uart.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "malloc.h"
  21. #include "freertos/FreeRTOS.h"
  22. #include "freertos/semphr.h"
  23. #include "freertos/xtensa_api.h"
  24. #include "freertos/task.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/dport_reg.h"
  27. #include "soc/uart_struct.h"
  28. #include "driver/uart.h"
  29. #include "driver/gpio.h"
  30. #define XOFF (char)0x13
  31. #define XON (char)0x11
  32. static const char* UART_TAG = "uart";
  33. #define UART_CHECK(a, str, ret_val) \
  34. if (!(a)) { \
  35. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  36. return (ret_val); \
  37. }
  38. #define UART_EMPTY_THRESH_DEFAULT (10)
  39. #define UART_FULL_THRESH_DEFAULT (120)
  40. #define UART_TOUT_THRESH_DEFAULT (10)
  41. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  42. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  43. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  44. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  45. typedef struct {
  46. uart_event_type_t type; /*!< UART TX data type */
  47. struct {
  48. int brk_len;
  49. size_t size;
  50. uint8_t data[0];
  51. } tx_data;
  52. } uart_tx_data_t;
  53. typedef struct {
  54. uart_port_t uart_num; /*!< UART port number*/
  55. int queue_size; /*!< UART event queue size*/
  56. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  57. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  58. //rx parameters
  59. int rx_buffered_len; /*!< UART cached data length */
  60. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  61. int rx_buf_size; /*!< RX ring buffer size */
  62. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  63. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  64. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  65. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  66. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  67. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  68. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  69. //tx parameters
  70. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  71. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  72. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  73. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  74. int tx_buf_size; /*!< TX ring buffer size */
  75. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  76. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  77. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  78. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  79. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  80. uint32_t tx_len_cur;
  81. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  82. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  83. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  84. } uart_obj_t;
  85. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  86. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  87. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  88. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  89. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  90. {
  91. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  92. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  93. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  94. UART[uart_num]->conf0.bit_num = data_bit;
  95. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  96. return ESP_OK;
  97. }
  98. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  99. {
  100. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  101. *(data_bit) = UART[uart_num]->conf0.bit_num;
  102. return ESP_OK;
  103. }
  104. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  105. {
  106. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  107. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  108. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  109. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  110. if (stop_bit == UART_STOP_BITS_2) {
  111. stop_bit = UART_STOP_BITS_1;
  112. UART[uart_num]->rs485_conf.dl1_en = 1;
  113. } else {
  114. UART[uart_num]->rs485_conf.dl1_en = 0;
  115. }
  116. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  117. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  118. return ESP_OK;
  119. }
  120. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  121. {
  122. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  123. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  124. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  125. (*stop_bit) = UART_STOP_BITS_2;
  126. } else {
  127. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  128. }
  129. return ESP_OK;
  130. }
  131. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  132. {
  133. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  134. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  135. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  136. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  137. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  138. return ESP_OK;
  139. }
  140. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  141. {
  142. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  143. int val = UART[uart_num]->conf0.val;
  144. if(val & UART_PARITY_EN_M) {
  145. if(val & UART_PARITY_M) {
  146. (*parity_mode) = UART_PARITY_ODD;
  147. } else {
  148. (*parity_mode) = UART_PARITY_EVEN;
  149. }
  150. } else {
  151. (*parity_mode) = UART_PARITY_DISABLE;
  152. }
  153. return ESP_OK;
  154. }
  155. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  156. {
  157. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  158. UART_CHECK((baud_rate <= UART_BITRATE_MAX), "baud_rate error", ESP_FAIL);
  159. uint32_t clk_div = (((UART_CLK_FREQ) << 4) / baud_rate);
  160. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  161. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  162. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  163. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  164. return ESP_OK;
  165. }
  166. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  167. {
  168. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  169. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  170. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  171. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  172. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  173. return ESP_OK;
