uart.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #include "driver/uart_select.h"
  32. #define XOFF (char)0x13
  33. #define XON (char)0x11
  34. static const char* UART_TAG = "uart";
  35. #define UART_CHECK(a, str, ret_val) \
  36. if (!(a)) { \
  37. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  38. return (ret_val); \
  39. }
  40. #define UART_EMPTY_THRESH_DEFAULT (10)
  41. #define UART_FULL_THRESH_DEFAULT (120)
  42. #define UART_TOUT_THRESH_DEFAULT (10)
  43. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  44. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  45. #define UART_TX_IDLE_NUM_DEFAULT (0)
  46. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  47. #define UART_MIN_WAKEUP_THRESH (2)
  48. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  49. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  50. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  51. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  52. // Check actual UART mode set
  53. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  54. typedef struct {
  55. uart_event_type_t type; /*!< UART TX data type */
  56. struct {
  57. int brk_len;
  58. size_t size;
  59. uint8_t data[0];
  60. } tx_data;
  61. } uart_tx_data_t;
  62. typedef struct {
  63. int wr;
  64. int rd;
  65. int len;
  66. int* data;
  67. } uart_pat_rb_t;
  68. typedef struct {
  69. uart_port_t uart_num; /*!< UART port number*/
  70. int queue_size; /*!< UART event queue size*/
  71. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  72. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  73. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  74. bool coll_det_flg; /*!< UART collision detection flag */
  75. //rx parameters
  76. int rx_buffered_len; /*!< UART cached data length */
  77. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  78. int rx_buf_size; /*!< RX ring buffer size */
  79. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  80. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  81. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  82. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  83. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  84. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  85. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  86. uart_pat_rb_t rx_pattern_pos;
  87. //tx parameters
  88. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  89. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  90. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  91. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  92. int tx_buf_size; /*!< TX ring buffer size */
  93. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  94. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  95. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  96. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  97. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  98. uint32_t tx_len_cur;
  99. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  100. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  101. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  102. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  103. } uart_obj_t;
  104. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  105. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  106. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  107. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  108. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  109. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  110. {
  111. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  112. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  113. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  114. UART[uart_num]->conf0.bit_num = data_bit;
  115. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  116. return ESP_OK;
  117. }
  118. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  119. {
  120. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  121. *(data_bit) = UART[uart_num]->conf0.bit_num;
  122. return ESP_OK;
  123. }
  124. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  125. {
  126. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  127. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  128. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  129. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  130. if (stop_bit == UART_STOP_BITS_2) {
  131. stop_bit = UART_STOP_BITS_1;
  132. UART[uart_num]->rs485_conf.dl1_en = 1;
  133. } else {
  134. UART[uart_num]->rs485_conf.dl1_en = 0;
  135. }
  136. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  137. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  138. return ESP_OK;
  139. }
  140. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  141. {
  142. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  143. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  144. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  145. (*stop_bit) = UART_STOP_BITS_2;
  146. } else {
  147. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  148. }
  149. return ESP_OK;
  150. }
  151. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  152. {
  153. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  154. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  155. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  156. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  157. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  158. return ESP_OK;
  159. }
  160. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  161. {
  162. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  163. int val = UART[uart_num]->conf0.val;
  164. if(val & UART_PARITY_EN_M) {
  165. if(val & UART_PARITY_M) {
  166. (*parity_mode) = UART_PARITY_ODD;
  167. } else {
  168. (*parity_mode) = UART_PARITY_EVEN;
  169. }
  170. } else {
  171. (*parity_mode) = UART_PARITY_DISABLE;
  172. }
  173. return ESP_OK;
  174. }
  175. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  176. {
  177. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  178. esp_err_t ret = ESP_OK;
  179. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  180. int uart_clk_freq;
  181. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  182. /* this UART has been configured to use REF_TICK */
  183. uart_clk_freq = REF_CLK_FREQ;
  184. } else {
  185. uart_clk_freq = esp_clk_apb_freq();
  186. }
  187. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  188. if (clk_div < 16) {
  189. /* baud rate is too high for this clock frequency */
  190. ret = ESP_ERR_INVALID_ARG;
  191. } else {
  192. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  193. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  194. }
  195. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  196. return ret;
  197. }
  198. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  199. {
  200. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  201. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  202. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  203. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  204. uint32_t uart_clk_freq = esp_clk_apb_freq();
  205. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  206. uart_clk_freq = REF_CLK_FREQ;
  207. }
  208. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  209. return ESP_OK;
  210. }
  211. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  212. {
  213. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  214. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  215. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  216. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  217. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  218. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  219. return ESP_OK;
