uart.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/ringbuf.h"
  24. #include "hal/uart_hal.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "driver/periph_ctrl.h"
  30. #include "sdkconfig.h"
  31. #if CONFIG_IDF_TARGET_ESP32
  32. #include "esp32/clk.h"
  33. #elif CONFIG_IDF_TARGET_ESP32S2
  34. #include "esp32s2/clk.h"
  35. #endif
  36. #ifdef CONFIG_UART_ISR_IN_IRAM
  37. #define UART_ISR_ATTR IRAM_ATTR
  38. #else
  39. #define UART_ISR_ATTR
  40. #endif
  41. #define XOFF (0x13)
  42. #define XON (0x11)
  43. static const char* UART_TAG = "uart";
  44. #define UART_CHECK(a, str, ret_val) \
  45. if (!(a)) { \
  46. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  47. return (ret_val); \
  48. }
  49. #define UART_EMPTY_THRESH_DEFAULT (10)
  50. #define UART_FULL_THRESH_DEFAULT (120)
  51. #define UART_TOUT_THRESH_DEFAULT (10)
  52. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  53. #define UART_TX_IDLE_NUM_DEFAULT (0)
  54. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  55. #define UART_MIN_WAKEUP_THRESH (SOC_UART_MIN_WAKEUP_THRESH)
  56. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  57. | (UART_INTR_RXFIFO_TOUT) \
  58. | (UART_INTR_RXFIFO_OVF) \
  59. | (UART_INTR_BRK_DET) \
  60. | (UART_INTR_PARITY_ERR))
  61. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  62. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  63. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  64. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  65. // Check actual UART mode set
  66. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  67. #define UART_CONTEX_INIT_DEF(uart_num) {\
  68. .hal.dev = UART_LL_GET_HW(uart_num),\
  69. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  70. .hw_enabled = false,\
  71. }
  72. typedef struct {
  73. uart_event_type_t type; /*!< UART TX data type */
  74. struct {
  75. int brk_len;
  76. size_t size;
  77. uint8_t data[0];
  78. } tx_data;
  79. } uart_tx_data_t;
  80. typedef struct {
  81. int wr;
  82. int rd;
  83. int len;
  84. int* data;
  85. } uart_pat_rb_t;
  86. typedef struct {
  87. uart_port_t uart_num; /*!< UART port number*/
  88. int queue_size; /*!< UART event queue size*/
  89. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  90. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  91. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  92. bool coll_det_flg; /*!< UART collision detection flag */
  93. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  94. //rx parameters
  95. int rx_buffered_len; /*!< UART cached data length */
  96. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  97. int rx_buf_size; /*!< RX ring buffer size */
  98. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  99. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  100. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  101. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  102. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  103. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  104. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  105. uart_pat_rb_t rx_pattern_pos;
  106. //tx parameters
  107. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  108. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  109. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  110. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  111. int tx_buf_size; /*!< TX ring buffer size */
  112. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  113. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  114. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  115. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  116. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  117. uint32_t tx_len_cur;
  118. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  119. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  120. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  121. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  122. } uart_obj_t;
  123. typedef struct {
  124. uart_hal_context_t hal; /*!< UART hal context*/
  125. portMUX_TYPE spinlock;
  126. bool hw_enabled;
  127. } uart_context_t;
  128. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  129. static uart_context_t uart_context[UART_NUM_MAX] = {
  130. UART_CONTEX_INIT_DEF(UART_NUM_0),
  131. UART_CONTEX_INIT_DEF(UART_NUM_1),
  132. #if UART_NUM_MAX > 2
  133. UART_CONTEX_INIT_DEF(UART_NUM_2),
  134. #endif
  135. };
  136. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  137. static void uart_module_enable(uart_port_t uart_num)
  138. {
  139. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  140. if (uart_context[uart_num].hw_enabled != true) {
  141. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  142. periph_module_reset(uart_periph_signal[uart_num].module);
  143. }
  144. periph_module_enable(uart_periph_signal[uart_num].module);
  145. uart_context[uart_num].hw_enabled = true;
  146. }
  147. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  148. }
  149. static void uart_module_disable(uart_port_t uart_num)
  150. {
  151. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  152. if (uart_context[uart_num].hw_enabled != false) {
  153. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  154. periph_module_disable(uart_periph_signal[uart_num].module);
  155. }
  156. uart_context[uart_num].hw_enabled = false;
  157. }
  158. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  159. }
  160. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  161. {
  162. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  163. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  164. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  165. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  166. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  167. return ESP_OK;
  168. }
  169. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  170. {
  171. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  172. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  173. return ESP_OK;
  174. }
  175. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  176. {
  177. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  178. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  179. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  180. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  181. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  182. return ESP_OK;
  183. }
  184. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  185. {