  174. }
  175. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  176. {
  177. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  178. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  179. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  180. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  181. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  182. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  183. return ESP_OK;
  184. }
  185. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  186. {
  187. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  188. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  189. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  190. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  191. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  192. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  193. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  194. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  195. UART[uart_num]->swfc_conf.xon_char = XON;
  196. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  197. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  198. return ESP_OK;
  199. }
  200. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  201. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  202. {
  203. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  204. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  205. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  206. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  207. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  208. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  209. UART[uart_num]->conf1.rx_flow_en = 1;
  210. } else {
  211. UART[uart_num]->conf1.rx_flow_en = 0;
  212. }
  213. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  214. UART[uart_num]->conf0.tx_flow_en = 1;
  215. } else {
  216. UART[uart_num]->conf0.tx_flow_en = 0;
  217. }
  218. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  219. return ESP_OK;
  220. }
  221. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  222. {
  223. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  224. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  225. if(UART[uart_num]->conf1.rx_flow_en) {
  226. val |= UART_HW_FLOWCTRL_RTS;
  227. }
  228. if(UART[uart_num]->conf0.tx_flow_en) {
  229. val |= UART_HW_FLOWCTRL_CTS;
  230. }
  231. (*flow_ctrl) = val;
  232. return ESP_OK;
  233. }
  234. static esp_err_t uart_reset_fifo(uart_port_t uart_num)
  235. {
  236. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  237. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  238. UART[uart_num]->conf0.rxfifo_rst = 1;
  239. UART[uart_num]->conf0.rxfifo_rst = 0;
  240. UART[uart_num]->conf0.txfifo_rst = 1;
  241. UART[uart_num]->conf0.txfifo_rst = 0;
  242. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  243. return ESP_OK;
  244. }
  245. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  246. {
  247. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  248. //intr_clr register is write-only
  249. UART[uart_num]->int_clr.val = clr_mask;
  250. return ESP_OK;
  251. }
  252. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  253. {
  254. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  255. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  256. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  257. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  258. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  259. return ESP_OK;
  260. }
  261. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  262. {
  263. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  264. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  265. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  266. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  267. return ESP_OK;
  268. }
  269. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  270. {
  271. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  272. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  273. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  274. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  275. UART[uart_num]->at_cmd_char.data = pattern_chr;
  276. UART[uart_num]->at_cmd_char.char_num = chr_num;
  277. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  278. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  279. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  280. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  281. }
  282. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  283. {
  284. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  285. }
  286. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  287. {
  288. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  289. }
  290. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  291. {
  292. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  293. }
  294. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  295. {
  296. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  297. }
  298. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  299. {
  300. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  301. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  302. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  303. UART[uart_num]->int_clr.txfifo_empty = 1;
  304. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  305. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  306. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  307. return ESP_OK;
  308. }
  309. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  310. {
  311. int ret;
  312. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  313. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  314. switch(uart_num) {
  315. case UART_NUM_1:
  316. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  317. break;
  318. case UART_NUM_2:
  319. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  320. break;
  321. case UART_NUM_0:
  322. default:
  323. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  324. break;
  325. }
