uart.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "malloc.h"
  21. #include "freertos/FreeRTOS.h"
  22. #include "freertos/semphr.h"
  23. #include "freertos/xtensa_api.h"
  24. #include "freertos/task.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/dport_reg.h"
  27. #include "soc/uart_struct.h"
  28. #include "driver/uart.h"
  29. #include "driver/gpio.h"
  30. static const char* UART_TAG = "uart";
  31. #define UART_CHECK(a, str, ret_val) \
  32. if (!(a)) { \
  33. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  34. return (ret_val); \
  35. }
  36. #define UART_EMPTY_THRESH_DEFAULT (10)
  37. #define UART_FULL_THRESH_DEFAULT (120)
  38. #define UART_TOUT_THRESH_DEFAULT (10)
  39. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  40. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  41. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  42. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  43. typedef struct {
  44. uart_event_type_t type; /*!< UART TX data type */
  45. struct {
  46. int brk_len;
  47. size_t size;
  48. uint8_t data[0];
  49. } tx_data;
  50. } uart_tx_data_t;
  51. typedef struct {
  52. uart_port_t uart_num; /*!< UART port number*/
  53. int queue_size; /*!< UART event queue size*/
  54. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  55. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  56. //rx parameters
  57. int rx_buffered_len; /*!< UART cached data length */
  58. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  59. int rx_buf_size; /*!< RX ring buffer size */
  60. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  61. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  62. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  63. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  64. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  65. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  66. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  67. //tx parameters
  68. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  69. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  70. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  71. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  72. int tx_buf_size; /*!< TX ring buffer size */
  73. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  74. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  75. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  76. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  77. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  78. uint32_t tx_len_cur;
  79. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  80. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  81. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  82. } uart_obj_t;
  83. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  84. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  85. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  86. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  87. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  88. {
  89. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  90. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  91. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  92. UART[uart_num]->conf0.bit_num = data_bit;
  93. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  94. return ESP_OK;
  95. }
  96. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  97. {
  98. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  99. *(data_bit) = UART[uart_num]->conf0.bit_num;
  100. return ESP_OK;
  101. }
  102. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  103. {
  104. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  105. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  106. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  107. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  108. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  109. return ESP_OK;
  110. }
  111. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  112. {
  113. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  114. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  115. return ESP_OK;
  116. }
  117. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  118. {
  119. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  120. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  121. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  122. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  123. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  124. return ESP_OK;
  125. }
  126. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  127. {
  128. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  129. int val = UART[uart_num]->conf0.val;
  130. if(val & UART_PARITY_EN_M) {
  131. if(val & UART_PARITY_M) {
  132. (*parity_mode) = UART_PARITY_ODD;
  133. } else {
  134. (*parity_mode) = UART_PARITY_EVEN;
  135. }
  136. } else {
  137. (*parity_mode) = UART_PARITY_DISABLE;
  138. }
  139. return ESP_OK;
  140. }
  141. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  142. {
  143. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  144. UART_CHECK((baud_rate < UART_BITRATE_MAX), "baud_rate error", ESP_FAIL);
  145. uint32_t clk_div = (((UART_CLK_FREQ) << 4) / baud_rate);
  146. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  147. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  148. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  149. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  150. return ESP_OK;
  151. }
  152. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  153. {
  154. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  155. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  156. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  157. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  158. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  159. return ESP_OK;
  160. }
  161. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  162. {