  220. }
  221. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  222. {
  223. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  224. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  225. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  226. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  227. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  228. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  229. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  230. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  231. UART[uart_num]->swfc_conf.xon_char = XON;
  232. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  233. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  234. return ESP_OK;
  235. }
  236. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  237. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  238. {
  239. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  240. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  241. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  242. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  243. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  244. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  245. UART[uart_num]->conf1.rx_flow_en = 1;
  246. } else {
  247. UART[uart_num]->conf1.rx_flow_en = 0;
  248. }
  249. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  250. UART[uart_num]->conf0.tx_flow_en = 1;
  251. } else {
  252. UART[uart_num]->conf0.tx_flow_en = 0;
  253. }
  254. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  255. return ESP_OK;
  256. }
  257. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  258. {
  259. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  260. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  261. if(UART[uart_num]->conf1.rx_flow_en) {
  262. val |= UART_HW_FLOWCTRL_RTS;
  263. }
  264. if(UART[uart_num]->conf0.tx_flow_en) {
  265. val |= UART_HW_FLOWCTRL_CTS;
  266. }
  267. (*flow_ctrl) = val;
  268. return ESP_OK;
  269. }
  270. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  271. {
  272. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  273. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  274. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  275. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  276. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  277. READ_PERI_REG(UART_FIFO_REG(uart_num));
  278. }
  279. return ESP_OK;
  280. }
  281. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  282. {
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. //intr_clr register is write-only
  285. UART[uart_num]->int_clr.val = clr_mask;
  286. return ESP_OK;
  287. }
  288. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  289. {
  290. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  291. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  292. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  293. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  294. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  295. return ESP_OK;
  296. }
  297. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  298. {
  299. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  300. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  301. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  302. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  303. return ESP_OK;
  304. }
  305. static void uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  306. {
  307. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  308. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  309. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  310. }
  311. static void uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  312. {
  313. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  314. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  315. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  316. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  317. }
  318. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  319. {
  320. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  321. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  322. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  323. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  324. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  325. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  326. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  327. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  328. free(pdata);
  329. }
  330. return ESP_OK;
  331. }
  332. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  333. {
  334. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  335. esp_err_t ret = ESP_OK;
  336. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  337. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  338. int next = p_pos->wr + 1;
  339. if (next >= p_pos->len) {
  340. next = 0;
  341. }
  342. if (next == p_pos->rd) {
  343. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  344. ret = ESP_FAIL;
  345. } else {
  346. p_pos->data[p_pos->wr] = pos;
  347. p_pos->wr = next;
  348. ret = ESP_OK;
  349. }
  350. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  351. return ret;
  352. }
  353. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  354. {
  355. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  356. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  357. return ESP_ERR_INVALID_STATE;
  358. } else {
  359. esp_err_t ret = ESP_OK;
  360. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  361. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  362. if (p_pos->rd == p_pos->wr) {
  363. ret = ESP_FAIL;
  364. } else {
  365. p_pos->rd++;
  366. }
  367. if (p_pos->rd >= p_pos->len) {
  368. p_pos->rd = 0;
  369. }
  370. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  371. return ret;
  372. }
  373. }
  374. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  375. {
  376. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  377. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  378. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  379. int rd = p_pos->rd;
  380. while(rd != p_pos->wr) {
  381. p_pos->data[rd] -= diff_len;
  382. int rd_rec = rd;
  383. rd ++;
  384. if (rd >= p_pos->len) {
  385. rd = 0;
  386. }
  387. if (p_pos->data[rd_rec] < 0) {
  388. p_pos->rd = rd;
  389. }
  390. }
  391. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  392. return ESP_OK;
  393. }
  394. int uart_pattern_pop_pos(uart_port_t uart_num)
  395. {
  396. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  397. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  398. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  399. int pos = -1;
  400. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  401. pos = pat_pos->data[pat_pos->rd];
  402. uart_pattern_dequeue(uart_num);
  403. }
  404. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  405. return pos;
  406. }
  407. int uart_pattern_get_pos(uart_port_t uart_num)
  408. {
  409. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  410. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  411. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  412. int pos = -1;
  413. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  414. pos = pat_pos->data[pat_pos->rd];
  415. }
  416. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  417. return pos;
  418. }
  419. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  420. {
  421. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  422. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  423. int* pdata = (int*) malloc(queue_length * sizeof(int));
