ledc.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_types.h"
  8. #include "freertos/FreeRTOS.h"
  9. #include "freertos/semphr.h"
  10. #include "esp_log.h"
  11. #include "esp_check.h"
  12. #include "soc/gpio_periph.h"
  13. #include "soc/ledc_periph.h"
  14. #include "esp_private/esp_clk.h"
  15. #include "soc/soc_caps.h"
  16. #include "hal/ledc_hal.h"
  17. #include "hal/gpio_hal.h"
  18. #include "driver/ledc.h"
  19. #include "esp_rom_gpio.h"
  20. #include "esp_rom_sys.h"
  21. #include "clk_ctrl_os.h"
  22. #include "esp_private/periph_ctrl.h"
  23. #include "esp_memory_utils.h"
  24. static __attribute__((unused)) const char *LEDC_TAG = "ledc";
  25. #define LEDC_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, LEDC_TAG, "%s", str)
  26. #define LEDC_ARG_CHECK(a, param) ESP_RETURN_ON_FALSE(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid")
  27. #define LEDC_CLK_NOT_FOUND 0
  28. #define LEDC_SLOW_CLK_UNINIT -1
  29. typedef enum {
  30. LEDC_FSM_IDLE,
  31. LEDC_FSM_HW_FADE,
  32. LEDC_FSM_ISR_CAL,
  33. LEDC_FSM_KILLED_PENDING,
  34. } ledc_fade_fsm_t;
  35. typedef struct {
  36. ledc_mode_t speed_mode;
  37. ledc_duty_direction_t direction;
  38. uint32_t target_duty;
  39. int cycle_num;
  40. int scale;
  41. ledc_fade_mode_t mode;
  42. SemaphoreHandle_t ledc_fade_sem;
  43. SemaphoreHandle_t ledc_fade_mux;
  44. #if CONFIG_SPIRAM_USE_MALLOC
  45. StaticQueue_t ledc_fade_sem_storage;
  46. #endif
  47. ledc_cb_t ledc_fade_callback;
  48. void *cb_user_arg;
  49. volatile ledc_fade_fsm_t fsm;
  50. } ledc_fade_t;
  51. typedef struct {
  52. ledc_hal_context_t ledc_hal; /*!< LEDC hal context*/
  53. } ledc_obj_t;
  54. static ledc_obj_t *p_ledc_obj[LEDC_SPEED_MODE_MAX] = {0};
  55. static ledc_fade_t *s_ledc_fade_rec[LEDC_SPEED_MODE_MAX][LEDC_CHANNEL_MAX];
  56. static ledc_isr_handle_t s_ledc_fade_isr_handle = NULL;
  57. static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED;
  58. #define LEDC_VAL_NO_CHANGE (-1)
  59. #define LEDC_DUTY_NUM_MAX LEDC_LL_DUTY_NUM_MAX // Maximum steps per hardware fade
  60. #define LEDC_DUTY_DECIMAL_BIT_NUM (4)
  61. #define LEDC_TIMER_DIV_NUM_MAX (0x3FFFF)
  62. #define LEDC_FADE_TOO_SLOW_STR "LEDC FADE TOO SLOW"
  63. #define LEDC_FADE_TOO_FAST_STR "LEDC FADE TOO FAST"
  64. #define DIM(array) (sizeof(array)/sizeof(*array))
  65. #define LEDC_IS_DIV_INVALID(div) ((div) <= LEDC_LL_FRACTIONAL_MAX || (div) > LEDC_TIMER_DIV_NUM_MAX)
  66. static __attribute__((unused)) const char *LEDC_NOT_INIT = "LEDC is not initialized";
  67. static __attribute__((unused)) const char *LEDC_FADE_SERVICE_ERR_STR = "LEDC fade service not installed";
  68. static __attribute__((unused)) const char *LEDC_FADE_INIT_ERROR_STR = "LEDC fade channel init error, not enough memory or service not installed";
  69. //This value will be calibrated when in use.
  70. static uint32_t s_ledc_slow_clk_8M = 0;
  71. static const ledc_slow_clk_sel_t s_glb_clks[] = LEDC_LL_GLOBAL_CLOCKS;
  72. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  73. static const struct { ledc_clk_src_t clk; uint32_t freq; } s_timer_specific_clks[] = LEDC_LL_TIMER_SPECIFIC_CLOCKS;
  74. #endif
  75. static void ledc_ls_timer_update(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  76. {
  77. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  78. ledc_hal_ls_timer_update(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  79. }
  80. }
  81. static IRAM_ATTR void ledc_ls_channel_update(ledc_mode_t speed_mode, ledc_channel_t channel)
  82. {
  83. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  84. ledc_hal_ls_channel_update(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  85. }
  86. }
  87. //We know that CLK8M is about 8M, but don't know the actual value. So we need to do a calibration.
  88. static bool ledc_slow_clk_calibrate(void)
  89. {
  90. if (periph_rtc_dig_clk8m_enable()) {
  91. s_ledc_slow_clk_8M = periph_rtc_dig_clk8m_get_freq();
  92. #if !SOC_CLK_RC_FAST_SUPPORT_CALIBRATION
  93. /* Workaround: CLK8M calibration cannot be performed, we can only use its theoretic freq */
  94. ESP_LOGD(LEDC_TAG, "Calibration cannot be performed, approximate CLK8M_CLK : %"PRIu32" Hz", s_ledc_slow_clk_8M);
  95. #else
  96. ESP_LOGD(LEDC_TAG, "Calibrate CLK8M_CLK : %"PRIu32" Hz", s_ledc_slow_clk_8M);
  97. #endif
  98. return true;
  99. }
  100. ESP_LOGE(LEDC_TAG, "Calibrate CLK8M_CLK failed");
  101. return false;
  102. }
  103. static uint32_t ledc_get_src_clk_freq(ledc_clk_cfg_t clk_cfg)
  104. {
  105. uint32_t src_clk_freq = 0;
  106. if (clk_cfg == LEDC_USE_RTC8M_CLK) {
  107. src_clk_freq = s_ledc_slow_clk_8M;
  108. #if SOC_LEDC_SUPPORT_APB_CLOCK
  109. } else if (clk_cfg == LEDC_USE_APB_CLK) {
  110. src_clk_freq = esp_clk_apb_freq();
  111. #endif
  112. #if SOC_LEDC_SUPPORT_PLL_DIV_CLOCK
  113. } else if (clk_cfg == LEDC_USE_PLL_DIV_CLK) {
  114. src_clk_freq = LEDC_LL_PLL_DIV_CLK_FREQ;
  115. #endif
  116. #if SOC_LEDC_SUPPORT_REF_TICK
  117. } else if (clk_cfg == LEDC_USE_REF_TICK) {
  118. src_clk_freq = REF_CLK_FREQ;
  119. #endif
  120. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  121. } else if (clk_cfg == LEDC_USE_XTAL_CLK) {
  122. src_clk_freq = esp_clk_xtal_freq();
  123. #endif
  124. }
  125. return src_clk_freq;
  126. }
  127. /* Retrieve the clock frequency for global clocks only */
  128. static uint32_t ledc_get_glb_clk_freq(ledc_slow_clk_sel_t clk_cfg)
  129. {
  130. uint32_t src_clk_freq = 0;
  131. switch (clk_cfg) {
  132. #if SOC_LEDC_SUPPORT_APB_CLOCK
  133. case LEDC_SLOW_CLK_APB:
  134. src_clk_freq = esp_clk_apb_freq();
  135. break;
  136. #endif
  137. #if SOC_LEDC_SUPPORT_PLL_DIV_CLOCK
  138. case LEDC_SLOW_CLK_PLL_DIV:
  139. src_clk_freq = LEDC_LL_PLL_DIV_CLK_FREQ;
  140. break;
  141. #endif
  142. case LEDC_SLOW_CLK_RTC8M:
  143. src_clk_freq = s_ledc_slow_clk_8M;
  144. break;
  145. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  146. case LEDC_SLOW_CLK_XTAL:
  147. src_clk_freq = esp_clk_xtal_freq();
  148. break;
  149. #endif
  150. }
  151. return src_clk_freq;
  152. }
  153. static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_intr_type_t type)
  154. {
  155. if (type == LEDC_INTR_FADE_END) {
  156. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  157. } else {
  158. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  159. }
  160. return ESP_OK;