  186. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  187. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  188. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  189. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  190. return ESP_OK;
  191. }
  192. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  193. {
  194. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  195. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  196. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  197. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  198. return ESP_OK;
  199. }
  200. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  201. {
  202. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  203. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  204. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  205. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  206. return ESP_OK;
  207. }
  208. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  209. {
  210. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  211. uart_sclk_t source_clk = 0;
  212. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  213. uart_hal_get_sclk(&(uart_context[uart_num].hal), &source_clk);
  214. uart_hal_set_baudrate(&(uart_context[uart_num].hal), source_clk, baud_rate);
  215. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  216. return ESP_OK;
  217. }
  218. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  219. {
  220. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  221. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  222. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  223. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  224. return ESP_OK;
  225. }
  226. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  227. {
  228. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  229. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  230. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  231. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  232. return ESP_OK;
  233. }
  234. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  235. {
  236. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  237. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  238. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xoff thresh error", ESP_FAIL);
  239. uart_sw_flowctrl_t sw_flow_ctl = {
  240. .xon_char = XON,
  241. .xoff_char = XOFF,
  242. .xon_thrd = rx_thresh_xon,
  243. .xoff_thrd = rx_thresh_xoff,
  244. };
  245. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  246. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  247. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  248. return ESP_OK;
  249. }
  250. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  251. {
  252. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  253. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  254. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  255. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  256. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  257. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  258. return ESP_OK;
  259. }
  260. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  261. {
  262. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
  263. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  264. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  265. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  266. return ESP_OK;
  267. }
  268. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  269. {
  270. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  271. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  272. return ESP_OK;
  273. }
  274. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  275. {
  276. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  277. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  278. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  279. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  280. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  281. return ESP_OK;
  282. }
  283. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  284. {
  285. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  286. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  287. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  288. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  289. return ESP_OK;
  290. }
  291. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  292. {
  293. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  294. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  295. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  296. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  297. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  298. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  299. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  300. free(pdata);
  301. }
  302. return ESP_OK;
  303. }
  304. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  305. {
  306. esp_err_t ret = ESP_OK;
  307. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  308. int next = p_pos->wr + 1;
  309. if (next >= p_pos->len) {
  310. next = 0;
  311. }
  312. if (next == p_pos->rd) {
  313. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  314. ret = ESP_FAIL;
  315. } else {
  316. p_pos->data[p_pos->wr] = pos;
  317. p_pos->wr = next;
  318. ret = ESP_OK;
  319. }
  320. return ret;
  321. }
  322. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  323. {
  324. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  325. return ESP_ERR_INVALID_STATE;
  326. } else {
  327. esp_err_t ret = ESP_OK;
  328. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  329. if (p_pos->rd == p_pos->wr) {
  330. ret = ESP_FAIL;
  331. } else {
  332. p_pos->rd++;
  333. }
  334. if (p_pos->rd >= p_pos->len) {
  335. p_pos->rd = 0;
  336. }
  337. return ret;
  338. }
  339. }
  340. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  341. {
  342. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  343. int rd = p_pos->rd;
  344. while(rd != p_pos->wr) {
  345. p_pos->data[rd] -= diff_len;
  346. int rd_rec = rd;
  347. rd ++;
  348. if (rd >= p_pos->len) {
  349. rd = 0;
  350. }
  351. if (p_pos->data[rd_rec] < 0) {
  352. p_pos->rd = rd;
  353. }
  354. }
  355. return ESP_OK;
  356. }
  357. int uart_pattern_pop_pos(uart_port_t uart_num)
  358. {
  359. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  360. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  361. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  362. int pos = -1;