  163. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  164. UART_CHECK((((inverse_mask & UART_LINE_INV_MASK) == 0) && (inverse_mask != 0)), "inverse_mask error", ESP_FAIL);
  165. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  166. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  167. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  168. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  169. return ESP_OK;
  170. }
  171. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  172. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  173. {
  174. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  175. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  176. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  177. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  178. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  179. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  180. UART[uart_num]->conf1.rx_flow_en = 1;
  181. } else {
  182. UART[uart_num]->conf1.rx_flow_en = 0;
  183. }
  184. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  185. UART[uart_num]->conf0.tx_flow_en = 1;
  186. } else {
  187. UART[uart_num]->conf0.tx_flow_en = 0;
  188. }
  189. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  190. return ESP_OK;
  191. }
  192. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  193. {
  194. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  195. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  196. if(UART[uart_num]->conf1.rx_flow_en) {
  197. val |= UART_HW_FLOWCTRL_RTS;
  198. }
  199. if(UART[uart_num]->conf0.tx_flow_en) {
  200. val |= UART_HW_FLOWCTRL_CTS;
  201. }
  202. (*flow_ctrl) = val;
  203. return ESP_OK;
  204. }
  205. static esp_err_t uart_reset_fifo(uart_port_t uart_num)
  206. {
  207. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  208. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  209. UART[uart_num]->conf0.rxfifo_rst = 1;
  210. UART[uart_num]->conf0.rxfifo_rst = 0;
  211. UART[uart_num]->conf0.txfifo_rst = 1;
  212. UART[uart_num]->conf0.txfifo_rst = 0;
  213. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  214. return ESP_OK;
  215. }
  216. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  217. {
  218. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  219. //intr_clr register is write-only
  220. UART[uart_num]->int_clr.val = clr_mask;
  221. return ESP_OK;
  222. }
  223. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  224. {
  225. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  226. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  227. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  228. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  229. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  230. return ESP_OK;
  231. }
  232. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  233. {
  234. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  235. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  236. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  237. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  238. return ESP_OK;
  239. }
  240. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  241. {
  242. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  243. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  244. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  245. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  246. UART[uart_num]->at_cmd_char.data = pattern_chr;
  247. UART[uart_num]->at_cmd_char.char_num = chr_num;
  248. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  249. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  250. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  251. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  252. }
  253. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  254. {
  255. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  256. }
  257. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  258. {
  259. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  260. }
  261. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  262. {
  263. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  264. }
  265. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  266. {
  267. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  268. }
  269. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  270. {
  271. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  272. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  273. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  274. UART[uart_num]->int_clr.txfifo_empty = 1;
  275. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  276. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  277. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  278. return ESP_OK;
  279. }
  280. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  281. {
  282. int ret;
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  285. switch(uart_num) {
  286. case UART_NUM_1:
  287. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  288. break;
  289. case UART_NUM_2:
  290. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  291. break;
  292. case UART_NUM_0:
  293. default:
  294. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  295. break;
  296. }
  297. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  298. return ret;
  299. }
  300. esp_err_t uart_isr_free(uart_port_t uart_num)
  301. {
  302. esp_err_t ret;
  303. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  304. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  305. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  306. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  307. p_uart_obj[uart_num]->intr_handle=NULL;
  308. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  309. return ret;
  310. }
  311. //internal signal can be output to multiple GPIO pads
  312. //only one GPIO pad can connect with input signal
  313. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  314. {