  161. }
  162. static void _ledc_fade_hw_acquire(ledc_mode_t mode, ledc_channel_t channel)
  163. {
  164. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  165. if (fade) {
  166. xSemaphoreTake(fade->ledc_fade_sem, portMAX_DELAY);
  167. portENTER_CRITICAL(&ledc_spinlock);
  168. ledc_enable_intr_type(mode, channel, LEDC_INTR_DISABLE);
  169. portEXIT_CRITICAL(&ledc_spinlock);
  170. }
  171. }
  172. static void _ledc_fade_hw_release(ledc_mode_t mode, ledc_channel_t channel)
  173. {
  174. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  175. if (fade) {
  176. xSemaphoreGive(fade->ledc_fade_sem);
  177. }
  178. }
  179. static void _ledc_op_lock_acquire(ledc_mode_t mode, ledc_channel_t channel)
  180. {
  181. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  182. if (fade) {
  183. xSemaphoreTake(fade->ledc_fade_mux, portMAX_DELAY);
  184. }
  185. }
  186. static void _ledc_op_lock_release(ledc_mode_t mode, ledc_channel_t channel)
  187. {
  188. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  189. if (fade) {
  190. xSemaphoreGive(fade->ledc_fade_mux);
  191. }
  192. }
  193. static uint32_t ledc_get_max_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  194. {
  195. // The arguments are checked before internally calling this function.
  196. uint32_t max_duty;
  197. ledc_hal_get_max_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &max_duty);
  198. return max_duty;
  199. }
  200. esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider, uint32_t duty_resolution,
  201. ledc_clk_src_t clk_src)
  202. {
  203. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  204. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  205. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  206. portENTER_CRITICAL(&ledc_spinlock);
  207. ledc_hal_set_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clock_divider);
  208. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  209. /* Clock source can only be configured on boards which support timer-specific
  210. * source clock. */
  211. ledc_hal_set_clock_source(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clk_src);
  212. #endif
  213. ledc_hal_set_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, duty_resolution);
  214. ledc_ls_timer_update(speed_mode, timer_sel);
  215. portEXIT_CRITICAL(&ledc_spinlock);
  216. return ESP_OK;
  217. }
  218. static IRAM_ATTR esp_err_t ledc_duty_config(ledc_mode_t speed_mode, ledc_channel_t channel, int hpoint_val,
  219. int duty_val, ledc_duty_direction_t duty_direction, uint32_t duty_num, uint32_t duty_cycle, uint32_t duty_scale)
  220. {
  221. if (hpoint_val >= 0) {
  222. ledc_hal_set_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, hpoint_val);
  223. }
  224. if (duty_val >= 0) {
  225. ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_val);
  226. }
  227. ledc_hal_set_duty_direction(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_direction);
  228. ledc_hal_set_duty_num(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_num);
  229. ledc_hal_set_duty_cycle(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_cycle);
  230. ledc_hal_set_duty_scale(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_scale);
  231. #if SOC_LEDC_GAMMA_FADE_RANGE_MAX > 1
  232. ledc_hal_set_duty_range(&(p_ledc_obj[speed_mode]->ledc_hal), channel, 0);
  233. ledc_hal_set_range_number(&(p_ledc_obj[speed_mode]->ledc_hal), channel, 1);
  234. #endif
  235. return ESP_OK;
  236. }
  237. esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_timer_t timer_sel)
  238. {
  239. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  240. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  241. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  242. portENTER_CRITICAL(&ledc_spinlock);
  243. ledc_hal_bind_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, timer_sel);
  244. ledc_ls_channel_update(speed_mode, channel);
  245. portEXIT_CRITICAL(&ledc_spinlock);
  246. return ESP_OK;
  247. }
  248. esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  249. {
  250. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  251. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  252. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  253. portENTER_CRITICAL(&ledc_spinlock);
  254. ledc_hal_timer_rst(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  255. portEXIT_CRITICAL(&ledc_spinlock);
  256. return ESP_OK;
  257. }
  258. esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  259. {
  260. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  261. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  262. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  263. portENTER_CRITICAL(&ledc_spinlock);
  264. ledc_hal_timer_pause(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  265. portEXIT_CRITICAL(&ledc_spinlock);
  266. return ESP_OK;
  267. }
  268. esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  269. {
  270. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  271. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  272. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  273. portENTER_CRITICAL(&ledc_spinlock);
  274. ledc_hal_timer_resume(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  275. portEXIT_CRITICAL(&ledc_spinlock);
  276. return ESP_OK;
  277. }
  278. esp_err_t ledc_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, ledc_isr_handle_t *handle)
  279. {
  280. esp_err_t ret;
  281. LEDC_ARG_CHECK(fn, "fn");
  282. portENTER_CRITICAL(&ledc_spinlock);
  283. ret = esp_intr_alloc(ETS_LEDC_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  284. portEXIT_CRITICAL(&ledc_spinlock);
  285. return ret;
  286. }
  287. static inline uint32_t ledc_calculate_divisor(uint32_t src_clk_freq, int freq_hz, uint32_t precision)
  288. {
  289. /**
  290. * In order to find the right divisor, we need to divide the source clock
  291. * frequency by the desired frequency. However, two things to note here:
  292. * - The lowest LEDC_LL_FRACTIONAL_BITS bits of the result are the FRACTIONAL
  293. * part. The higher bits represent the integer part, this is why we need
  294. * to right shift the source frequency.
  295. * - The `precision` parameter represents the granularity of the clock. It
  296. * **must** be a power of 2. It means that the resulted divisor is
  297. * a multiplier of `precision`.