  326. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  327. return ret;
  328. }
  329. esp_err_t uart_isr_free(uart_port_t uart_num)
  330. {
  331. esp_err_t ret;
  332. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  333. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  334. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  335. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  336. p_uart_obj[uart_num]->intr_handle=NULL;
  337. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  338. return ret;
  339. }
  340. //internal signal can be output to multiple GPIO pads
  341. //only one GPIO pad can connect with input signal
  342. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  343. {
  344. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  345. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  346. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  347. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  348. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  349. int tx_sig, rx_sig, rts_sig, cts_sig;
  350. switch(uart_num) {
  351. case UART_NUM_0:
  352. tx_sig = U0TXD_OUT_IDX;
  353. rx_sig = U0RXD_IN_IDX;
  354. rts_sig = U0RTS_OUT_IDX;
  355. cts_sig = U0CTS_IN_IDX;
  356. break;
  357. case UART_NUM_1:
  358. tx_sig = U1TXD_OUT_IDX;
  359. rx_sig = U1RXD_IN_IDX;
  360. rts_sig = U1RTS_OUT_IDX;
  361. cts_sig = U1CTS_IN_IDX;
  362. break;
  363. case UART_NUM_2:
  364. tx_sig = U2TXD_OUT_IDX;
  365. rx_sig = U2RXD_IN_IDX;
  366. rts_sig = U2RTS_OUT_IDX;
  367. cts_sig = U2CTS_IN_IDX;
  368. break;
  369. case UART_NUM_MAX:
  370. default:
  371. tx_sig = U0TXD_OUT_IDX;
  372. rx_sig = U0RXD_IN_IDX;
  373. rts_sig = U0RTS_OUT_IDX;
  374. cts_sig = U0CTS_IN_IDX;
  375. break;
  376. }
  377. if(tx_io_num >= 0) {
  378. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  379. gpio_set_level(tx_io_num, 1);
  380. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  381. }
  382. if(rx_io_num >= 0) {
  383. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  384. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  385. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  386. gpio_matrix_in(rx_io_num, rx_sig, 0);
  387. }
  388. if(rts_io_num >= 0) {
  389. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  390. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  391. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  392. }
  393. if(cts_io_num >= 0) {
  394. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  395. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  396. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  397. gpio_matrix_in(cts_io_num, cts_sig, 0);
  398. }
  399. return ESP_OK;
  400. }
  401. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  402. {
  403. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  404. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  405. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  406. UART[uart_num]->conf0.sw_rts = level & 0x1;
  407. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  408. return ESP_OK;
  409. }
  410. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  411. {
  412. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  413. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  414. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  415. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  416. return ESP_OK;
  417. }
  418. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  419. {
  420. esp_err_t r;
  421. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  422. UART_CHECK((uart_config), "param null", ESP_FAIL);
  423. if(uart_num == UART_NUM_0) {
  424. periph_module_enable(PERIPH_UART0_MODULE);
  425. } else if(uart_num == UART_NUM_1) {
  426. periph_module_enable(PERIPH_UART1_MODULE);
  427. } else if(uart_num == UART_NUM_2) {
  428. periph_module_enable(PERIPH_UART2_MODULE);
  429. }
  430. r=uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  431. if (r!=ESP_OK) return r;
  432. r=uart_set_baudrate(uart_num, uart_config->baud_rate);
  433. if (r!=ESP_OK) return r;
  434. UART[uart_num]->conf0.val = (
  435. (uart_config->parity << UART_PARITY_S)
  436. | (uart_config->data_bits << UART_BIT_NUM_S)
  437. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  438. | UART_TICK_REF_ALWAYS_ON_M);
  439. r=uart_set_stop_bits(uart_num, uart_config->stop_bits);
  440. return r;
  441. }
  442. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  443. {
  444. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  445. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  446. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  447. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  448. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  449. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  450. UART[uart_num]->conf1.rx_tout_en = 1;
  451. } else {
  452. UART[uart_num]->conf1.rx_tout_en = 0;
  453. }
  454. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  455. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  456. }
  457. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  458. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  459. }
  460. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  461. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  462. return ESP_OK;
  463. }
  464. //internal isr handler for default driver code.
  465. static void uart_rx_intr_handler_default(void *param)
  466. {
  467. uart_obj_t *p_uart = (uart_obj_t*) param;
  468. uint8_t uart_num = p_uart->uart_num;
  469. uart_dev_t* uart_reg = UART[uart_num];
  470. uint8_t buf_idx = 0;
  471. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  472. int rx_fifo_len = 0;
  473. uart_event_t uart_event;
  474. portBASE_TYPE HPTaskAwoken = 0;
  475. while(uart_intr_status != 0x0) {
  476. buf_idx = 0;
  477. uart_event.type = UART_EVENT_MAX;
  478. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  479. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  480. uart_reg->int_ena.txfifo_empty = 0;
  481. uart_reg->int_clr.txfifo_empty = 1;
  482. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  483. if(p_uart->tx_waiting_brk) {
  484. continue;
  485. }
  486. //TX semaphore will only be used when tx_buf_size is zero.