  363. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  364. pos = pat_pos->data[pat_pos->rd];
  365. uart_pattern_dequeue(uart_num);
  366. }
  367. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  368. return pos;
  369. }
  370. int uart_pattern_get_pos(uart_port_t uart_num)
  371. {
  372. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  373. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  374. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  375. int pos = -1;
  376. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  377. pos = pat_pos->data[pat_pos->rd];
  378. }
  379. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  380. return pos;
  381. }
  382. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  383. {
  384. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  385. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  386. int* pdata = (int*) malloc(queue_length * sizeof(int));
  387. if(pdata == NULL) {
  388. return ESP_ERR_NO_MEM;
  389. }
  390. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  391. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  392. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  393. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  394. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  395. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  396. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  397. free(ptmp);
  398. return ESP_OK;
  399. }
  400. #if CONFIG_IDF_TARGET_ESP32
  401. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  402. {
  403. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  404. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  405. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  406. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  407. uart_at_cmd_t at_cmd = {0};
  408. at_cmd.cmd_char = pattern_chr;
  409. at_cmd.char_num = chr_num;
  410. at_cmd.gap_tout = chr_tout;
  411. at_cmd.pre_idle = pre_idle;
  412. at_cmd.post_idle = post_idle;
  413. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  414. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  415. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  416. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  417. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  418. return ESP_OK;
  419. }
  420. #endif
  421. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  422. {
  423. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  424. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  425. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  426. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  427. uart_at_cmd_t at_cmd = {0};
  428. at_cmd.cmd_char = pattern_chr;
  429. at_cmd.char_num = chr_num;
  430. #if CONFIG_IDF_TARGET_ESP32
  431. int apb_clk_freq = 0;
  432. uint32_t uart_baud = 0;
  433. uint32_t uart_div = 0;
  434. uart_get_baudrate(uart_num, &uart_baud);
  435. apb_clk_freq = esp_clk_apb_freq();
  436. uart_div = apb_clk_freq / uart_baud;
  437. at_cmd.gap_tout = chr_tout * uart_div;
  438. at_cmd.pre_idle = pre_idle * uart_div;
  439. at_cmd.post_idle = post_idle * uart_div;
  440. #elif CONFIG_IDF_TARGET_ESP32S2
  441. at_cmd.gap_tout = chr_tout;
  442. at_cmd.pre_idle = pre_idle;
  443. at_cmd.post_idle = post_idle;
  444. #endif
  445. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  446. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  447. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  448. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  449. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  450. return ESP_OK;
  451. }
  452. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  453. {
  454. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  455. }
  456. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  457. {
  458. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  459. }
  460. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  461. {
  462. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  463. }
  464. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  465. {
  466. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  467. }
  468. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  469. {
  470. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  471. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  472. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  473. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  474. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  475. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  476. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  477. return ESP_OK;
  478. }
  479. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  480. {
  481. int ret;
  482. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  483. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  484. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  485. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  486. return ret;
  487. }
  488. esp_err_t uart_isr_free(uart_port_t uart_num)
  489. {
  490. esp_err_t ret;
  491. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  492. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  493. UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
  494. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  495. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  496. p_uart_obj[uart_num]->intr_handle=NULL;
  497. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  498. return ret;
  499. }
  500. //internal signal can be output to multiple GPIO pads
  501. //only one GPIO pad can connect with input signal
  502. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  503. {
  504. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  505. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  506. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  507. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  508. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  509. if(tx_io_num >= 0) {
  510. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  511. gpio_set_level(tx_io_num, 1);
  512. gpio_matrix_out(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  513. }
  514. if(rx_io_num >= 0) {
  515. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  516. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  517. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  518. gpio_matrix_in(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  519. }
  520. if(rts_io_num >= 0) {
