_ENA_M
  1269. | UART_RXFIFO_OVF_INT_ENA_M
  1270. | UART_BRK_DET_INT_ENA_M
  1271. | UART_PARITY_ERR_INT_ENA_M,
  1272. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1273. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1274. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1275. };
  1276. r=uart_intr_config(uart_num, &uart_intr);
  1277. if (r!=ESP_OK) goto err;
  1278. return r;
  1279. err:
  1280. uart_driver_delete(uart_num);
  1281. return r;
  1282. }
  1283. //Make sure no other tasks are still using UART before you call this function
  1284. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1285. {
  1286. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1287. if(p_uart_obj[uart_num] == NULL) {
  1288. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1289. return ESP_OK;
  1290. }
  1291. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1292. uart_disable_rx_intr(uart_num);
  1293. uart_disable_tx_intr(uart_num);
  1294. uart_pattern_link_free(uart_num);
  1295. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1296. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1297. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1298. }
  1299. if(p_uart_obj[uart_num]->tx_done_sem) {
  1300. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1301. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1302. }
  1303. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1304. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1305. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1306. }
  1307. if(p_uart_obj[uart_num]->tx_mux) {
  1308. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1309. p_uart_obj[uart_num]->tx_mux = NULL;
  1310. }
  1311. if(p_uart_obj[uart_num]->rx_mux) {
  1312. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1313. p_uart_obj[uart_num]->rx_mux = NULL;
  1314. }
  1315. if(p_uart_obj[uart_num]->xQueueUart) {
  1316. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1317. p_uart_obj[uart_num]->xQueueUart = NULL;
  1318. }
  1319. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1320. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1321. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1322. }
  1323. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1324. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1325. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1326. }
  1327. free(p_uart_obj[uart_num]);
  1328. p_uart_obj[uart_num] = NULL;
  1329. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1330. if(uart_num == UART_NUM_0) {
  1331. periph_module_disable(PERIPH_UART0_MODULE);
  1332. } else if(uart_num == UART_NUM_1) {
  1333. periph_module_disable(PERIPH_UART1_MODULE);
  1334. } else if(uart_num == UART_NUM_2) {
  1335. periph_module_disable(PERIPH_UART2_MODULE);
  1336. }
  1337. }
  1338. return ESP_OK;
  1339. }
  1340. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1341. {
  1342. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1343. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1344. }
  1345. }
  1346. portMUX_TYPE *uart_get_selectlock()
  1347. {
  1348. return &uart_selectlock;
  1349. }
  1350. // Set UART mode
  1351. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1352. {
  1353. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1354. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1355. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1356. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1357. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1358. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1359. }
  1360. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1361. UART[uart_num]->rs485_conf.en = 0;
  1362. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1363. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1364. UART[uart_num]->conf0.irda_en = 0;
  1365. UART[uart_num]->conf0.sw_rts = 0;
  1366. switch (mode) {
  1367. case UART_MODE_UART:
  1368. break;
  1369. case UART_MODE_RS485_COLLISION_DETECT:
  1370. // This mode allows read while transmitting that allows collision detection
  1371. p_uart_obj[uart_num]->coll_det_flg = false;
  1372. // Transmitter’s output signal loop back to the receiver’s input signal
  1373. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1374. // Transmitter should send data when its receiver is busy
  1375. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1376. UART[uart_num]->rs485_conf.en = 1;
  1377. // Enable collision detection interrupts
  1378. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1379. | UART_RXFIFO_FULL_INT_ENA
  1380. | UART_RS485_CLASH_INT_ENA
  1381. | UART_RS485_FRM_ERR_INT_ENA
  1382. | UART_RS485_PARITY_ERR_INT_ENA);
  1383. break;
  1384. case UART_MODE_RS485_APP_CTRL:
  1385. // Application software control, remove echo
  1386. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1387. UART[uart_num]->rs485_conf.en = 1;
  1388. break;
  1389. case UART_MODE_RS485_HALF_DUPLEX:
  1390. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1391. UART[uart_num]->conf0.sw_rts = 1;
  1392. UART[uart_num]->rs485_conf.en = 1;
  1393. // Must be set to 0 to automatically remove echo
  1394. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1395. // This is to void collision
  1396. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1397. break;
  1398. case UART_MODE_IRDA:
  1399. UART[uart_num]->conf0.irda_en = 1;
  1400. break;
  1401. default:
  1402. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1403. break;
  1404. }
  1405. p_uart_obj[uart_num]->uart_mode = mode;
  1406. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1407. return ESP_OK;
  1408. }
  1409. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1410. {
  1411. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1412. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1413. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1414. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1415. // transmission time of one symbol (~11 bit) on current baudrate
  1416. if (tout_thresh > 0) {
  1417. UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & UART_RX_TOUT_THRHD_V);
  1418. UART[uart_num]->conf1.rx_tout_en = 1;
  1419. } else {
  1420. UART[uart_num]->conf1.rx_tout_en = 0;
  1421. }
  1422. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1423. return ESP_OK;
  1424. }
  1425. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1426. {
  1427. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1428. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1429. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1430. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1431. "wrong mode", ESP_ERR_INVALID_ARG);
  1432. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1433. return ESP_OK;
  1434. }