  315. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  316. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  317. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  318. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  319. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  320. int tx_sig, rx_sig, rts_sig, cts_sig;
  321. switch(uart_num) {
  322. case UART_NUM_0:
  323. tx_sig = U0TXD_OUT_IDX;
  324. rx_sig = U0RXD_IN_IDX;
  325. rts_sig = U0RTS_OUT_IDX;
  326. cts_sig = U0CTS_IN_IDX;
  327. break;
  328. case UART_NUM_1:
  329. tx_sig = U1TXD_OUT_IDX;
  330. rx_sig = U1RXD_IN_IDX;
  331. rts_sig = U1RTS_OUT_IDX;
  332. cts_sig = U1CTS_IN_IDX;
  333. break;
  334. case UART_NUM_2:
  335. tx_sig = U2TXD_OUT_IDX;
  336. rx_sig = U2RXD_IN_IDX;
  337. rts_sig = U2RTS_OUT_IDX;
  338. cts_sig = U2CTS_IN_IDX;
  339. break;
  340. case UART_NUM_MAX:
  341. default:
  342. tx_sig = U0TXD_OUT_IDX;
  343. rx_sig = U0RXD_IN_IDX;
  344. rts_sig = U0RTS_OUT_IDX;
  345. cts_sig = U0CTS_IN_IDX;
  346. break;
  347. }
  348. if(tx_io_num >= 0) {
  349. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  350. gpio_set_direction(tx_io_num, GPIO_MODE_OUTPUT);
  351. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  352. }
  353. if(rx_io_num >= 0) {
  354. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  355. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  356. gpio_matrix_in(rx_io_num, rx_sig, 0);
  357. }
  358. if(rts_io_num >= 0) {
  359. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  360. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  361. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  362. }
  363. if(cts_io_num >= 0) {
  364. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  365. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  366. gpio_matrix_in(cts_io_num, cts_sig, 0);
  367. }
  368. return ESP_OK;
  369. }
  370. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  371. {
  372. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  373. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  374. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  375. UART[uart_num]->conf0.sw_rts = level & 0x1;
  376. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  377. return ESP_OK;
  378. }
  379. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  380. {
  381. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  382. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  383. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  384. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  385. return ESP_OK;
  386. }
  387. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  388. {
  389. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  390. UART_CHECK((uart_config), "param null", ESP_FAIL);
  391. if(uart_num == UART_NUM_0) {
  392. periph_module_enable(PERIPH_UART0_MODULE);
  393. } else if(uart_num == UART_NUM_1) {
  394. periph_module_enable(PERIPH_UART1_MODULE);
  395. } else if(uart_num == UART_NUM_2) {
  396. periph_module_enable(PERIPH_UART2_MODULE);
  397. }
  398. uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  399. uart_set_baudrate(uart_num, uart_config->baud_rate);
  400. UART[uart_num]->conf0.val = (
  401. (uart_config->parity << UART_PARITY_S)
  402. | (uart_config->stop_bits << UART_STOP_BIT_NUM_S)
  403. | (uart_config->data_bits << UART_BIT_NUM_S)
  404. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  405. | UART_TICK_REF_ALWAYS_ON_M);
  406. return ESP_OK;
  407. }
  408. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  409. {
  410. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  411. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  412. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  413. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  414. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  415. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  416. UART[uart_num]->conf1.rx_tout_en = 1;
  417. } else {
  418. UART[uart_num]->conf1.rx_tout_en = 0;
  419. }
  420. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  421. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  422. }
  423. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  424. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  425. }
  426. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  427. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  428. return ESP_FAIL;
  429. }
  430. //internal isr handler for default driver code.
  431. static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
  432. {
  433. uart_obj_t *p_uart = (uart_obj_t*) param;
  434. uint8_t uart_num = p_uart->uart_num;
  435. uart_dev_t* uart_reg = UART[uart_num];
  436. uint8_t buf_idx = 0;
  437. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  438. int rx_fifo_len = 0;
  439. uart_event_t uart_event;
  440. portBASE_TYPE HPTaskAwoken = 0;
  441. while(uart_intr_status != 0x0) {
  442. buf_idx = 0;
  443. uart_event.type = UART_EVENT_MAX;
  444. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  445. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  446. uart_reg->int_ena.txfifo_empty = 0;
  447. uart_reg->int_clr.txfifo_empty = 1;
  448. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  449. if(p_uart->tx_waiting_brk) {
  450. continue;
  451. }
  452. //TX semaphore will only be used when tx_buf_size is zero.
  453. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  454. p_uart->tx_waiting_fifo = false;
  455. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  456. if(HPTaskAwoken == pdTRUE) {
  457. portYIELD_FROM_ISR() ;
  458. }
  459. }
  460. else {
  461. //We don't use TX ring buffer, because the size is zero.
  462. if(p_uart->tx_buf_size == 0) {
  463. continue;
  464. }
  465. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  466. bool en_tx_flg = false;
  467. //We need to put a loop here, in case all the buffer items are very short.
  468. //That would cause a watch_dog reset because empty interrupt happens so often.