  521. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  522. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  523. gpio_matrix_out(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  524. }
  525. if(cts_io_num >= 0) {
  526. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  527. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  528. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  529. gpio_matrix_in(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  530. }
  531. return ESP_OK;
  532. }
  533. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  534. {
  535. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  536. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), "disable hw flowctrl before using sw control", ESP_FAIL);
  537. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  538. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  539. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  540. return ESP_OK;
  541. }
  542. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  543. {
  544. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  545. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  546. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  547. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  548. return ESP_OK;
  549. }
  550. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  551. {
  552. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  553. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  554. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  555. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  556. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  557. return ESP_OK;
  558. }
  559. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  560. {
  561. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  562. UART_CHECK((uart_config), "param null", ESP_FAIL);
  563. UART_CHECK((uart_config->rx_flow_ctrl_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  564. UART_CHECK((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  565. UART_CHECK((uart_config->data_bits < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  566. uart_module_enable(uart_num);
  567. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  568. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  569. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->source_clk, uart_config->baud_rate);
  570. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  571. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  572. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  573. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  574. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  575. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  576. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  577. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  578. return ESP_OK;
  579. }
  580. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  581. {
  582. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  583. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  584. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  585. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  586. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  587. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  588. } else {
  589. //Disable rx_tout intr
  590. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  591. }
  592. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  593. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  594. }
  595. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  596. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  597. }
  598. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  599. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  600. return ESP_OK;
  601. }
  602. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  603. {
  604. int cnt = 0;
  605. int len = length;
  606. while (len >= 0) {
  607. if (buf[len] == pat_chr) {
  608. cnt++;
  609. } else {
  610. cnt = 0;
  611. }
  612. if (cnt >= pat_num) {
  613. break;
  614. }
  615. len --;
  616. }
  617. return len;
  618. }
  619. //internal isr handler for default driver code.
  620. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  621. {
  622. uart_obj_t *p_uart = (uart_obj_t*) param;
  623. uint8_t uart_num = p_uart->uart_num;
  624. int rx_fifo_len = 0;
  625. uint32_t uart_intr_status = 0;
  626. uart_event_t uart_event;
  627. portBASE_TYPE HPTaskAwoken = 0;
  628. static uint8_t pat_flg = 0;
  629. while(1) {
  630. // The `continue statement` may cause the interrupt to loop infinitely
  631. // we exit the interrupt here
  632. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  633. //Exit form while loop
  634. if(uart_intr_status == 0){
  635. break;
  636. }
  637. uart_event.type = UART_EVENT_MAX;
  638. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  639. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  640. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  641. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  642. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  643. if(p_uart->tx_waiting_brk) {
  644. continue;
  645. }
  646. //TX semaphore will only be used when tx_buf_size is zero.
  647. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  648. p_uart->tx_waiting_fifo = false;
  649. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  650. } else {
  651. //We don't use TX ring buffer, because the size is zero.
  652. if(p_uart->tx_buf_size == 0) {
  653. continue;
  654. }
  655. bool en_tx_flg = false;
  656. int tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  657. //We need to put a loop here, in case all the buffer items are very short.
  658. //That would cause a watch_dog reset because empty interrupt happens so often.
  659. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  660. while(tx_fifo_rem) {
  661. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  662. size_t size;
  663. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  664. if(p_uart->tx_head) {
  665. //The first item is the data description
  666. //Get the first item to get the data information
  667. if(p_uart->tx_len_tot == 0) {
  668. p_uart->tx_ptr = NULL;
  669. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  670. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  671. p_uart->tx_brk_flg = 1;
  672. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  673. }
  674. //We have saved the data description from the 1st item, return buffer.