  487. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  488. p_uart->tx_waiting_fifo = false;
  489. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  490. if(HPTaskAwoken == pdTRUE) {
  491. portYIELD_FROM_ISR() ;
  492. }
  493. }
  494. else {
  495. //We don't use TX ring buffer, because the size is zero.
  496. if(p_uart->tx_buf_size == 0) {
  497. continue;
  498. }
  499. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  500. bool en_tx_flg = false;
  501. //We need to put a loop here, in case all the buffer items are very short.
  502. //That would cause a watch_dog reset because empty interrupt happens so often.
  503. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  504. while(tx_fifo_rem) {
  505. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  506. size_t size;
  507. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  508. if(p_uart->tx_head) {
  509. //The first item is the data description
  510. //Get the first item to get the data information
  511. if(p_uart->tx_len_tot == 0) {
  512. p_uart->tx_ptr = NULL;
  513. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  514. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  515. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  516. p_uart->tx_brk_flg = 1;
  517. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  518. }
  519. //We have saved the data description from the 1st item, return buffer.
  520. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  521. if(HPTaskAwoken == pdTRUE) {
  522. portYIELD_FROM_ISR() ;
  523. }
  524. }else if(p_uart->tx_ptr == NULL) {
  525. //Update the TX item pointer, we will need this to return item to buffer.
  526. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  527. en_tx_flg = true;
  528. p_uart->tx_len_cur = size;
  529. }
  530. }
  531. else {
  532. //Can not get data from ring buffer, return;
  533. break;
  534. }
  535. }
  536. if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  537. //To fill the TX FIFO.
  538. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  539. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  540. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  541. }
  542. p_uart->tx_len_tot -= send_len;
  543. p_uart->tx_len_cur -= send_len;
  544. tx_fifo_rem -= send_len;
  545. if(p_uart->tx_len_cur == 0) {
  546. //Return item to ring buffer.
  547. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  548. if(HPTaskAwoken == pdTRUE) {
  549. portYIELD_FROM_ISR() ;
  550. }
  551. p_uart->tx_head = NULL;
  552. p_uart->tx_ptr = NULL;
  553. //Sending item done, now we need to send break if there is a record.
  554. //Set TX break signal after FIFO is empty
  555. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  556. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  557. uart_reg->int_ena.tx_brk_done = 0;
  558. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  559. uart_reg->conf0.txd_brk = 1;
  560. uart_reg->int_clr.tx_brk_done = 1;
  561. uart_reg->int_ena.tx_brk_done = 1;
  562. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  563. p_uart->tx_waiting_brk = 1;
  564. } else {
  565. //enable TX empty interrupt
  566. en_tx_flg = true;
  567. }
  568. } else {
  569. //enable TX empty interrupt
  570. en_tx_flg = true;
  571. }
  572. }
  573. }
  574. if(en_tx_flg) {
  575. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  576. uart_reg->int_clr.txfifo_empty = 1;
  577. uart_reg->int_ena.txfifo_empty = 1;
  578. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  579. }
  580. }
  581. }
  582. else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
  583. if(p_uart->rx_buffer_full_flg == false) {
  584. //Get the buffer from the FIFO
  585. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  586. p_uart->rx_stash_len = rx_fifo_len;
  587. //We have to read out all data in RX FIFO to clear the interrupt signal
  588. while(buf_idx < rx_fifo_len) {
  589. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  590. }
  591. //After Copying the Data From FIFO ,Clear intr_status
  592. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  593. uart_reg->int_clr.rxfifo_tout = 1;
  594. uart_reg->int_clr.rxfifo_full = 1;
  595. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  596. uart_event.size = rx_fifo_len;
  597. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  598. //Mainly for applications that uses flow control or small ring buffer.