  424. if(pdata == NULL) {
  425. return ESP_ERR_NO_MEM;
  426. }
  427. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  428. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  429. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  430. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  431. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  432. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  433. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  434. free(ptmp);
  435. return ESP_OK;
  436. }
  437. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  438. {
  439. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  440. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  441. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  442. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  443. UART[uart_num]->at_cmd_char.data = pattern_chr;
  444. UART[uart_num]->at_cmd_char.char_num = chr_num;
  445. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  446. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  447. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  448. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  449. }
  450. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  451. {
  452. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  453. }
  454. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  455. {
  456. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  457. }
  458. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  459. {
  460. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  461. }
  462. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  463. {
  464. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  465. }
  466. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  467. {
  468. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  469. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  470. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  471. UART[uart_num]->int_clr.txfifo_empty = 1;
  472. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  473. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  474. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  475. return ESP_OK;
  476. }
  477. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  478. {
  479. int ret;
  480. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  481. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  482. switch(uart_num) {
  483. case UART_NUM_1:
  484. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  485. break;
  486. case UART_NUM_2:
  487. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  488. break;
  489. case UART_NUM_0:
  490. default:
  491. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  492. break;
  493. }
  494. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  495. return ret;
  496. }
  497. esp_err_t uart_isr_free(uart_port_t uart_num)
  498. {
  499. esp_err_t ret;
  500. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  501. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  502. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  503. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  504. p_uart_obj[uart_num]->intr_handle=NULL;
  505. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  506. return ret;
  507. }
  508. //internal signal can be output to multiple GPIO pads
  509. //only one GPIO pad can connect with input signal
  510. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  511. {
  512. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  513. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  514. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  515. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  516. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  517. int tx_sig, rx_sig, rts_sig, cts_sig;
  518. switch(uart_num) {
  519. case UART_NUM_0:
  520. tx_sig = U0TXD_OUT_IDX;
  521. rx_sig = U0RXD_IN_IDX;
  522. rts_sig = U0RTS_OUT_IDX;
  523. cts_sig = U0CTS_IN_IDX;
  524. break;
  525. case UART_NUM_1:
  526. tx_sig = U1TXD_OUT_IDX;
  527. rx_sig = U1RXD_IN_IDX;
  528. rts_sig = U1RTS_OUT_IDX;
  529. cts_sig = U1CTS_IN_IDX;
  530. break;
  531. case UART_NUM_2:
  532. tx_sig = U2TXD_OUT_IDX;
  533. rx_sig = U2RXD_IN_IDX;
  534. rts_sig = U2RTS_OUT_IDX;
  535. cts_sig = U2CTS_IN_IDX;
  536. break;
  537. case UART_NUM_MAX:
  538. default:
  539. tx_sig = U0TXD_OUT_IDX;
  540. rx_sig = U0RXD_IN_IDX;
  541. rts_sig = U0RTS_OUT_IDX;
  542. cts_sig = U0CTS_IN_IDX;
  543. break;
  544. }
  545. if(tx_io_num >= 0) {
  546. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  547. gpio_set_level(tx_io_num, 1);
  548. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  549. }
  550. if(rx_io_num >= 0) {
  551. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  552. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  553. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  554. gpio_matrix_in(rx_io_num, rx_sig, 0);
  555. }
  556. if(rts_io_num >= 0) {
  557. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  558. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  559. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  560. }
  561. if(cts_io_num >= 0) {
  562. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  563. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  564. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  565. gpio_matrix_in(cts_io_num, cts_sig, 0);
  566. }
  567. return ESP_OK;
  568. }
  569. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  570. {
  571. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  572. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  573. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  574. UART[uart_num]->conf0.sw_rts = level & 0x1;
  575. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  576. return ESP_OK;
  577. }
  578. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  579. {
  580. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  581. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  582. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  583. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  584. return ESP_OK;
  585. }
  586. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  587. {
  588. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  589. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  590. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  591. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  592. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  593. return ESP_OK;
  594. }
  595. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  596. {
  597. esp_err_t r;
  598. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  599. UART_CHECK((uart_config), "param null", ESP_FAIL);
  600. if(uart_num == UART_NUM_0) {
  601. periph_module_enable(PERIPH_UART0_MODULE);
  602. } else if(uart_num == UART_NUM_1) {
  603. periph_module_enable(PERIPH_UART1_MODULE);
  604. } else if(uart_num == UART_NUM_2) {
  605. periph_module_enable(PERIPH_UART2_MODULE);
  606. }
  607. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  608. if (r != ESP_OK) return r;
  609. UART[uart_num]->conf0.val =
  610. (uart_config->parity << UART_PARITY_S)
  611. | (uart_config->data_bits << UART_BIT_NUM_S)
  612. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  613. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  614. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  615. if (r != ESP_OK) return r;
  616. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  617. if (r != ESP_OK) return r;
  618. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  619. //A hardware reset does not reset the fifo,
  620. //so we need to reset the fifo manually.