  675. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  676. } else if(p_uart->tx_ptr == NULL) {
  677. //Update the TX item pointer, we will need this to return item to buffer.
  678. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  679. en_tx_flg = true;
  680. p_uart->tx_len_cur = size;
  681. }
  682. } else {
  683. //Can not get data from ring buffer, return;
  684. break;
  685. }
  686. }
  687. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  688. //To fill the TX FIFO.
  689. uint32_t send_len = 0;
  690. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  691. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  692. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  693. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  694. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  695. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  696. }
  697. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  698. (const uint8_t *)p_uart->tx_ptr,
  699. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  700. &send_len);
  701. p_uart->tx_ptr += send_len;
  702. p_uart->tx_len_tot -= send_len;
  703. p_uart->tx_len_cur -= send_len;
  704. tx_fifo_rem -= send_len;
  705. if (p_uart->tx_len_cur == 0) {
  706. //Return item to ring buffer.
  707. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  708. p_uart->tx_head = NULL;
  709. p_uart->tx_ptr = NULL;
  710. //Sending item done, now we need to send break if there is a record.
  711. //Set TX break signal after FIFO is empty
  712. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  713. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  714. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  715. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  716. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  717. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  718. p_uart->tx_waiting_brk = 1;
  719. //do not enable TX empty interrupt
  720. en_tx_flg = false;
  721. } else {
  722. //enable TX empty interrupt
  723. en_tx_flg = true;
  724. }
  725. } else {
  726. //enable TX empty interrupt
  727. en_tx_flg = true;
  728. }
  729. }
  730. }
  731. if (en_tx_flg) {
  732. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  733. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  734. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  735. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  736. }
  737. }
  738. }
  739. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  740. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  741. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  742. ) {
  743. if(pat_flg == 1) {
  744. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  745. pat_flg = 0;
  746. }
  747. if (p_uart->rx_buffer_full_flg == false) {
  748. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  749. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  750. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  751. }
  752. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  753. uint8_t pat_chr = 0;
  754. uint8_t pat_num = 0;
  755. int pat_idx = -1;
  756. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  757. //Get the buffer from the FIFO
  758. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  759. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  760. uart_event.type = UART_PATTERN_DET;
  761. uart_event.size = rx_fifo_len;
  762. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  763. } else {
  764. //After Copying the Data From FIFO ,Clear intr_status
  765. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  766. uart_event.type = UART_DATA;
  767. uart_event.size = rx_fifo_len;
  768. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  769. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  770. if (p_uart->uart_select_notif_callback) {
  771. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  772. }
  773. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  774. }
  775. p_uart->rx_stash_len = rx_fifo_len;
  776. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  777. //Mainly for applications that uses flow control or small ring buffer.
  778. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  779. p_uart->rx_buffer_full_flg = true;
  780. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  781. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  782. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  783. if (uart_event.type == UART_PATTERN_DET) {
  784. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  785. if (rx_fifo_len < pat_num) {
  786. //some of the characters are read out in last interrupt
  787. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  788. } else {
  789. uart_pattern_enqueue(uart_num,
  790. pat_idx <= -1 ?
  791. //can not find the pattern in buffer,
  792. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  793. // find the pattern in buffer
  794. p_uart->rx_buffered_len + pat_idx);
  795. }
  796. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  797. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  798. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  799. }
  800. }
  801. uart_event.type = UART_BUFFER_FULL;
  802. } else {
  803. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  804. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  805. if (rx_fifo_len < pat_num) {
  806. //some of the characters are read out in last interrupt
  807. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  808. } else if(pat_idx >= 0) {
  809. // find the pattern in stash buffer.
  810. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  811. }
  812. }
  813. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  814. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  815. }
  816. } else {
  817. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  818. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  819. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  820. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  821. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  822. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  823. uart_event.type = UART_PATTERN_DET;
  824. uart_event.size = rx_fifo_len;
  825. pat_flg = 1;
  826. }
  827. }
  828. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  829. // When fifo overflows, we reset the fifo.