  298. *
  299. * Let's take a concrete example, we need to generate a 5KHz clock out of
  300. * a 80MHz clock (APB).
  301. * If the precision is 1024 (10 bits), the resulted multiplier is:
  302. * (80000000 << 8) / (5000 * 1024) = 4000 (0xfa0)
  303. * Let's ignore the fractional part to simplify the explanation, so we get
  304. * a result of 15 (0xf).
  305. * This can be interpreted as: every 15 "precision" ticks, the resulted
  306. * clock will go high, where one precision tick is made out of 1024 source
  307. * clock ticks.
  308. * Thus, every `15 * 1024` source clock ticks, the resulted clock will go
  309. * high.
  310. *
  311. * NOTE: We are also going to round up the value when necessary, thanks to:
  312. * (freq_hz * precision) / 2
  313. */
  314. return ( ( (uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS ) + ((freq_hz * precision) / 2 ) )
  315. / (freq_hz * precision);
  316. }
  317. static inline uint32_t ledc_auto_global_clk_divisor(int freq_hz, uint32_t precision, ledc_slow_clk_sel_t* clk_target)
  318. {
  319. uint32_t ret = LEDC_CLK_NOT_FOUND;
  320. uint32_t clk_freq = 0;
  321. /* This function will go through all the following clock sources to look
  322. * for a valid divisor which generates the requested frequency. */
  323. for (int i = 0; i < DIM(s_glb_clks); i++) {
  324. /* Before calculating the divisor, we need to have the RTC frequency.
  325. * If it hasn't been measured yet, try calibrating it now. */
  326. if (s_glb_clks[i] == LEDC_SLOW_CLK_RTC8M && s_ledc_slow_clk_8M == 0 && !ledc_slow_clk_calibrate()) {
  327. ESP_LOGD(LEDC_TAG, "Unable to retrieve RTC clock frequency, skipping it\n");
  328. continue;
  329. }
  330. clk_freq = ledc_get_glb_clk_freq(s_glb_clks[i]);
  331. uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
  332. /* If the divisor is valid, we can return this value. */
  333. if (!LEDC_IS_DIV_INVALID(div_param)) {
  334. *clk_target = s_glb_clks[i];
  335. ret = div_param;
  336. break;
  337. }
  338. }
  339. return ret;
  340. }
  341. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  342. static inline uint32_t ledc_auto_timer_specific_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  343. ledc_clk_src_t* clk_source)
  344. {
  345. uint32_t ret = LEDC_CLK_NOT_FOUND;
  346. for (int i = 0; i < DIM(s_timer_specific_clks); i++) {
  347. uint32_t div_param = ledc_calculate_divisor(s_timer_specific_clks[i].freq, freq_hz, precision);
  348. /* If the divisor is valid, we can return this value. */
  349. if (!LEDC_IS_DIV_INVALID(div_param)) {
  350. *clk_source = s_timer_specific_clks[i].clk;
  351. ret = div_param;
  352. break;
  353. }
  354. }
  355. #if SOC_LEDC_SUPPORT_HS_MODE
  356. /* On board that support LEDC high-speed mode, APB clock becomes a timer-
  357. * specific clock when in high speed mode. Check if it is necessary here
  358. * to test APB. */
  359. if (speed_mode == LEDC_HIGH_SPEED_MODE && ret == LEDC_CLK_NOT_FOUND) {
  360. /* No divider was found yet, try with APB! */
  361. uint32_t div_param = ledc_calculate_divisor(esp_clk_apb_freq(), freq_hz, precision);
  362. if (!LEDC_IS_DIV_INVALID(div_param)) {
  363. *clk_source = LEDC_APB_CLK;
  364. ret = div_param;
  365. }
  366. }
  367. #endif
  368. return ret;
  369. }
  370. #endif
  371. /**
  372. * @brief Try to find the clock with its divisor giving the frequency requested
  373. * by the caller.
  374. */
  375. static uint32_t ledc_auto_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  376. ledc_clk_src_t* clk_source, ledc_slow_clk_sel_t* clk_target)
  377. {
  378. uint32_t ret = LEDC_CLK_NOT_FOUND;
  379. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  380. /* If the SoC presents timer-specific clock(s), try to achieve the given frequency
  381. * thanks to it/them.
  382. * clk_source parameter will returned by this function. */
  383. uint32_t div_param_timer = ledc_auto_timer_specific_clk_divisor(speed_mode, freq_hz, precision, clk_source);
  384. if (div_param_timer != LEDC_CLK_NOT_FOUND) {
  385. /* The dividor is valid, no need try any other clock, return directly. */
  386. ret = div_param_timer;
  387. }
  388. #endif
  389. /* On ESP32, only low speed channel can use the global clocks. For other
  390. * chips, there are no high speed channels. */
  391. if (ret == LEDC_CLK_NOT_FOUND && speed_mode == LEDC_LOW_SPEED_MODE) {
  392. uint32_t div_param_global = ledc_auto_global_clk_divisor(freq_hz, precision, clk_target);
  393. if (div_param_global != LEDC_CLK_NOT_FOUND) {
  394. *clk_source = LEDC_SCLK;
  395. ret = div_param_global;
  396. }
  397. }
  398. return ret;
  399. }
  400. static ledc_slow_clk_sel_t ledc_clk_cfg_to_global_clk(const ledc_clk_cfg_t clk_cfg)
  401. {
  402. ledc_slow_clk_sel_t glb_clk;
  403. switch (clk_cfg) {
  404. #if SOC_LEDC_SUPPORT_APB_CLOCK
  405. case LEDC_USE_APB_CLK:
  406. glb_clk = LEDC_SLOW_CLK_APB;
  407. break;
  408. #endif
  409. #if SOC_LEDC_SUPPORT_PLL_DIV_CLOCK
  410. case LEDC_USE_PLL_DIV_CLK:
  411. glb_clk = LEDC_SLOW_CLK_PLL_DIV;
  412. break;
  413. #endif
  414. case LEDC_USE_RTC8M_CLK:
  415. glb_clk = LEDC_SLOW_CLK_RTC8M;
  416. break;
  417. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  418. case LEDC_USE_XTAL_CLK:
  419. glb_clk = LEDC_SLOW_CLK_XTAL;
  420. break;
  421. #endif
  422. #if SOC_LEDC_SUPPORT_REF_TICK
  423. case LEDC_USE_REF_TICK:
  424. #endif
  425. default:
  426. /* We should not get here, REF_TICK is NOT a global clock,
  427. * it is a timer-specific clock. */
  428. abort();
  429. }
  430. return glb_clk;
  431. }
  432. extern void esp_sleep_periph_use_8m(bool use_or_not);
  433. /**
  434. * @brief Function setting the LEDC timer divisor with the given source clock,
  435. * frequency and resolution. If the clock configuration passed is
  436. * LEDC_AUTO_CLK, the clock will be determined automatically (if possible).