  469. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  470. while(tx_fifo_rem) {
  471. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  472. size_t size;
  473. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  474. if(p_uart->tx_head) {
  475. //The first item is the data description
  476. //Get the first item to get the data information
  477. if(p_uart->tx_len_tot == 0) {
  478. p_uart->tx_ptr = NULL;
  479. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  480. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  481. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  482. p_uart->tx_brk_flg = 1;
  483. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  484. }
  485. //We have saved the data description from the 1st item, return buffer.
  486. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  487. if(HPTaskAwoken == pdTRUE) {
  488. portYIELD_FROM_ISR() ;
  489. }
  490. }else if(p_uart->tx_ptr == NULL) {
  491. //Update the TX item pointer, we will need this to return item to buffer.
  492. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  493. en_tx_flg = true;
  494. p_uart->tx_len_cur = size;
  495. }
  496. }
  497. else {
  498. //Can not get data from ring buffer, return;
  499. break;
  500. }
  501. }
  502. if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  503. //To fill the TX FIFO.
  504. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  505. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  506. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  507. }
  508. p_uart->tx_len_tot -= send_len;
  509. p_uart->tx_len_cur -= send_len;
  510. tx_fifo_rem -= send_len;
  511. if(p_uart->tx_len_cur == 0) {
  512. //Return item to ring buffer.
  513. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  514. if(HPTaskAwoken == pdTRUE) {
  515. portYIELD_FROM_ISR() ;
  516. }
  517. p_uart->tx_head = NULL;
  518. p_uart->tx_ptr = NULL;
  519. //Sending item done, now we need to send break if there is a record.
  520. //Set TX break signal after FIFO is empty
  521. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  522. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  523. uart_reg->int_ena.tx_brk_done = 0;
  524. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  525. uart_reg->conf0.txd_brk = 1;
  526. uart_reg->int_clr.tx_brk_done = 1;
  527. uart_reg->int_ena.tx_brk_done = 1;
  528. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  529. p_uart->tx_waiting_brk = 1;
  530. } else {
  531. //enable TX empty interrupt
  532. en_tx_flg = true;
  533. }
  534. } else {
  535. //enable TX empty interrupt
  536. en_tx_flg = true;
  537. }
  538. }
  539. }
  540. if(en_tx_flg) {
  541. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  542. uart_reg->int_clr.txfifo_empty = 1;
  543. uart_reg->int_ena.txfifo_empty = 1;
  544. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  545. }
  546. }
  547. }
  548. else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
  549. if(p_uart->rx_buffer_full_flg == false) {
  550. //Get the buffer from the FIFO
  551. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  552. p_uart->rx_stash_len = rx_fifo_len;
  553. //We have to read out all data in RX FIFO to clear the interrupt signal
  554. while(buf_idx < rx_fifo_len) {
  555. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  556. }
  557. //After Copying the Data From FIFO ,Clear intr_status
  558. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  559. uart_reg->int_clr.rxfifo_tout = 1;
  560. uart_reg->int_clr.rxfifo_full = 1;
  561. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  562. uart_event.type = UART_DATA;
  563. uart_event.size = rx_fifo_len;
  564. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  565. //Mainly for applications that uses flow control or small ring buffer.