  830. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  831. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  832. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  833. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  834. if (p_uart->uart_select_notif_callback) {
  835. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  836. }
  837. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  838. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  839. uart_event.type = UART_FIFO_OVF;
  840. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  841. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  842. uart_event.type = UART_BREAK;
  843. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  844. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  845. if (p_uart->uart_select_notif_callback) {
  846. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  847. }
  848. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  849. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  850. uart_event.type = UART_FRAME_ERR;
  851. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  852. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  853. if (p_uart->uart_select_notif_callback) {
  854. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  855. }
  856. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  857. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  858. uart_event.type = UART_PARITY_ERR;
  859. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  860. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  861. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  862. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  863. if(p_uart->tx_brk_flg == 1) {
  864. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  865. }
  866. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  867. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  868. if(p_uart->tx_brk_flg == 1) {
  869. p_uart->tx_brk_flg = 0;
  870. p_uart->tx_waiting_brk = 0;
  871. } else {
  872. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  873. }
  874. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  875. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  876. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  877. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  878. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  879. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  880. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  881. uart_event.type = UART_PATTERN_DET;
  882. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  883. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  884. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  885. // RS485 collision or frame error interrupt triggered
  886. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  887. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  888. // Set collision detection flag
  889. p_uart_obj[uart_num]->coll_det_flg = true;
  890. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  891. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  892. uart_event.type = UART_EVENT_MAX;
  893. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  894. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  895. // The TX_DONE interrupt is triggered but transmit is active
  896. // then postpone interrupt processing for next interrupt
  897. uart_event.type = UART_EVENT_MAX;
  898. } else {
  899. // Workaround for RS485: If the RS485 half duplex mode is active
  900. // and transmitter is in idle state then reset received buffer and reset RTS pin
  901. // skip this behavior for other UART modes
  902. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  903. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  904. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  905. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  906. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  907. }
  908. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  909. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  910. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  911. }
  912. } else {
  913. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  914. uart_event.type = UART_EVENT_MAX;
  915. }
  916. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  917. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  918. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  919. }
  920. }
  921. }
  922. if(HPTaskAwoken == pdTRUE) {
  923. portYIELD_FROM_ISR();
  924. }
  925. }
  926. /**************************************************************/
  927. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  928. {
  929. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  930. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  931. BaseType_t res;
  932. portTickType ticks_start = xTaskGetTickCount();
  933. //Take tx_mux
  934. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  935. if(res == pdFALSE) {
  936. return ESP_ERR_TIMEOUT;
  937. }
  938. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  939. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  940. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  941. return ESP_OK;
  942. }
  943. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  944. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  945. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  946. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  947. TickType_t ticks_end = xTaskGetTickCount();
  948. if (ticks_end - ticks_start > ticks_to_wait) {
  949. ticks_to_wait = 0;
  950. } else {
  951. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  952. }
  953. //take 2nd tx_done_sem, wait given from ISR
  954. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  955. if(res == pdFALSE) {
  956. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  957. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  958. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  959. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  960. return ESP_ERR_TIMEOUT;
  961. }
  962. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  963. return ESP_OK;
  964. }
  965. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  966. {
  967. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  968. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  969. UART_CHECK(buffer, "buffer null", (-1));
  970. if(len == 0) {
  971. return 0;
  972. }
  973. int tx_len = 0;
  974. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  975. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  976. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  977. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  978. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  979. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  980. }
  981. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  982. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  983. return tx_len;
  984. }
  985. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  986. {
  987. if(size == 0) {
  988. return 0;
  989. }
  990. size_t original_size = size;
  991. //lock for uart_tx
  992. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  993. p_uart_obj[uart_num]->coll_det_flg = false;