  437. */
  438. static esp_err_t ledc_set_timer_div(ledc_mode_t speed_mode, ledc_timer_t timer_num, ledc_clk_cfg_t clk_cfg, int freq_hz, int duty_resolution)
  439. {
  440. uint32_t div_param = 0;
  441. const uint32_t precision = ( 0x1 << duty_resolution );
  442. /* The clock sources are not initialized on purpose. To produce compiler warning if used but the selector functions
  443. * don't set them properly. */
  444. /* Timer-specific mux. Set to timer-specific clock or LEDC_SCLK if a global clock is used. */
  445. ledc_clk_src_t timer_clk_src;
  446. /* Global clock mux. Should be set when LEDC_SCLK is used in LOW_SPEED_MODE. Otherwise left uninitialized. */
  447. ledc_slow_clk_sel_t glb_clk = LEDC_SLOW_CLK_UNINIT;
  448. if (clk_cfg == LEDC_AUTO_CLK) {
  449. /* User hasn't specified the speed, we should try to guess it. */
  450. div_param = ledc_auto_clk_divisor(speed_mode, freq_hz, precision, &timer_clk_src, &glb_clk);
  451. } else if (clk_cfg == LEDC_USE_RTC8M_CLK) {
  452. /* User specified source clock(RTC8M_CLK) for low speed channel.
  453. * Make sure the speed mode is correct. */
  454. ESP_RETURN_ON_FALSE((speed_mode == LEDC_LOW_SPEED_MODE), ESP_ERR_INVALID_ARG, LEDC_TAG, "RTC clock can only be used in low speed mode");
  455. /* Before calculating the divisor, we need to have the RTC frequency.
  456. * If it hasn't been measured yet, try calibrating it now. */
  457. if(s_ledc_slow_clk_8M == 0 && ledc_slow_clk_calibrate() == false) {
  458. goto error;
  459. }
  460. /* Set the global clock source */
  461. timer_clk_src = LEDC_SCLK;
  462. glb_clk = LEDC_SLOW_CLK_RTC8M;
  463. /* We have the RTC clock frequency now. */
  464. div_param = ledc_calculate_divisor(s_ledc_slow_clk_8M, freq_hz, precision);
  465. if (LEDC_IS_DIV_INVALID(div_param)) {
  466. div_param = LEDC_CLK_NOT_FOUND;
  467. }
  468. } else {
  469. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  470. if (LEDC_LL_IS_TIMER_SPECIFIC_CLOCK(speed_mode, clk_cfg)) {
  471. /* Currently we can convert a timer-specific clock to a source clock that
  472. * easily because their values are identical in the enumerations (on purpose)
  473. * If we decide to change the values in the future, we should consider defining
  474. * a macro/function to convert timer-specific clock to clock source .*/
  475. timer_clk_src = (ledc_clk_src_t) clk_cfg;
  476. } else
  477. #endif
  478. {
  479. timer_clk_src = LEDC_SCLK;
  480. glb_clk = ledc_clk_cfg_to_global_clk(clk_cfg);
  481. }
  482. uint32_t src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
  483. div_param = ledc_calculate_divisor(src_clk_freq, freq_hz, precision);
  484. if (LEDC_IS_DIV_INVALID(div_param)) {
  485. div_param = LEDC_CLK_NOT_FOUND;
  486. }
  487. }
  488. if (div_param == LEDC_CLK_NOT_FOUND) {
  489. goto error;
  490. }
  491. /* The following debug message makes more sense for AUTO mode. */
  492. ESP_LOGD(LEDC_TAG, "Using clock source %d (in %s mode), divisor: 0x%"PRIx32,
  493. timer_clk_src, (speed_mode == LEDC_LOW_SPEED_MODE ? "slow" : "fast"), div_param);
  494. /* The following block configures the global clock.
  495. * Thus, in theory, this only makes sense when configuring the LOW_SPEED timer and the source clock is LEDC_SCLK (as
  496. * HIGH_SPEED timers won't be clocked by the global clock). However, there are some limitations due to HW design.
  497. */
  498. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  499. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  500. /* On ESP32 and ESP32-S2, when the source clock of LOW_SPEED timer is a timer-specific one (i.e. REF_TICK), the
  501. * global clock MUST be set to APB_CLK. For HIGH_SPEED timers, this is not necessary.
  502. */
  503. if (timer_clk_src != LEDC_SCLK) {
  504. glb_clk = LEDC_SLOW_CLK_APB;
  505. }
  506. #else
  507. /* On later chips, there is only one type of timer/channel (referred as LOW_SPEED in the code), which can only be
  508. * clocked by the global clock. So there's no limitation on the global clock, except that it must be set.
  509. */
  510. assert(timer_clk_src == LEDC_SCLK);
  511. #endif
  512. // Arriving here, variable glb_clk must have been assigned to one of the ledc_slow_clk_sel_t enum values
  513. assert(glb_clk != LEDC_SLOW_CLK_UNINIT);
  514. ESP_LOGD(LEDC_TAG, "In slow speed mode, global clk set: %d", glb_clk);
  515. /* keep ESP_PD_DOMAIN_RC_FAST on during light sleep */
  516. esp_sleep_periph_use_8m(glb_clk == LEDC_SLOW_CLK_RTC8M);
  517. portENTER_CRITICAL(&ledc_spinlock);
  518. ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), glb_clk);
  519. portEXIT_CRITICAL(&ledc_spinlock);
  520. }
  521. /* The divisor is correct, we can write in the hardware. */
  522. ledc_timer_set(speed_mode, timer_num, div_param, duty_resolution, timer_clk_src);
  523. return ESP_OK;
  524. error:
  525. ESP_LOGE(LEDC_TAG, "requested frequency and duty resolution can not be achieved, try reducing freq_hz or duty_resolution. div_param=%"PRIu32, div_param);
  526. return ESP_FAIL;
  527. }
  528. esp_err_t ledc_timer_config(const ledc_timer_config_t *timer_conf)
  529. {
  530. LEDC_ARG_CHECK(timer_conf != NULL, "timer_conf");
  531. uint32_t freq_hz = timer_conf->freq_hz;
  532. uint32_t duty_resolution = timer_conf->duty_resolution;
  533. uint32_t timer_num = timer_conf->timer_num;
  534. uint32_t speed_mode = timer_conf->speed_mode;
  535. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  536. LEDC_ARG_CHECK(!((timer_conf->clk_cfg == LEDC_USE_RTC8M_CLK) && (speed_mode != LEDC_LOW_SPEED_MODE)), "Only low speed channel support RTC8M_CLK");
  537. periph_module_enable(PERIPH_LEDC_MODULE);
  538. if (freq_hz == 0 || duty_resolution == 0 || duty_resolution >= LEDC_TIMER_BIT_MAX) {
  539. ESP_LOGE(LEDC_TAG, "freq_hz=%"PRIu32" duty_resolution=%"PRIu32, freq_hz, duty_resolution);
  540. return ESP_ERR_INVALID_ARG;
  541. }
  542. if (timer_num > LEDC_TIMER_3) {
  543. ESP_LOGE(LEDC_TAG, "invalid timer #%"PRIu32, timer_num);
  544. return ESP_ERR_INVALID_ARG;
  545. }
  546. if (p_ledc_obj[speed_mode] == NULL) {
  547. p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  548. if (p_ledc_obj[speed_mode] == NULL) {
  549. return ESP_ERR_NO_MEM;
  550. }
  551. ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
  552. }