  621. uart_reset_rx_fifo(uart_num);
  622. return r;
  623. }
  624. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  625. {
  626. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  627. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  628. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  629. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  630. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  631. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  632. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  633. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  634. UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
  635. } else {
  636. UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
  637. }
  638. UART[uart_num]->conf1.rx_tout_en = 1;
  639. } else {
  640. UART[uart_num]->conf1.rx_tout_en = 0;
  641. }
  642. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  643. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  644. }
  645. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  646. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  647. }
  648. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  649. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  650. return ESP_OK;
  651. }
  652. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  653. {
  654. int cnt = 0;
  655. int len = length;
  656. while (len >= 0) {
  657. if (buf[len] == pat_chr) {
  658. cnt++;
  659. } else {
  660. cnt = 0;
  661. }
  662. if (cnt >= pat_num) {
  663. break;
  664. }
  665. len --;
  666. }
  667. return len;
  668. }
  669. //internal isr handler for default driver code.
  670. static void uart_rx_intr_handler_default(void *param)
  671. {
  672. uart_obj_t *p_uart = (uart_obj_t*) param;
  673. uint8_t uart_num = p_uart->uart_num;
  674. uart_dev_t* uart_reg = UART[uart_num];
  675. int rx_fifo_len = 0;
  676. uint8_t buf_idx = 0;
  677. uint32_t uart_intr_status = 0;
  678. uart_event_t uart_event;
  679. portBASE_TYPE HPTaskAwoken = 0;
  680. static uint8_t pat_flg = 0;
  681. while(1) {
  682. uart_intr_status = uart_reg->int_st.val;
  683. // The `continue statement` may cause the interrupt to loop infinitely
  684. // we exit the interrupt here
  685. if(uart_intr_status == 0) {
  686. break;
  687. }
  688. uart_event.type = UART_EVENT_MAX;
  689. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  690. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  691. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  692. if(p_uart->tx_waiting_brk) {
  693. continue;
  694. }
  695. //TX semaphore will only be used when tx_buf_size is zero.
  696. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  697. p_uart->tx_waiting_fifo = false;
  698. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  699. } else {
  700. //We don't use TX ring buffer, because the size is zero.
  701. if(p_uart->tx_buf_size == 0) {
  702. continue;
  703. }
  704. int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
  705. bool en_tx_flg = false;
  706. //We need to put a loop here, in case all the buffer items are very short.
  707. //That would cause a watch_dog reset because empty interrupt happens so often.
  708. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  709. while(tx_fifo_rem) {
  710. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  711. size_t size;
  712. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  713. if(p_uart->tx_head) {
  714. //The first item is the data description
  715. //Get the first item to get the data information
  716. if(p_uart->tx_len_tot == 0) {
  717. p_uart->tx_ptr = NULL;
  718. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  719. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  720. p_uart->tx_brk_flg = 1;
  721. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  722. }
  723. //We have saved the data description from the 1st item, return buffer.
  724. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  725. }else if(p_uart->tx_ptr == NULL) {
  726. //Update the TX item pointer, we will need this to return item to buffer.
  727. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  728. en_tx_flg = true;
  729. p_uart->tx_len_cur = size;
  730. }
  731. }
  732. else {
  733. //Can not get data from ring buffer, return;
  734. break;
  735. }
  736. }
  737. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  738. //To fill the TX FIFO.
  739. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  740. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  741. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  742. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  743. uart_reg->conf0.sw_rts = 0;
  744. uart_reg->int_ena.tx_done = 1;
  745. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  746. }
  747. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  748. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  749. *(p_uart->tx_ptr++) & 0xff);
  750. }
  751. p_uart->tx_len_tot -= send_len;
  752. p_uart->tx_len_cur -= send_len;
  753. tx_fifo_rem -= send_len;
  754. if (p_uart->tx_len_cur == 0) {
  755. //Return item to ring buffer.
  756. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  757. p_uart->tx_head = NULL;
  758. p_uart->tx_ptr = NULL;
  759. //Sending item done, now we need to send break if there is a record.
  760. //Set TX break signal after FIFO is empty
  761. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  762. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  763. uart_reg->int_ena.tx_brk_done = 0;
  764. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  765. uart_reg->conf0.txd_brk = 1;
  766. uart_reg->int_clr.tx_brk_done = 1;
  767. uart_reg->int_ena.tx_brk_done = 1;
  768. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  769. p_uart->tx_waiting_brk = 1;
  770. //do not enable TX empty interrupt
  771. en_tx_flg = false;
  772. } else {
  773. //enable TX empty interrupt
  774. en_tx_flg = true;
  775. }
  776. } else {
  777. //enable TX empty interrupt
  778. en_tx_flg = true;
  779. }
  780. }
  781. }
  782. if (en_tx_flg) {
  783. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  784. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  785. }
  786. }
  787. }
  788. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  789. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  790. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  791. ) {
  792. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  793. if(pat_flg == 1) {
  794. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  795. pat_flg = 0;
  796. }
  797. if (p_uart->rx_buffer_full_flg == false) {
  798. //We have to read out all data in RX FIFO to clear the interrupt signal
  799. for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
  800. p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte;
  801. }
  802. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  803. int pat_num = uart_reg->at_cmd_char.char_num;
  804. int pat_idx = -1;
  805. //Get the buffer from the FIFO
  806. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  807. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  808. uart_event.type = UART_PATTERN_DET;
  809. uart_event.size = rx_fifo_len;
  810. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  811. } else {
  812. //After Copying the Data From FIFO ,Clear intr_status
  813. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  814. uart_event.type = UART_DATA;
  815. uart_event.size = rx_fifo_len;
  816. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  817. if (p_uart->uart_select_notif_callback) {
  818. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  819. }
  820. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  821. }
  822. p_uart->rx_stash_len = rx_fifo_len;
  823. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  824. //Mainly for applications that uses flow control or small ring buffer.