  599. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  600. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  601. uart_reg->int_ena.rxfifo_full = 0;
  602. uart_reg->int_ena.rxfifo_tout = 0;
  603. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  604. p_uart->rx_buffer_full_flg = true;
  605. uart_event.type = UART_BUFFER_FULL;
  606. } else {
  607. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  608. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  609. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  610. uart_event.type = UART_DATA;
  611. }
  612. if(HPTaskAwoken == pdTRUE) {
  613. portYIELD_FROM_ISR() ;
  614. }
  615. } else {
  616. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  617. uart_reg->int_ena.rxfifo_full = 0;
  618. uart_reg->int_ena.rxfifo_tout = 0;
  619. uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
  620. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  621. uart_event.type = UART_BUFFER_FULL;
  622. }
  623. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  624. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  625. uart_reg->conf0.rxfifo_rst = 1;
  626. uart_reg->conf0.rxfifo_rst = 0;
  627. uart_reg->int_clr.rxfifo_ovf = 1;
  628. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  629. uart_event.type = UART_FIFO_OVF;
  630. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  631. uart_reg->int_clr.brk_det = 1;
  632. uart_event.type = UART_BREAK;
  633. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  634. uart_reg->int_clr.frm_err = 1;
  635. uart_event.type = UART_FRAME_ERR;
  636. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  637. uart_reg->int_clr.parity_err = 1;
  638. uart_event.type = UART_PARITY_ERR;
  639. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  640. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  641. uart_reg->conf0.txd_brk = 0;
  642. uart_reg->int_ena.tx_brk_done = 0;
  643. uart_reg->int_clr.tx_brk_done = 1;
  644. if(p_uart->tx_brk_flg == 1) {
  645. uart_reg->int_ena.txfifo_empty = 1;
  646. }
  647. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  648. if(p_uart->tx_brk_flg == 1) {
  649. p_uart->tx_brk_flg = 0;
  650. p_uart->tx_waiting_brk = 0;
  651. } else {
  652. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  653. if(HPTaskAwoken == pdTRUE) {
  654. portYIELD_FROM_ISR() ;
  655. }
  656. }
  657. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  658. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  659. uart_reg->int_ena.tx_brk_idle_done = 0;
  660. uart_reg->int_clr.tx_brk_idle_done = 1;
  661. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  662. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  663. uart_reg->int_clr.at_cmd_char_det = 1;
  664. uart_event.type = UART_PATTERN_DET;
  665. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  666. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  667. uart_reg->int_ena.tx_done = 0;
  668. uart_reg->int_clr.tx_done = 1;
  669. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  670. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  671. if(HPTaskAwoken == pdTRUE) {
  672. portYIELD_FROM_ISR() ;
  673. }
  674. } else {
  675. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  676. uart_event.type = UART_EVENT_MAX;
  677. }
  678. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  679. xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
  680. if(HPTaskAwoken == pdTRUE) {
  681. portYIELD_FROM_ISR() ;
  682. }
  683. }
  684. uart_intr_status = uart_reg->int_st.val;
  685. }
  686. }
  687. /**************************************************************/
  688. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  689. {
  690. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  691. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  692. BaseType_t res;
  693. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  694. //Take tx_mux
  695. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  696. if(res == pdFALSE) {
  697. return ESP_ERR_TIMEOUT;
  698. }
  699. ticks_to_wait = ticks_end - xTaskGetTickCount();
  700. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  701. ticks_to_wait = ticks_end - xTaskGetTickCount();
  702. if(UART[uart_num]->status.txfifo_cnt == 0) {
  703. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  704. return ESP_OK;
  705. }
  706. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  707. //take 2nd tx_done_sem, wait given from ISR
  708. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  709. if(res == pdFALSE) {
  710. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  711. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  712. return ESP_ERR_TIMEOUT;
  713. }
  714. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  715. return ESP_OK;
  716. }
  717. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  718. {
  719. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  720. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  721. UART[uart_num]->conf0.txd_brk = 1;
  722. UART[uart_num]->int_clr.tx_brk_done = 1;
  723. UART[uart_num]->int_ena.tx_brk_done = 1;
  724. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  725. return ESP_OK;
  726. }
  727. //Fill UART tx_fifo and return a number,
  728. //This function by itself is not thread-safe, always call from within a muxed section.