  553. esp_err_t ret = ledc_set_timer_div(speed_mode, timer_num, timer_conf->clk_cfg, freq_hz, duty_resolution);
  554. if (ret == ESP_OK) {
  555. /* Reset the timer. */
  556. ledc_timer_rst(speed_mode, timer_num);
  557. }
  558. return ret;
  559. }
  560. esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel)
  561. {
  562. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  563. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  564. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  565. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  566. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  567. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, 0, 0);
  568. return ESP_OK;
  569. }
  570. esp_err_t ledc_channel_config(const ledc_channel_config_t *ledc_conf)
  571. {
  572. LEDC_ARG_CHECK(ledc_conf, "ledc_conf");
  573. uint32_t speed_mode = ledc_conf->speed_mode;
  574. int gpio_num = ledc_conf->gpio_num;
  575. uint32_t ledc_channel = ledc_conf->channel;
  576. uint32_t timer_select = ledc_conf->timer_sel;
  577. uint32_t intr_type = ledc_conf->intr_type;
  578. uint32_t duty = ledc_conf->duty;
  579. uint32_t hpoint = ledc_conf->hpoint;
  580. bool output_invert = ledc_conf->flags.output_invert;
  581. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  582. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  583. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  584. LEDC_ARG_CHECK(timer_select < LEDC_TIMER_MAX, "timer_select");
  585. LEDC_ARG_CHECK(intr_type < LEDC_INTR_MAX, "intr_type");
  586. periph_module_enable(PERIPH_LEDC_MODULE);
  587. esp_err_t ret = ESP_OK;
  588. if (p_ledc_obj[speed_mode] == NULL) {
  589. p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  590. if (p_ledc_obj[speed_mode] == NULL) {
  591. return ESP_ERR_NO_MEM;
  592. }
  593. ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
  594. #if !CONFIG_IDF_TARGET_ESP32
  595. // On targets other than esp32, the default ledc core(global) clock does not connect to any clock source
  596. // Set channel configurations and update bits before core clock is on could lead to error
  597. // Therefore, we should connect the core clock to a real clock source to make it on before any ledc register operation
  598. // It can be switched to the other desired clock sources to meet the output pwm freq requirement later at timer configuration
  599. ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), 1);
  600. #endif
  601. }
  602. /*set channel parameters*/
  603. /* channel parameters decide how the waveform looks like in one period*/
  604. /* set channel duty and hpoint value, duty range is (0 ~ ((2 ** duty_resolution) - 1)), max hpoint value is 0xfffff*/
  605. ledc_set_duty_with_hpoint(speed_mode, ledc_channel, duty, hpoint);
  606. /*update duty settings*/
  607. ledc_update_duty(speed_mode, ledc_channel);
  608. /*bind the channel with the timer*/
  609. ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select);
  610. /*set interrupt type*/
  611. portENTER_CRITICAL(&ledc_spinlock);
  612. ledc_enable_intr_type(speed_mode, ledc_channel, intr_type);
  613. portEXIT_CRITICAL(&ledc_spinlock);
  614. ESP_LOGD(LEDC_TAG, "LEDC_PWM CHANNEL %"PRIu32"|GPIO %02u|Duty %04"PRIu32"|Time %"PRIu32,
  615. ledc_channel, gpio_num, duty, timer_select);
  616. /*set LEDC signal in gpio matrix*/
  617. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  618. gpio_set_level(gpio_num, output_invert);
  619. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  620. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, output_invert, 0);
  621. return ret;
  622. }
  623. static void _ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  624. {
  625. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  626. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  627. ledc_ls_channel_update(speed_mode, channel);
  628. }
  629. esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  630. {
  631. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  632. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  633. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  634. portENTER_CRITICAL(&ledc_spinlock);
  635. _ledc_update_duty(speed_mode, channel);
  636. portEXIT_CRITICAL(&ledc_spinlock);
  637. return ESP_OK;
  638. }
  639. esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
  640. {
  641. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  642. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  643. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  644. portENTER_CRITICAL(&ledc_spinlock);
  645. ledc_hal_set_idle_level(&(p_ledc_obj[speed_mode]->ledc_hal), channel, idle_level);
  646. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  647. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  648. ledc_ls_channel_update(speed_mode, channel);
  649. portEXIT_CRITICAL(&ledc_spinlock);
  650. return ESP_OK;
  651. }
  652. esp_err_t ledc_set_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, ledc_duty_direction_t fade_direction,
  653. uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale)
  654. {
  655. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  656. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  657. LEDC_ARG_CHECK(fade_direction < LEDC_DUTY_DIR_MAX, "fade_direction");
  658. LEDC_ARG_CHECK(step_num <= LEDC_LL_DUTY_NUM_MAX, "step_num");
  659. LEDC_ARG_CHECK(duty_cyle_num <= LEDC_LL_DUTY_CYCLE_MAX, "duty_cycle_num");
  660. LEDC_ARG_CHECK(duty_scale <= LEDC_LL_DUTY_SCALE_MAX, "duty_scale");
  661. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  662. _ledc_fade_hw_acquire(speed_mode, channel);
  663. portENTER_CRITICAL(&ledc_spinlock);
  664. ledc_duty_config(speed_mode,
  665. channel, //uint32_t chan_num,
  666. LEDC_VAL_NO_CHANGE,
  667. duty, //uint32_t duty_val,
  668. fade_direction, //uint32_t increase,
  669. step_num, //uint32_t duty_num,
  670. duty_cyle_num, //uint32_t duty_cycle,
  671. duty_scale //uint32_t duty_scale
  672. );
  673. portEXIT_CRITICAL(&ledc_spinlock);
  674. _ledc_fade_hw_release(speed_mode, channel);
  675. return ESP_OK;
  676. }
  677. esp_err_t ledc_set_duty_with_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  678. {
  679. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  680. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  681. LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint");