  825. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  826. p_uart->rx_buffer_full_flg = true;
  827. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  828. if (uart_event.type == UART_PATTERN_DET) {
  829. if (rx_fifo_len < pat_num) {
  830. //some of the characters are read out in last interrupt
  831. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  832. } else {
  833. uart_pattern_enqueue(uart_num,
  834. pat_idx <= -1 ?
  835. //can not find the pattern in buffer,
  836. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  837. // find the pattern in buffer
  838. p_uart->rx_buffered_len + pat_idx);
  839. }
  840. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  841. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  842. }
  843. }
  844. uart_event.type = UART_BUFFER_FULL;
  845. } else {
  846. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  847. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  848. if (rx_fifo_len < pat_num) {
  849. //some of the characters are read out in last interrupt
  850. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  851. } else if(pat_idx >= 0) {
  852. // find pattern in statsh buffer.
  853. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  854. }
  855. }
  856. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  857. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  858. }
  859. } else {
  860. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  861. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  862. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  863. uart_reg->int_clr.at_cmd_char_det = 1;
  864. uart_event.type = UART_PATTERN_DET;
  865. uart_event.size = rx_fifo_len;
  866. pat_flg = 1;
  867. }
  868. }
  869. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  870. // When fifo overflows, we reset the fifo.
  871. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  872. uart_reset_rx_fifo(uart_num);
  873. uart_reg->int_clr.rxfifo_ovf = 1;
  874. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  875. uart_event.type = UART_FIFO_OVF;
  876. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  877. if (p_uart->uart_select_notif_callback) {
  878. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  879. }
  880. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  881. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  882. uart_reg->int_clr.brk_det = 1;
  883. uart_event.type = UART_BREAK;
  884. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  885. uart_reg->int_clr.frm_err = 1;
  886. uart_event.type = UART_FRAME_ERR;
  887. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  888. if (p_uart->uart_select_notif_callback) {
  889. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  890. }
  891. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  892. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  893. uart_reg->int_clr.parity_err = 1;
  894. uart_event.type = UART_PARITY_ERR;
  895. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  896. if (p_uart->uart_select_notif_callback) {
  897. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  898. }
  899. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  900. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  901. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  902. uart_reg->conf0.txd_brk = 0;
  903. uart_reg->int_ena.tx_brk_done = 0;
  904. uart_reg->int_clr.tx_brk_done = 1;
  905. if(p_uart->tx_brk_flg == 1) {
  906. uart_reg->int_ena.txfifo_empty = 1;
  907. }
  908. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  909. if(p_uart->tx_brk_flg == 1) {
  910. p_uart->tx_brk_flg = 0;
  911. p_uart->tx_waiting_brk = 0;
  912. } else {
  913. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  914. }
  915. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  916. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  917. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  918. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  919. uart_reg->int_clr.at_cmd_char_det = 1;
  920. uart_event.type = UART_PATTERN_DET;
  921. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  922. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  923. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  924. // RS485 collision or frame error interrupt triggered
  925. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  926. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  927. uart_reset_rx_fifo(uart_num);
  928. // Set collision detection flag
  929. p_uart_obj[uart_num]->coll_det_flg = true;
  930. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  931. uart_event.type = UART_EVENT_MAX;
  932. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  933. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  934. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  935. // If RS485 half duplex mode is enable then reset FIFO and
  936. // reset RTS pin to start receiver driver
  937. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  938. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  939. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  940. uart_reg->conf0.sw_rts = 1;
  941. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  942. }
  943. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  944. } else {
  945. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  946. uart_event.type = UART_EVENT_MAX;
  947. }
  948. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  949. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  950. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  951. }
  952. }
  953. }
  954. if(HPTaskAwoken == pdTRUE) {
  955. portYIELD_FROM_ISR();
  956. }
  957. }
  958. /**************************************************************/
  959. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  960. {
  961. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  962. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  963. BaseType_t res;
  964. portTickType ticks_start = xTaskGetTickCount();
  965. //Take tx_mux
  966. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  967. if(res == pdFALSE) {
  968. return ESP_ERR_TIMEOUT;
  969. }
  970. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  971. typeof(UART0.status) status = UART[uart_num]->status;
  972. //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
  973. if(status.txfifo_cnt == 0 && status.st_utx_out == 0) {
  974. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  975. return ESP_OK;
  976. }
  977. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  978. TickType_t ticks_end = xTaskGetTickCount();
  979. if (ticks_end - ticks_start > ticks_to_wait) {
  980. ticks_to_wait = 0;
  981. } else {
  982. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  983. }
  984. //take 2nd tx_done_sem, wait given from ISR
  985. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  986. if(res == pdFALSE) {
  987. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  988. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  989. return ESP_ERR_TIMEOUT;
  990. }
  991. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  992. return ESP_OK;
  993. }
  994. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  995. {
  996. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  997. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  998. UART[uart_num]->conf0.txd_brk = 1;
  999. UART[uart_num]->int_clr.tx_brk_done = 1;
  1000. UART[uart_num]->int_ena.tx_brk_done = 1;
  1001. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1002. return ESP_OK;
  1003. }
  1004. //Fill UART tx_fifo and return a number,
  1005. //This function by itself is not thread-safe, always call from within a muxed section.