  729. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  730. {
  731. uint8_t i = 0;
  732. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  733. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  734. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  735. for(i = 0; i < copy_cnt; i++) {
  736. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  737. }
  738. return copy_cnt;
  739. }
  740. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  741. {
  742. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  743. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  744. UART_CHECK(buffer, "buffer null", (-1));
  745. if(len == 0) {
  746. return 0;
  747. }
  748. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  749. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  750. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  751. return tx_len;
  752. }
  753. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  754. {
  755. if(size == 0) {
  756. return 0;
  757. }
  758. size_t original_size = size;
  759. //lock for uart_tx
  760. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  761. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  762. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  763. int offset = 0;
  764. uart_tx_data_t evt;
  765. evt.tx_data.size = size;
  766. evt.tx_data.brk_len = brk_len;
  767. if(brk_en) {
  768. evt.type = UART_DATA_BREAK;
  769. } else {
  770. evt.type = UART_DATA;
  771. }
  772. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  773. while(size > 0) {
  774. int send_size = size > max_size / 2 ? max_size / 2 : size;
  775. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  776. size -= send_size;
  777. offset += send_size;
  778. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  779. }
  780. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  781. } else {
  782. while(size) {
  783. //semaphore for tx_fifo available
  784. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  785. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  786. if(sent < size) {
  787. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  788. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  789. }
  790. size -= sent;
  791. src += sent;
  792. }
  793. }
  794. if(brk_en) {
  795. uart_set_break(uart_num, brk_len);
  796. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  797. }
  798. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  799. }
  800. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  801. return original_size;
  802. }
  803. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  804. {
  805. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  806. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  807. UART_CHECK(src, "buffer null", (-1));
  808. return uart_tx_all(uart_num, src, size, 0, 0);
  809. }
  810. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  811. {
  812. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  813. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  814. UART_CHECK((size > 0), "uart size error", (-1));
  815. UART_CHECK((src), "uart data null", (-1));
  816. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  817. return uart_tx_all(uart_num, src, size, 1, brk_len);
  818. }
  819. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  820. {
  821. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  822. UART_CHECK((buf), "uart_num error", (-1));
  823. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  824. uint8_t* data = NULL;
  825. size_t size;
  826. size_t copy_len = 0;
  827. int len_tmp;
  828. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  829. return -1;
  830. }
  831. while(length) {
  832. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  833. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  834. if(data) {
  835. p_uart_obj[uart_num]->rx_head_ptr = data;
  836. p_uart_obj[uart_num]->rx_ptr = data;
  837. p_uart_obj[uart_num]->rx_cur_remain = size;
  838. } else {
  839. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  840. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  841. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  842. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  843. return copy_len;
  844. }
  845. }
  846. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  847. len_tmp = length;
  848. } else {
  849. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  850. }
  851. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  852. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  853. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  854. copy_len += len_tmp;
  855. length -= len_tmp;
  856. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  857. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  858. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  859. p_uart_obj[uart_num]->rx_ptr = NULL;
  860. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  861. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  862. if(res == pdTRUE) {
  863. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  864. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  865. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  866. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  867. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  868. }
  869. }
  870. }
  871. }
  872. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  873. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  874. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  875. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  876. return copy_len;
  877. }
  878. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  879. {
  880. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  881. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  882. *size = p_uart_obj[uart_num]->rx_buffered_len;
  883. return ESP_OK;
  884. }
  885. esp_err_t uart_flush(uart_port_t uart_num)
  886. {
  887. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  888. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  889. uart_obj_t* p_uart = p_uart_obj[uart_num];
  890. uint8_t* data;
  891. size_t size;
  892. //rx sem protect the ring buffer read related functions
  893. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  894. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  895. while(true) {