  682. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  683. /* The channel configuration should not be changed before the fade operation is done. */
  684. _ledc_fade_hw_acquire(speed_mode, channel);
  685. portENTER_CRITICAL(&ledc_spinlock);
  686. ledc_duty_config(speed_mode,
  687. channel, //uint32_t chan_num,
  688. hpoint, //uint32_t hpoint_val,
  689. duty, //uint32_t duty_val,
  690. 1, //uint32_t increase,
  691. 0, //uint32_t duty_num,
  692. 0, //uint32_t duty_cycle,
  693. 0 //uint32_t duty_scale
  694. );
  695. portEXIT_CRITICAL(&ledc_spinlock);
  696. _ledc_fade_hw_release(speed_mode, channel);
  697. return ESP_OK;
  698. }
  699. esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)
  700. {
  701. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  702. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  703. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  704. /* The channel configuration should not be changed before the fade operation is done. */
  705. _ledc_fade_hw_acquire(speed_mode, channel);
  706. portENTER_CRITICAL(&ledc_spinlock);
  707. ledc_duty_config(speed_mode,
  708. channel, //uint32_t chan_num,
  709. LEDC_VAL_NO_CHANGE,
  710. duty, //uint32_t duty_val,
  711. 1, //uint32_t increase,
  712. 0, //uint32_t duty_num,
  713. 0, //uint32_t duty_cycle,
  714. 0 //uint32_t duty_scale
  715. );
  716. portEXIT_CRITICAL(&ledc_spinlock);
  717. _ledc_fade_hw_release(speed_mode, channel);
  718. return ESP_OK;
  719. }
  720. uint32_t ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  721. {
  722. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  723. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  724. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  725. uint32_t duty = 0;
  726. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty);
  727. return duty;
  728. }
  729. int ledc_get_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel)
  730. {
  731. LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode argument is invalid", LEDC_ERR_VAL);
  732. LEDC_CHECK(channel < LEDC_CHANNEL_MAX, "channel argument is invalid", LEDC_ERR_VAL);
  733. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  734. uint32_t hpoint = 0;
  735. ledc_hal_get_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &hpoint);
  736. return hpoint;
  737. }
  738. esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
  739. {
  740. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  741. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  742. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  743. ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK;
  744. uint32_t duty_resolution = 0;
  745. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  746. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  747. return ledc_set_timer_div(speed_mode, timer_num, clk_cfg, freq_hz, duty_resolution);
  748. }
  749. uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
  750. {
  751. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  752. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  753. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  754. portENTER_CRITICAL(&ledc_spinlock);
  755. uint32_t clock_divider = 0;
  756. uint32_t duty_resolution = 0;
  757. ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK;
  758. ledc_hal_get_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clock_divider);
  759. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  760. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  761. uint32_t precision = (0x1 << duty_resolution);
  762. uint32_t src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
  763. portEXIT_CRITICAL(&ledc_spinlock);
  764. if (clock_divider == 0) {
  765. ESP_LOGW(LEDC_TAG, "LEDC timer not configured, call ledc_timer_config to set timer frequency");
  766. return 0;
  767. }
  768. return ((uint64_t) src_clk_freq << 8) / precision / clock_divider;
  769. }
  770. static inline void IRAM_ATTR ledc_calc_fade_end_channel(uint32_t *fade_end_status, uint32_t *channel)
  771. {
  772. uint32_t i = __builtin_ffs((*fade_end_status)) - 1;
  773. (*fade_end_status) &= ~(1 << i);
  774. *channel = i;
  775. }
  776. void IRAM_ATTR ledc_fade_isr(void *arg)
  777. {
  778. bool cb_yield = false;
  779. portBASE_TYPE HPTaskAwoken = pdFALSE;
  780. uint32_t speed_mode = 0;
  781. uint32_t channel = 0;
  782. uint32_t intr_status = 0;
  783. ledc_fade_fsm_t state;
  784. for (speed_mode = 0; speed_mode < LEDC_SPEED_MODE_MAX; speed_mode++) {
  785. if (p_ledc_obj[speed_mode] == NULL) {
  786. continue;
  787. }
  788. ledc_hal_get_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), &intr_status);
  789. while (intr_status) {
  790. ledc_calc_fade_end_channel(&intr_status, &channel);
  791. // clear interrupt
  792. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  793. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  794. //fade object not initialized yet.
  795. continue;
  796. }
  797. // Switch fade state to ISR_CAL if current state is HW_FADE
  798. bool already_stopped = false;
  799. portENTER_CRITICAL_ISR(&ledc_spinlock);
  800. state = s_ledc_fade_rec[speed_mode][channel]->fsm;
  801. assert(state != LEDC_FSM_ISR_CAL && state != LEDC_FSM_KILLED_PENDING);
  802. if (state == LEDC_FSM_HW_FADE) {
  803. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_ISR_CAL;
  804. } else if (state == LEDC_FSM_IDLE) {
  805. // interrupt seen, but has already been stopped by task
  806. already_stopped = true;
  807. }
  808. portEXIT_CRITICAL_ISR(&ledc_spinlock);
  809. if (already_stopped) {
  810. continue;
  811. }
  812. bool set_to_idle = false;
  813. int cycle = 0;
  814. int delta = 0;
  815. int step = 0;
  816. int next_duty = 0;
  817. uint32_t duty_cur = 0;
  818. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  819. uint32_t duty_tar = s_ledc_fade_rec[speed_mode][channel]->target_duty;
  820. int scale = s_ledc_fade_rec[speed_mode][channel]->scale;
  821. if (duty_cur == duty_tar || scale == 0) {
  822. // Target duty has reached
  823. set_to_idle = true;
  824. } else {
  825. // Calculate new duty config parameters
  826. delta = (s_ledc_fade_rec[speed_mode][channel]->direction == LEDC_DUTY_DIR_DECREASE) ?