  1006. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1007. {
  1008. uint8_t i = 0;
  1009. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1010. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1011. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1012. // Set the RTS pin if RS485 mode is enabled
  1013. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1014. UART[uart_num]->conf0.sw_rts = 0;
  1015. UART[uart_num]->int_ena.tx_done = 1;
  1016. }
  1017. for (i = 0; i < copy_cnt; i++) {
  1018. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1019. }
  1020. return copy_cnt;
  1021. }
  1022. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1023. {
  1024. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1025. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1026. UART_CHECK(buffer, "buffer null", (-1));
  1027. if(len == 0) {
  1028. return 0;
  1029. }
  1030. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1031. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1032. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1033. return tx_len;
  1034. }
  1035. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1036. {
  1037. if(size == 0) {
  1038. return 0;
  1039. }
  1040. size_t original_size = size;
  1041. //lock for uart_tx
  1042. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1043. p_uart_obj[uart_num]->coll_det_flg = false;
  1044. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1045. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1046. int offset = 0;
  1047. uart_tx_data_t evt;
  1048. evt.tx_data.size = size;
  1049. evt.tx_data.brk_len = brk_len;
  1050. if(brk_en) {
  1051. evt.type = UART_DATA_BREAK;
  1052. } else {
  1053. evt.type = UART_DATA;
  1054. }
  1055. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1056. while(size > 0) {
  1057. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1058. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1059. size -= send_size;
  1060. offset += send_size;
  1061. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1062. }
  1063. } else {
  1064. while(size) {
  1065. //semaphore for tx_fifo available
  1066. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1067. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1068. if(sent < size) {
  1069. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1070. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1071. }
  1072. size -= sent;
  1073. src += sent;
  1074. }
  1075. }
  1076. if(brk_en) {
  1077. uart_set_break(uart_num, brk_len);
  1078. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1079. }
  1080. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1081. }
  1082. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1083. return original_size;
  1084. }
  1085. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1086. {
  1087. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1088. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1089. UART_CHECK(src, "buffer null", (-1));
  1090. return uart_tx_all(uart_num, src, size, 0, 0);
  1091. }
  1092. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1093. {
  1094. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1095. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1096. UART_CHECK((size > 0), "uart size error", (-1));
  1097. UART_CHECK((src), "uart data null", (-1));
  1098. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1099. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1100. }
  1101. static bool uart_check_buf_full(uart_port_t uart_num)
  1102. {
  1103. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1104. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1105. if(res == pdTRUE) {
  1106. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1107. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1108. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1109. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1110. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1111. return true;
  1112. }
  1113. }
  1114. return false;
  1115. }
  1116. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1117. {
  1118. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1119. UART_CHECK((buf), "uart data null", (-1));
  1120. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1121. uint8_t* data = NULL;
  1122. size_t size;
  1123. size_t copy_len = 0;
  1124. int len_tmp;
  1125. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1126. return -1;
  1127. }
  1128. while(length) {
  1129. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1130. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1131. if(data) {
  1132. p_uart_obj[uart_num]->rx_head_ptr = data;
  1133. p_uart_obj[uart_num]->rx_ptr = data;
  1134. p_uart_obj[uart_num]->rx_cur_remain = size;
  1135. } else {
  1136. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1137. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1138. //to solve the possible asynchronous issues.