  896. if(p_uart->rx_head_ptr) {
  897. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  898. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  899. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  900. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  901. p_uart->rx_ptr = NULL;
  902. p_uart->rx_cur_remain = 0;
  903. p_uart->rx_head_ptr = NULL;
  904. }
  905. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  906. if(data == NULL) {
  907. break;
  908. }
  909. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  910. p_uart_obj[uart_num]->rx_buffered_len -= size;
  911. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  912. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  913. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  914. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  915. if(res == pdTRUE) {
  916. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  917. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  918. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  919. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  920. }
  921. }
  922. }
  923. p_uart->rx_ptr = NULL;
  924. p_uart->rx_cur_remain = 0;
  925. p_uart->rx_head_ptr = NULL;
  926. uart_reset_fifo(uart_num);
  927. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  928. xSemaphoreGive(p_uart->rx_mux);
  929. return ESP_OK;
  930. }
  931. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  932. {
  933. esp_err_t r;
  934. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  935. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  936. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  937. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  938. if(p_uart_obj[uart_num] == NULL) {
  939. p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
  940. if(p_uart_obj[uart_num] == NULL) {
  941. ESP_LOGE(UART_TAG, "UART driver malloc error");
  942. return ESP_FAIL;
  943. }
  944. p_uart_obj[uart_num]->uart_num = uart_num;
  945. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  946. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  947. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  948. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  949. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  950. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  951. p_uart_obj[uart_num]->queue_size = queue_size;
  952. p_uart_obj[uart_num]->tx_ptr = NULL;
  953. p_uart_obj[uart_num]->tx_head = NULL;
  954. p_uart_obj[uart_num]->tx_len_tot = 0;
  955. p_uart_obj[uart_num]->tx_brk_flg = 0;
  956. p_uart_obj[uart_num]->tx_brk_len = 0;
  957. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  958. p_uart_obj[uart_num]->rx_buffered_len = 0;
  959. if(uart_queue) {
  960. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  961. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  962. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  963. } else {
  964. p_uart_obj[uart_num]->xQueueUart = NULL;
  965. }
  966. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  967. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  968. p_uart_obj[uart_num]->rx_ptr = NULL;
  969. p_uart_obj[uart_num]->rx_cur_remain = 0;
  970. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  971. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  972. if(tx_buffer_size > 0) {
  973. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  974. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  975. } else {
  976. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  977. p_uart_obj[uart_num]->tx_buf_size = 0;
  978. }
  979. } else {
  980. ESP_LOGE(UART_TAG, "UART driver already installed");
  981. return ESP_FAIL;
  982. }
  983. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  984. if (r!=ESP_OK) goto err;
  985. uart_intr_config_t uart_intr = {
  986. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  987. | UART_RXFIFO_TOUT_INT_ENA_M
  988. | UART_FRM_ERR_INT_ENA_M
  989. | UART_RXFIFO_OVF_INT_ENA_M
  990. | UART_BRK_DET_INT_ENA_M
  991. | UART_PARITY_ERR_INT_ENA_M,
  992. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  993. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  994. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  995. };
  996. r=uart_intr_config(uart_num, &uart_intr);
  997. if (r!=ESP_OK) goto err;
  998. return r;
  999. err:
  1000. uart_driver_delete(uart_num);
  1001. return r;
  1002. }
  1003. //Make sure no other tasks are still using UART before you call this function
  1004. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1005. {
  1006. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1007. if(p_uart_obj[uart_num] == NULL) {
  1008. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1009. return ESP_OK;
  1010. }
  1011. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1012. uart_disable_rx_intr(uart_num);
  1013. uart_disable_tx_intr(uart_num);
  1014. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1015. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1016. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1017. }
  1018. if(p_uart_obj[uart_num]->tx_done_sem) {
  1019. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1020. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1021. }
  1022. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1023. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1024. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1025. }
  1026. if(p_uart_obj[uart_num]->tx_mux) {
  1027. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1028. p_uart_obj[uart_num]->tx_mux = NULL;
  1029. }
  1030. if(p_uart_obj[uart_num]->rx_mux) {
  1031. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1032. p_uart_obj[uart_num]->rx_mux = NULL;
  1033. }
  1034. if(p_uart_obj[uart_num]->xQueueUart) {
  1035. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1036. p_uart_obj[uart_num]->xQueueUart = NULL;
  1037. }
  1038. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1039. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1040. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1041. }
  1042. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1043. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1044. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1045. }
  1046. free(p_uart_obj[uart_num]);
  1047. p_uart_obj[uart_num] = NULL;
  1048. return ESP_OK;
  1049. }