  827. (duty_cur - duty_tar) : (duty_tar - duty_cur);
  828. if (delta > scale) {
  829. next_duty = duty_cur;
  830. step = (delta / scale > LEDC_DUTY_NUM_MAX) ? LEDC_DUTY_NUM_MAX : (delta / scale);
  831. cycle = s_ledc_fade_rec[speed_mode][channel]->cycle_num;
  832. } else {
  833. next_duty = duty_tar;
  834. step = 1;
  835. cycle = 1;
  836. scale = 0;
  837. }
  838. }
  839. bool finished = false;
  840. portENTER_CRITICAL_ISR(&ledc_spinlock);
  841. state = s_ledc_fade_rec[speed_mode][channel]->fsm;
  842. assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_HW_FADE);
  843. if (set_to_idle || state == LEDC_FSM_KILLED_PENDING) {
  844. // Either fade has completed or has been killed, skip HW duty config
  845. finished = true;
  846. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
  847. } else if (state == LEDC_FSM_ISR_CAL) {
  848. // Loading new fade to start
  849. ledc_duty_config(speed_mode,
  850. channel,
  851. LEDC_VAL_NO_CHANGE,
  852. next_duty,
  853. s_ledc_fade_rec[speed_mode][channel]->direction,
  854. step,
  855. cycle,
  856. scale);
  857. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_HW_FADE;
  858. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  859. ledc_ls_channel_update(speed_mode, channel);
  860. }
  861. portEXIT_CRITICAL_ISR(&ledc_spinlock);
  862. if (finished) {
  863. xSemaphoreGiveFromISR(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, &HPTaskAwoken);
  864. ledc_cb_t fade_cb = s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback;
  865. if (fade_cb) {
  866. ledc_cb_param_t param = {
  867. .event = LEDC_FADE_END_EVT,
  868. .speed_mode = speed_mode,
  869. .channel = channel,
  870. .duty = duty_cur
  871. };
  872. cb_yield |= fade_cb(&param, s_ledc_fade_rec[speed_mode][channel]->cb_user_arg);
  873. }
  874. }
  875. }
  876. }
  877. if (HPTaskAwoken == pdTRUE || cb_yield) {
  878. portYIELD_FROM_ISR();
  879. }
  880. }
  881. static esp_err_t ledc_fade_channel_deinit(ledc_mode_t speed_mode, ledc_channel_t channel)
  882. {
  883. if (s_ledc_fade_rec[speed_mode][channel]) {
  884. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux) {
  885. vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux);
  886. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = NULL;
  887. }
  888. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  889. vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  890. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = NULL;
  891. }
  892. free(s_ledc_fade_rec[speed_mode][channel]);
  893. s_ledc_fade_rec[speed_mode][channel] = NULL;
  894. }
  895. return ESP_OK;
  896. }
  897. static esp_err_t ledc_fade_channel_init_check(ledc_mode_t speed_mode, ledc_channel_t channel)
  898. {
  899. if (s_ledc_fade_isr_handle == NULL) {
  900. ESP_LOGE(LEDC_TAG, "Fade service not installed, call ledc_fade_func_install");
  901. return ESP_FAIL;
  902. }
  903. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  904. #if CONFIG_SPIRAM_USE_MALLOC
  905. s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) heap_caps_calloc(1, sizeof(ledc_fade_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  906. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  907. ledc_fade_channel_deinit(speed_mode, channel);
  908. return ESP_ERR_NO_MEM;
  909. }
  910. memset(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage, 0, sizeof(StaticQueue_t));
  911. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinaryStatic(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage);
  912. #else
  913. s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) calloc(1, sizeof(ledc_fade_t));
  914. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  915. ledc_fade_channel_deinit(speed_mode, channel);
  916. return ESP_ERR_NO_MEM;
  917. }
  918. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinary();
  919. #endif
  920. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = xSemaphoreCreateMutex();
  921. xSemaphoreGive(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  922. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
  923. }
  924. if (s_ledc_fade_rec[speed_mode][channel]
  925. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux
  926. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  927. return ESP_OK;
  928. } else {
  929. ledc_fade_channel_deinit(speed_mode, channel);
  930. return ESP_FAIL;
  931. }
  932. }
  933. static esp_err_t _ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int scale, int cycle_num)
  934. {
  935. portENTER_CRITICAL(&ledc_spinlock);
  936. uint32_t duty_cur = 0;
  937. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  938. // When duty == max_duty, meanwhile, if scale == 1 and fade_down == 1, counter would overflow.
  939. if (duty_cur == ledc_get_max_duty(speed_mode, channel)) {
  940. duty_cur -= 1;
  941. }
  942. s_ledc_fade_rec[speed_mode][channel]->speed_mode = speed_mode;
  943. s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty;
  944. s_ledc_fade_rec[speed_mode][channel]->cycle_num = cycle_num;
  945. s_ledc_fade_rec[speed_mode][channel]->scale = scale;
  946. int step_num = 0;
  947. int dir = LEDC_DUTY_DIR_DECREASE;
  948. if (scale > 0) {
  949. if (duty_cur > target_duty) {
  950. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_DECREASE;
  951. step_num = (duty_cur - target_duty) / scale;
  952. step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num;
  953. } else {
  954. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_INCREASE;
  955. dir = LEDC_DUTY_DIR_INCREASE;
  956. step_num = (target_duty - duty_cur) / scale;
  957. step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num;
  958. }
  959. }
  960. portEXIT_CRITICAL(&ledc_spinlock);
  961. if (scale > 0 && step_num > 0) {
  962. portENTER_CRITICAL(&ledc_spinlock);
  963. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, duty_cur, dir, step_num, cycle_num, scale);
  964. portEXIT_CRITICAL(&ledc_spinlock);
  965. ESP_LOGD(LEDC_TAG, "cur duty: %"PRIu32"; target: %"PRIu32", step: %d, cycle: %d; scale: %d; dir: %d\n",
  966. duty_cur, target_duty, step_num, cycle_num, scale, dir);
  967. } else {
  968. portENTER_CRITICAL(&ledc_spinlock);
  969. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, target_duty, dir, 0, 1, 0);
  970. portEXIT_CRITICAL(&ledc_spinlock);
  971. ESP_LOGD(LEDC_TAG, "Set to target duty: %"PRIu32, target_duty);
  972. }
  973. return ESP_OK;
  974. }
  975. static esp_err_t _ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  976. {
  977. ledc_timer_t timer_sel;
  978. uint32_t duty_cur = 0;
  979. ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
  980. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  981. uint32_t freq = ledc_get_freq(speed_mode, timer_sel);
  982. uint32_t duty_delta = target_duty > duty_cur ? target_duty - duty_cur : duty_cur - target_duty;
  983. if (duty_delta == 0) {
  984. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  985. }
  986. uint32_t total_cycles = max_fade_time_ms * freq / 1000;
  987. if (total_cycles == 0) {
  988. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  989. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  990. }
  991. int scale, cycle_num;
  992. if (total_cycles > duty_delta) {
  993. scale = 1;
  994. cycle_num = total_cycles / duty_delta;
  995. if (cycle_num > LEDC_LL_DUTY_NUM_MAX) {
  996. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR);
  997. cycle_num = LEDC_LL_DUTY_NUM_MAX;
  998. }
  999. } else {
  1000. cycle_num = 1;
  1001. scale = duty_delta / total_cycles;
  1002. if (scale > LEDC_LL_DUTY_SCALE_MAX) {
  1003. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  1004. scale = LEDC_LL_DUTY_SCALE_MAX;
  1005. }
  1006. }
  1007. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1008. }
  1009. static void _ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  1010. {
  1011. ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
  1012. fade->mode = fade_mode;
  1013. // Clear interrupt status of channel
  1014. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  1015. // Enable interrupt for channel
  1016. portENTER_CRITICAL(&ledc_spinlock);
  1017. ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_FADE_END);
  1018. // Set fade state to HW_FADE state for starting the fade
  1019. assert(fade->fsm == LEDC_FSM_IDLE);
  1020. fade->fsm = LEDC_FSM_HW_FADE;
  1021. portEXIT_CRITICAL(&ledc_spinlock);
  1022. // Trigger the fade
  1023. ledc_update_duty(speed_mode, channel);