  994. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  995. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  996. int offset = 0;
  997. uart_tx_data_t evt;
  998. evt.tx_data.size = size;
  999. evt.tx_data.brk_len = brk_len;
  1000. if(brk_en) {
  1001. evt.type = UART_DATA_BREAK;
  1002. } else {
  1003. evt.type = UART_DATA;
  1004. }
  1005. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1006. while(size > 0) {
  1007. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1008. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1009. size -= send_size;
  1010. offset += send_size;
  1011. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1012. }
  1013. } else {
  1014. while(size) {
  1015. //semaphore for tx_fifo available
  1016. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1017. uint32_t sent = 0;
  1018. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1019. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1020. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1021. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1022. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1023. }
  1024. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1025. if(sent < size) {
  1026. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1027. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1028. }
  1029. size -= sent;
  1030. src += sent;
  1031. }
  1032. }
  1033. if(brk_en) {
  1034. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1035. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1036. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1037. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1038. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1039. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1040. }
  1041. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1042. }
  1043. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1044. return original_size;
  1045. }
  1046. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1047. {
  1048. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1049. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1050. UART_CHECK(src, "buffer null", (-1));
  1051. return uart_tx_all(uart_num, src, size, 0, 0);
  1052. }
  1053. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1054. {
  1055. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1056. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1057. UART_CHECK((size > 0), "uart size error", (-1));
  1058. UART_CHECK((src), "uart data null", (-1));
  1059. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1060. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1061. }
  1062. static bool uart_check_buf_full(uart_port_t uart_num)
  1063. {
  1064. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1065. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1066. if(res == pdTRUE) {
  1067. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1068. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1069. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1070. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1071. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1072. return true;
  1073. }
  1074. }
  1075. return false;
  1076. }
  1077. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1078. {
  1079. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1080. UART_CHECK((buf), "uart data null", (-1));
  1081. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1082. uint8_t* data = NULL;
  1083. size_t size;
  1084. size_t copy_len = 0;
  1085. int len_tmp;
  1086. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1087. return -1;
  1088. }
  1089. while(length) {
  1090. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1091. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1092. if(data) {
  1093. p_uart_obj[uart_num]->rx_head_ptr = data;
  1094. p_uart_obj[uart_num]->rx_ptr = data;
  1095. p_uart_obj[uart_num]->rx_cur_remain = size;
  1096. } else {
  1097. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1098. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1099. //to solve the possible asynchronous issues.
  1100. if(uart_check_buf_full(uart_num)) {
  1101. //This condition will never be true if `uart_read_bytes`
  1102. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1103. continue;
  1104. } else {
  1105. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1106. return copy_len;
  1107. }
  1108. }
  1109. }
  1110. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1111. len_tmp = length;
  1112. } else {
  1113. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1114. }
  1115. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1116. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1117. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1118. uart_pattern_queue_update(uart_num, len_tmp);
  1119. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1120. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1121. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1122. copy_len += len_tmp;
  1123. length -= len_tmp;
  1124. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1125. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1126. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1127. p_uart_obj[uart_num]->rx_ptr = NULL;
  1128. uart_check_buf_full(uart_num);
  1129. }
  1130. }
  1131. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1132. return copy_len;
  1133. }
  1134. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1135. {
  1136. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1137. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1138. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1139. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1140. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1141. return ESP_OK;
  1142. }
  1143. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1144. esp_err_t uart_flush_input(uart_port_t uart_num)
  1145. {
  1146. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1147. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1148. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1149. uint8_t* data;
  1150. size_t size;
  1151. //rx sem protect the ring buffer read related functions
  1152. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1153. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1154. while(true) {
  1155. if(p_uart->rx_head_ptr) {
  1156. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1157. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1158. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1159. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1160. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1161. p_uart->rx_ptr = NULL;
  1162. p_uart->rx_cur_remain = 0;
  1163. p_uart->rx_head_ptr = NULL;
  1164. }
  1165. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1166. if(data == NULL) {
  1167. bool error = false;
  1168. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1169. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1170. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1171. error = true;
  1172. }
  1173. //We also need to clear the `rx_buffer_full_flg` here.