  566. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  567. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  568. uart_reg->int_ena.rxfifo_full = 0;
  569. uart_reg->int_ena.rxfifo_tout = 0;
  570. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  571. p_uart->rx_buffer_full_flg = true;
  572. uart_event.type = UART_BUFFER_FULL;
  573. } else {
  574. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  575. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  576. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  577. uart_event.type = UART_DATA;
  578. }
  579. if(HPTaskAwoken == pdTRUE) {
  580. portYIELD_FROM_ISR() ;
  581. }
  582. } else {
  583. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  584. uart_reg->int_ena.rxfifo_full = 0;
  585. uart_reg->int_ena.rxfifo_tout = 0;
  586. uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
  587. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  588. uart_event.type = UART_BUFFER_FULL;
  589. }
  590. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  591. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  592. uart_reg->conf0.rxfifo_rst = 1;
  593. uart_reg->conf0.rxfifo_rst = 0;
  594. uart_reg->int_clr.rxfifo_ovf = 1;
  595. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  596. uart_event.type = UART_FIFO_OVF;
  597. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  598. uart_reg->int_clr.brk_det = 1;
  599. uart_event.type = UART_BREAK;
  600. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  601. uart_reg->int_clr.parity_err = 1;
  602. uart_event.type = UART_FRAME_ERR;
  603. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  604. uart_reg->int_clr.frm_err = 1;
  605. uart_event.type = UART_PARITY_ERR;
  606. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  607. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  608. uart_reg->conf0.txd_brk = 0;
  609. uart_reg->int_ena.tx_brk_done = 0;
  610. uart_reg->int_clr.tx_brk_done = 1;
  611. if(p_uart->tx_brk_flg == 1) {
  612. uart_reg->int_ena.txfifo_empty = 1;
  613. }
  614. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  615. if(p_uart->tx_brk_flg == 1) {
  616. p_uart->tx_brk_flg = 0;
  617. p_uart->tx_waiting_brk = 0;
  618. } else {
  619. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  620. if(HPTaskAwoken == pdTRUE) {
  621. portYIELD_FROM_ISR() ;
  622. }
  623. }
  624. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  625. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  626. uart_reg->int_ena.tx_brk_idle_done = 0;
  627. uart_reg->int_clr.tx_brk_idle_done = 1;
  628. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  629. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  630. uart_reg->int_clr.at_cmd_char_det = 1;
  631. uart_event.type = UART_PATTERN_DET;
  632. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  633. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  634. uart_reg->int_ena.tx_done = 0;
  635. uart_reg->int_clr.tx_done = 1;
  636. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  637. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  638. if(HPTaskAwoken == pdTRUE) {
  639. portYIELD_FROM_ISR() ;
  640. }
  641. } else {
  642. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  643. uart_event.type = UART_EVENT_MAX;
  644. }
  645. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  646. xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
  647. if(HPTaskAwoken == pdTRUE) {
  648. portYIELD_FROM_ISR() ;
  649. }
  650. }
  651. uart_intr_status = uart_reg->int_st.val;
  652. }
  653. }
  654. /**************************************************************/
  655. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  656. {
  657. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  658. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  659. BaseType_t res;
  660. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  661. //Take tx_mux
  662. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  663. if(res == pdFALSE) {
  664. return ESP_ERR_TIMEOUT;
  665. }
  666. ticks_to_wait = ticks_end - xTaskGetTickCount();
  667. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  668. ticks_to_wait = ticks_end - xTaskGetTickCount();
  669. if(UART[uart_num]->status.txfifo_cnt == 0) {
  670. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  671. return ESP_OK;
  672. }
  673. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  674. //take 2nd tx_done_sem, wait given from ISR
  675. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  676. if(res == pdFALSE) {
  677. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  678. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  679. return ESP_ERR_TIMEOUT;
  680. }
  681. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  682. return ESP_OK;
  683. }
  684. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  685. {
  686. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  687. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  688. UART[uart_num]->conf0.txd_brk = 1;
  689. UART[uart_num]->int_clr.tx_brk_done = 1;
  690. UART[uart_num]->int_ena.tx_brk_done = 1;
  691. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  692. return ESP_OK;
  693. }
  694. //Fill UART tx_fifo and return a number,
  695. //This function by itself is not thread-safe, always call from within a muxed section.