  1024. if (fade_mode == LEDC_FADE_WAIT_DONE) {
  1025. // Waiting for fade done
  1026. _ledc_fade_hw_acquire(speed_mode, channel);
  1027. // Release hardware to support next time fade configure
  1028. _ledc_fade_hw_release(speed_mode, channel);
  1029. }
  1030. }
  1031. esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  1032. {
  1033. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1034. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1035. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1036. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1037. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1038. _ledc_fade_hw_acquire(speed_mode, channel);
  1039. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  1040. _ledc_fade_hw_release(speed_mode, channel);
  1041. return ESP_OK;
  1042. }
  1043. esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num)
  1044. {
  1045. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1046. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1047. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale");
  1048. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num");
  1049. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1050. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1051. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1052. _ledc_fade_hw_acquire(speed_mode, channel);
  1053. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1054. _ledc_fade_hw_release(speed_mode, channel);
  1055. return ESP_OK;
  1056. }
  1057. esp_err_t ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  1058. {
  1059. LEDC_CHECK(s_ledc_fade_rec[speed_mode][channel] != NULL, LEDC_FADE_SERVICE_ERR_STR, ESP_ERR_INVALID_STATE);
  1060. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1061. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1062. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1063. _ledc_fade_hw_acquire(speed_mode, channel);
  1064. _ledc_fade_start(speed_mode, channel, fade_mode);
  1065. return ESP_OK;
  1066. }
  1067. // ESP32 does not support this functionality, fade cannot be overwritten with new duty config
  1068. #if SOC_LEDC_SUPPORT_FADE_STOP
  1069. esp_err_t ledc_fade_stop(ledc_mode_t speed_mode, ledc_channel_t channel)
  1070. {
  1071. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1072. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1073. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1074. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1075. ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
  1076. ledc_fade_fsm_t state = fade->fsm;
  1077. bool wait_for_idle = false;
  1078. assert(state != LEDC_FSM_KILLED_PENDING);
  1079. if (state == LEDC_FSM_IDLE) {
  1080. // if there is no fade going on, do nothing
  1081. return ESP_OK;
  1082. }
  1083. // Fade state is either HW_FADE or ISR_CAL (there is a fade in process)
  1084. portENTER_CRITICAL(&ledc_spinlock);
  1085. // Disable ledc channel interrupt first
  1086. ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_DISABLE);
  1087. // Config duty to the duty cycle at this moment
  1088. uint32_t duty_cur = ledc_get_duty(speed_mode, channel);
  1089. ledc_duty_config(speed_mode,
  1090. channel, //uint32_t chan_num,
  1091. LEDC_VAL_NO_CHANGE,
  1092. duty_cur, //uint32_t duty_val,
  1093. 1, //uint32_t increase,
  1094. 0, //uint32_t duty_num,
  1095. 0, //uint32_t duty_cycle,
  1096. 0 //uint32_t duty_scale
  1097. );
  1098. _ledc_update_duty(speed_mode, channel);
  1099. state = fade->fsm;
  1100. assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_KILLED_PENDING);
  1101. if (state == LEDC_FSM_HW_FADE) {
  1102. fade->fsm = LEDC_FSM_IDLE;
  1103. } else if (state == LEDC_FSM_ISR_CAL) {
  1104. fade->fsm = LEDC_FSM_KILLED_PENDING;
  1105. wait_for_idle = true;
  1106. }
  1107. portEXIT_CRITICAL(&ledc_spinlock);
  1108. if (wait_for_idle) {
  1109. // Wait for ISR return, which gives the semaphore and switchs state to IDLE
  1110. _ledc_fade_hw_acquire(speed_mode, channel);
  1111. assert(fade->fsm == LEDC_FSM_IDLE);
  1112. }
  1113. _ledc_fade_hw_release(speed_mode, channel);
  1114. return ESP_OK;
  1115. }
  1116. #endif
  1117. esp_err_t ledc_fade_func_install(int intr_alloc_flags)
  1118. {
  1119. //OR intr_alloc_flags with ESP_INTR_FLAG_IRAM because the fade isr is in IRAM
  1120. return ledc_isr_register(ledc_fade_isr, NULL, intr_alloc_flags | ESP_INTR_FLAG_IRAM, &s_ledc_fade_isr_handle);
  1121. }
  1122. void ledc_fade_func_uninstall(void)
  1123. {
  1124. if (s_ledc_fade_isr_handle) {
  1125. esp_intr_free(s_ledc_fade_isr_handle);
  1126. s_ledc_fade_isr_handle = NULL;
  1127. }
  1128. int channel, mode;
  1129. for (mode = 0; mode < LEDC_SPEED_MODE_MAX; mode++) {
  1130. for (channel = 0; channel < LEDC_CHANNEL_MAX; channel++) {
  1131. ledc_fade_channel_deinit(mode, channel);
  1132. }
  1133. }
  1134. return;
  1135. }
  1136. esp_err_t ledc_cb_register(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_cbs_t *cbs, void *user_arg)
  1137. {
  1138. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1139. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1140. LEDC_ARG_CHECK(cbs, "callback");
  1141. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1142. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1143. if (cbs->fade_cb && !esp_ptr_in_iram(cbs->fade_cb)) {
  1144. ESP_LOGW(LEDC_TAG, "fade callback not in IRAM");
  1145. }
  1146. if (user_arg && !esp_ptr_internal(user_arg)) {
  1147. ESP_LOGW(LEDC_TAG, "user context not in internal RAM");
  1148. }
  1149. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback = cbs->fade_cb;
  1150. s_ledc_fade_rec[speed_mode][channel]->cb_user_arg = user_arg;
  1151. return ESP_OK;
  1152. }
  1153. /*
  1154. * The functions below are thread-safe version of APIs for duty and fade control.
  1155. * These APIs can be called from different tasks.
  1156. */
  1157. esp_err_t ledc_set_duty_and_update(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  1158. {
  1159. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1160. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1161. LEDC_ARG_CHECK(duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1162. LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint");
  1163. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1164. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1165. _ledc_fade_hw_acquire(speed_mode, channel);
  1166. portENTER_CRITICAL(&ledc_spinlock);
  1167. ledc_duty_config(speed_mode, channel, hpoint, duty, 1, 0, 0, 0);
  1168. _ledc_update_duty(speed_mode, channel);
  1169. portEXIT_CRITICAL(&ledc_spinlock);
  1170. _ledc_fade_hw_release(speed_mode, channel);
  1171. return ESP_OK;
  1172. }
  1173. esp_err_t ledc_set_fade_time_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t max_fade_time_ms, ledc_fade_mode_t fade_mode)
  1174. {
  1175. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1176. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1177. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1178. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1179. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1180. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1181. _ledc_op_lock_acquire(speed_mode, channel);
  1182. _ledc_fade_hw_acquire(speed_mode, channel);
  1183. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  1184. _ledc_fade_start(speed_mode, channel, fade_mode);
  1185. _ledc_op_lock_release(speed_mode, channel);
  1186. return ESP_OK;
  1187. }
  1188. esp_err_t ledc_set_fade_step_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num, ledc_fade_mode_t fade_mode)
  1189. {
  1190. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1191. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1192. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1193. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1194. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1195. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale");
  1196. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num");
  1197. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1198. _ledc_op_lock_acquire(speed_mode, channel);
  1199. _ledc_fade_hw_acquire(speed_mode, channel);
  1200. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1201. _ledc_fade_start(speed_mode, channel, fade_mode);
  1202. _ledc_op_lock_release(speed_mode, channel);
  1203. return ESP_OK;
  1204. }