  1139. if(uart_check_buf_full(uart_num)) {
  1140. //This condition will never be true if `uart_read_bytes`
  1141. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1142. continue;
  1143. } else {
  1144. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1145. return copy_len;
  1146. }
  1147. }
  1148. }
  1149. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1150. len_tmp = length;
  1151. } else {
  1152. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1153. }
  1154. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1155. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1156. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1157. uart_pattern_queue_update(uart_num, len_tmp);
  1158. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1159. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1160. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1161. copy_len += len_tmp;
  1162. length -= len_tmp;
  1163. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1164. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1165. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1166. p_uart_obj[uart_num]->rx_ptr = NULL;
  1167. uart_check_buf_full(uart_num);
  1168. }
  1169. }
  1170. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1171. return copy_len;
  1172. }
  1173. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1174. {
  1175. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1176. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1177. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1178. return ESP_OK;
  1179. }
  1180. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1181. esp_err_t uart_flush_input(uart_port_t uart_num)
  1182. {
  1183. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1184. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1185. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1186. uint8_t* data;
  1187. size_t size;
  1188. //rx sem protect the ring buffer read related functions
  1189. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1190. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1191. while(true) {
  1192. if(p_uart->rx_head_ptr) {
  1193. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1194. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1195. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1196. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1197. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1198. p_uart->rx_ptr = NULL;
  1199. p_uart->rx_cur_remain = 0;
  1200. p_uart->rx_head_ptr = NULL;
  1201. }
  1202. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1203. if(data == NULL) {
  1204. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1205. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1206. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1207. }
  1208. //We also need to clear the `rx_buffer_full_flg` here.
  1209. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1210. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1211. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1212. break;
  1213. }
  1214. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1215. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1216. uart_pattern_queue_update(uart_num, size);
  1217. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1218. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1219. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1220. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1221. if(res == pdTRUE) {
  1222. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1223. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1224. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1225. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1226. }
  1227. }
  1228. }
  1229. p_uart->rx_ptr = NULL;
  1230. p_uart->rx_cur_remain = 0;
  1231. p_uart->rx_head_ptr = NULL;
  1232. uart_reset_rx_fifo(uart_num);
  1233. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1234. xSemaphoreGive(p_uart->rx_mux);
  1235. return ESP_OK;
  1236. }
  1237. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1238. {
  1239. esp_err_t r;
  1240. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1241. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1242. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1243. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1244. if(p_uart_obj[uart_num] == NULL) {
  1245. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1246. if(p_uart_obj[uart_num] == NULL) {
  1247. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1248. return ESP_FAIL;
  1249. }
  1250. p_uart_obj[uart_num]->uart_num = uart_num;
  1251. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1252. p_uart_obj[uart_num]->coll_det_flg = false;
  1253. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1254. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1255. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1256. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1257. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1258. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1259. p_uart_obj[uart_num]->queue_size = queue_size;
  1260. p_uart_obj[uart_num]->tx_ptr = NULL;
  1261. p_uart_obj[uart_num]->tx_head = NULL;
  1262. p_uart_obj[uart_num]->tx_len_tot = 0;
  1263. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1264. p_uart_obj[uart_num]->tx_brk_len = 0;
  1265. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1266. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1267. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1268. if(uart_queue) {
  1269. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1270. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1271. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1272. } else {
  1273. p_uart_obj[uart_num]->xQueueUart = NULL;
  1274. }
  1275. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1276. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1277. p_uart_obj[uart_num]->rx_ptr = NULL;
  1278. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1279. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1280. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1281. if(tx_buffer_size > 0) {
  1282. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1283. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1284. } else {
  1285. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1286. p_uart_obj[uart_num]->tx_buf_size = 0;
  1287. }
  1288. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1289. } else {
  1290. ESP_LOGE(UART_TAG, "UART driver already installed");
  1291. return ESP_FAIL;
  1292. }
  1293. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1294. if (r!=ESP_OK) goto err;
  1295. uart_intr_config_t uart_intr = {
  1296. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1297. | UART_RXFIFO_TOUT_INT_ENA_M
  1298. | UART_FRM_ERR_INT_ENA_M
  1299. | UART_RXFIFO_OVF_INT_ENA_M
  1300. | UART_BRK_DET_INT_ENA_M
  1301. | UART_PARITY_ERR_INT_ENA_M,
  1302. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1303. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1304. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1305. };
  1306. r=uart_intr_config(uart_num, &uart_intr);
  1307. if (r!=ESP_OK) goto err;
  1308. return r;
  1309. err:
  1310. uart_driver_delete(uart_num);
  1311. return r;
  1312. }
  1313. //Make sure no other tasks are still using UART before you call this function
  1314. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1315. {
  1316. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1317. if(p_uart_obj[uart_num] == NULL) {
  1318. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1319. return ESP_OK;
  1320. }
  1321. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1322. uart_disable_rx_intr(uart_num);
  1323. uart_disable_tx_intr(uart_num);
  1324. uart_pattern_link_free(uart_num);
  1325. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1326. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1327. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1328. }
  1329. if(p_uart_obj[uart_num]->tx_done_sem) {
  1330. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1331. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1332. }
  1333. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1334. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1335. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1336. }
  1337. if(p_uart_obj[uart_num]->tx_mux) {
  1338. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1339. p_uart_obj[uart_num]->tx_mux = NULL;
  1340. }
  1341. if(p_uart_obj[uart_num]->rx_mux) {
  1342. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1343. p_uart_obj[uart_num]->rx_mux = NULL;
  1344. }
  1345. if(p_uart_obj[uart_num]->xQueueUart) {
  1346. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1347. p_uart_obj[uart_num]->xQueueUart = NULL;
  1348. }
  1349. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1350. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1351. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1352. }
  1353. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1354. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1355. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1356. }
  1357. free(p_uart_obj[uart_num]);
  1358. p_uart_obj[uart_num] = NULL;
  1359. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1360. if(uart_num == UART_NUM_0) {
  1361. periph_module_disable(PERIPH_UART0_MODULE);
  1362. } else if(uart_num == UART_NUM_1) {
  1363. periph_module_disable(PERIPH_UART1_MODULE);
  1364. } else if(uart_num == UART_NUM_2) {
  1365. periph_module_disable(PERIPH_UART2_MODULE);
  1366. }
  1367. }
  1368. return ESP_OK;
  1369. }
  1370. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1371. {
  1372. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1373. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1374. }
  1375. }
  1376. portMUX_TYPE *uart_get_selectlock()
  1377. {
  1378. return &uart_selectlock;
  1379. }
  1380. // Set UART mode
  1381. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1382. {
  1383. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1384. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1385. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1386. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1387. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1388. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1389. }
  1390. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1391. UART[uart_num]->rs485_conf.en = 0;
  1392. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1393. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1394. UART[uart_num]->conf0.irda_en = 0;
  1395. UART[uart_num]->conf0.sw_rts = 0;
  1396. switch (mode) {
  1397. case UART_MODE_UART:
  1398. break;
  1399. case UART_MODE_RS485_COLLISION_DETECT:
  1400. // This mode allows read while transmitting that allows collision detection
  1401. p_uart_obj[uart_num]->coll_det_flg = false;
  1402. // Transmitter’s output signal loop back to the receiver’s input signal
  1403. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1404. // Transmitter should send data when its receiver is busy
  1405. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1406. UART[uart_num]->rs485_conf.en = 1;
  1407. // Enable collision detection interrupts
  1408. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1409. | UART_RXFIFO_FULL_INT_ENA
  1410. | UART_RS485_CLASH_INT_ENA
  1411. | UART_RS485_FRM_ERR_INT_ENA
  1412. | UART_RS485_PARITY_ERR_INT_ENA);
  1413. break;
  1414. case UART_MODE_RS485_APP_CTRL:
  1415. // Application software control, remove echo
  1416. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1417. UART[uart_num]->rs485_conf.en = 1;
  1418. break;
  1419. case UART_MODE_RS485_HALF_DUPLEX:
  1420. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1421. UART[uart_num]->conf0.sw_rts = 1;
  1422. UART[uart_num]->rs485_conf.en = 1;
  1423. // Must be set to 0 to automatically remove echo
  1424. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1425. // This is to void collision
  1426. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1427. break;
  1428. case UART_MODE_IRDA:
  1429. UART[uart_num]->conf0.irda_en = 1;
  1430. break;
  1431. default:
  1432. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1433. break;
  1434. }
  1435. p_uart_obj[uart_num]->uart_mode = mode;
  1436. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1437. return ESP_OK;
  1438. }
  1439. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1440. {
  1441. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1442. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1443. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1444. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1445. // transmission time of one symbol (~11 bit) on current baudrate
  1446. if (tout_thresh > 0) {
  1447. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  1448. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  1449. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  1450. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT;
  1451. } else {
  1452. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh;
  1453. }
  1454. UART[uart_num]->conf1.rx_tout_en = 1;
  1455. } else {
  1456. UART[uart_num]->conf1.rx_tout_en = 0;
  1457. }
  1458. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1459. return ESP_OK;
  1460. }
  1461. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1462. {
  1463. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1464. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1465. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1466. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1467. "wrong mode", ESP_ERR_INVALID_ARG);
  1468. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1469. return ESP_OK;
  1470. }
  1471. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1472. {
  1473. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1474. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1475. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1476. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1477. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1478. return ESP_OK;
  1479. }
  1480. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1481. {
  1482. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1483. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1484. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1485. return ESP_OK;
  1486. }