  696. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  697. {
  698. uint8_t i = 0;
  699. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  700. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  701. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  702. for(i = 0; i < copy_cnt; i++) {
  703. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  704. }
  705. return copy_cnt;
  706. }
  707. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  708. {
  709. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  710. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  711. UART_CHECK(buffer, "buffer null", (-1));
  712. if(len == 0) {
  713. return 0;
  714. }
  715. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  716. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  717. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  718. return tx_len;
  719. }
  720. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  721. {
  722. if(size == 0) {
  723. return 0;
  724. }
  725. size_t original_size = size;
  726. //lock for uart_tx
  727. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  728. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  729. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  730. int offset = 0;
  731. uart_tx_data_t evt;
  732. evt.tx_data.size = size;
  733. evt.tx_data.brk_len = brk_len;
  734. if(brk_en) {
  735. evt.type = UART_DATA_BREAK;
  736. } else {
  737. evt.type = UART_DATA;
  738. }
  739. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  740. while(size > 0) {
  741. int send_size = size > max_size / 2 ? max_size / 2 : size;
  742. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  743. size -= send_size;
  744. offset += send_size;
  745. }
  746. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  747. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  748. } else {
  749. while(size) {
  750. //semaphore for tx_fifo available
  751. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  752. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  753. if(sent < size) {
  754. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  755. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  756. }
  757. size -= sent;
  758. src += sent;
  759. }
  760. }
  761. if(brk_en) {
  762. uart_set_break(uart_num, brk_len);
  763. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  764. }
  765. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  766. }
  767. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  768. return original_size;
  769. }
  770. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  771. {
  772. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  773. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  774. UART_CHECK(src, "buffer null", (-1));
  775. return uart_tx_all(uart_num, src, size, 0, 0);
  776. }
  777. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  778. {
  779. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  780. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  781. UART_CHECK((size > 0), "uart size error", (-1));
  782. UART_CHECK((src), "uart data null", (-1));
  783. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  784. return uart_tx_all(uart_num, src, size, 1, brk_len);
  785. }
  786. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  787. {
  788. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  789. UART_CHECK((buf), "uart_num error", (-1));
  790. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  791. uint8_t* data = NULL;
  792. size_t size;
  793. size_t copy_len = 0;
  794. int len_tmp;
  795. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  796. return -1;
  797. }
  798. while(length) {
  799. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  800. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  801. if(data) {
  802. p_uart_obj[uart_num]->rx_head_ptr = data;
  803. p_uart_obj[uart_num]->rx_ptr = data;
  804. p_uart_obj[uart_num]->rx_cur_remain = size;
  805. } else {
  806. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  807. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  808. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  809. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  810. return copy_len;
  811. }
  812. }
  813. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  814. len_tmp = length;
  815. } else {
  816. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  817. }
  818. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  819. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  820. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  821. copy_len += len_tmp;
  822. length -= len_tmp;
  823. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  824. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  825. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  826. p_uart_obj[uart_num]->rx_ptr = NULL;
  827. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  828. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  829. if(res == pdTRUE) {
  830. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  831. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  832. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  833. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  834. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  835. }
  836. }
  837. }
  838. }
  839. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  840. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  841. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  842. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  843. return copy_len;
  844. }
  845. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  846. {
  847. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  848. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  849. *size = p_uart_obj[uart_num]->rx_buffered_len;
  850. return ESP_OK;
  851. }
  852. esp_err_t uart_flush(uart_port_t uart_num)
  853. {
  854. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  855. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  856. uart_obj_t* p_uart = p_uart_obj[uart_num];
  857. uint8_t* data;
  858. size_t size;
  859. //rx sem protect the ring buffer read related functions
  860. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  861. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  862. while(true) {
  863. if(p_uart->rx_head_ptr) {
  864. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  865. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  866. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  867. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  868. p_uart->rx_ptr = NULL;
  869. p_uart->rx_cur_remain = 0;
  870. p_uart->rx_head_ptr = NULL;
  871. }
  872. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  873. if(data == NULL) {
  874. break;
  875. }
  876. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  877. p_uart_obj[uart_num]->rx_buffered_len -= size;
  878. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  879. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  880. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  881. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  882. if(res == pdTRUE) {
  883. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  884. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  885. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  886. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  887. }
  888. }
  889. }
  890. p_uart->rx_ptr = NULL;
  891. p_uart->rx_cur_remain = 0;
  892. p_uart->rx_head_ptr = NULL;
  893. uart_reset_fifo(uart_num);
  894. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  895. xSemaphoreGive(p_uart->rx_mux);
  896. return ESP_OK;
  897. }
  898. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, void* uart_queue, int intr_alloc_flags)
  899. {
  900. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  901. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  902. if(p_uart_obj[uart_num] == NULL) {
  903. p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
  904. if(p_uart_obj[uart_num] == NULL) {
  905. ESP_LOGE(UART_TAG, "UART driver malloc error");
  906. return ESP_FAIL;
  907. }
  908. p_uart_obj[uart_num]->uart_num = uart_num;
  909. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  910. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  911. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  912. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  913. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  914. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  915. p_uart_obj[uart_num]->queue_size = queue_size;
  916. p_uart_obj[uart_num]->tx_ptr = NULL;
  917. p_uart_obj[uart_num]->tx_head = NULL;
  918. p_uart_obj[uart_num]->tx_len_tot = 0;
  919. p_uart_obj[uart_num]->tx_brk_flg = 0;
  920. p_uart_obj[uart_num]->tx_brk_len = 0;
  921. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  922. p_uart_obj[uart_num]->rx_buffered_len = 0;
  923. if(uart_queue) {
  924. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  925. *((QueueHandle_t*) uart_queue) = p_uart_obj[uart_num]->xQueueUart;
  926. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  927. } else {
  928. p_uart_obj[uart_num]->xQueueUart = NULL;
  929. }
  930. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  931. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  932. p_uart_obj[uart_num]->rx_ptr = NULL;
  933. p_uart_obj[uart_num]->rx_cur_remain = 0;
  934. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  935. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  936. if(tx_buffer_size > 0) {
  937. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  938. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  939. } else {
  940. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  941. p_uart_obj[uart_num]->tx_buf_size = 0;
  942. }
  943. } else {
  944. ESP_LOGE(UART_TAG, "UART driver already installed");
  945. return ESP_FAIL;
  946. }
  947. uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  948. uart_intr_config_t uart_intr = {
  949. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  950. | UART_RXFIFO_TOUT_INT_ENA_M
  951. | UART_FRM_ERR_INT_ENA_M
  952. | UART_RXFIFO_OVF_INT_ENA_M
  953. | UART_BRK_DET_INT_ENA_M
  954. | UART_PARITY_ERR_INT_ENA_M,
  955. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  956. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  957. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  958. };
  959. uart_intr_config(uart_num, &uart_intr);
  960. return ESP_OK;
  961. }
  962. //Make sure no other tasks are still using UART before you call this function
  963. esp_err_t uart_driver_delete(uart_port_t uart_num)
  964. {
  965. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  966. if(p_uart_obj[uart_num] == NULL) {
  967. ESP_LOGI(UART_TAG, "ALREADY NULL");
  968. return ESP_OK;
  969. }
  970. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  971. uart_disable_rx_intr(uart_num);
  972. uart_disable_tx_intr(uart_num);
  973. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  974. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  975. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  976. }
  977. if(p_uart_obj[uart_num]->tx_done_sem) {
  978. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  979. p_uart_obj[uart_num]->tx_done_sem = NULL;
  980. }
  981. if(p_uart_obj[uart_num]->tx_brk_sem) {
  982. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  983. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  984. }
  985. if(p_uart_obj[uart_num]->tx_mux) {
  986. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  987. p_uart_obj[uart_num]->tx_mux = NULL;
  988. }
  989. if(p_uart_obj[uart_num]->rx_mux) {
  990. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  991. p_uart_obj[uart_num]->rx_mux = NULL;
  992. }
  993. if(p_uart_obj[uart_num]->xQueueUart) {
  994. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  995. p_uart_obj[uart_num]->xQueueUart = NULL;
  996. }
  997. if(p_uart_obj[uart_num]->rx_ring_buf) {
  998. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  999. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1000. }
  1001. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1002. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1003. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1004. }
  1005. free(p_uart_obj[uart_num]);
  1006. p_uart_obj[uart_num] = NULL;
  1007. return ESP_OK;
  1008. }