  1174. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1175. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1176. if (error) {
  1177. // this must be called outside the critical section
  1178. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1179. }
  1180. break;
  1181. }
  1182. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1183. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1184. uart_pattern_queue_update(uart_num, size);
  1185. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1186. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1187. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1188. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1189. if(res == pdTRUE) {
  1190. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1191. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1192. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1193. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1194. }
  1195. }
  1196. }
  1197. p_uart->rx_ptr = NULL;
  1198. p_uart->rx_cur_remain = 0;
  1199. p_uart->rx_head_ptr = NULL;
  1200. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1201. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1202. xSemaphoreGive(p_uart->rx_mux);
  1203. return ESP_OK;
  1204. }
  1205. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1206. {
  1207. esp_err_t r;
  1208. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1209. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1210. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1211. #if CONFIG_UART_ISR_IN_IRAM
  1212. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1213. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1214. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1215. }
  1216. #else
  1217. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1218. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1219. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1220. }
  1221. #endif
  1222. if(p_uart_obj[uart_num] == NULL) {
  1223. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1224. if(p_uart_obj[uart_num] == NULL) {
  1225. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1226. return ESP_FAIL;
  1227. }
  1228. p_uart_obj[uart_num]->uart_num = uart_num;
  1229. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1230. p_uart_obj[uart_num]->coll_det_flg = false;
  1231. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1232. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1233. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1234. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1235. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1236. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1237. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1238. p_uart_obj[uart_num]->queue_size = queue_size;
  1239. p_uart_obj[uart_num]->tx_ptr = NULL;
  1240. p_uart_obj[uart_num]->tx_head = NULL;
  1241. p_uart_obj[uart_num]->tx_len_tot = 0;
  1242. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1243. p_uart_obj[uart_num]->tx_brk_len = 0;
  1244. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1245. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1246. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1247. if(uart_queue) {
  1248. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1249. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1250. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1251. } else {
  1252. p_uart_obj[uart_num]->xQueueUart = NULL;
  1253. }
  1254. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1255. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1256. p_uart_obj[uart_num]->rx_ptr = NULL;
  1257. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1258. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1259. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1260. if(tx_buffer_size > 0) {
  1261. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1262. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1263. } else {
  1264. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1265. p_uart_obj[uart_num]->tx_buf_size = 0;
  1266. }
  1267. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1268. } else {
  1269. ESP_LOGE(UART_TAG, "UART driver already installed");
  1270. return ESP_FAIL;
  1271. }
  1272. uart_intr_config_t uart_intr = {
  1273. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1274. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1275. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1276. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
  1277. };
  1278. uart_module_enable(uart_num);
  1279. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1280. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1281. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1282. if (r!=ESP_OK) goto err;
  1283. r=uart_intr_config(uart_num, &uart_intr);
  1284. if (r!=ESP_OK) goto err;
  1285. return r;
  1286. err:
  1287. uart_driver_delete(uart_num);
  1288. return r;
  1289. }
  1290. //Make sure no other tasks are still using UART before you call this function
  1291. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1292. {
  1293. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1294. if(p_uart_obj[uart_num] == NULL) {
  1295. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1296. return ESP_OK;
  1297. }
  1298. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1299. uart_disable_rx_intr(uart_num);
  1300. uart_disable_tx_intr(uart_num);
  1301. uart_pattern_link_free(uart_num);
  1302. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1303. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1304. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1305. }
  1306. if(p_uart_obj[uart_num]->tx_done_sem) {
  1307. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1308. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1309. }
  1310. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1311. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1312. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1313. }
  1314. if(p_uart_obj[uart_num]->tx_mux) {
  1315. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1316. p_uart_obj[uart_num]->tx_mux = NULL;
  1317. }
  1318. if(p_uart_obj[uart_num]->rx_mux) {
  1319. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1320. p_uart_obj[uart_num]->rx_mux = NULL;
  1321. }
  1322. if(p_uart_obj[uart_num]->xQueueUart) {
  1323. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1324. p_uart_obj[uart_num]->xQueueUart = NULL;
  1325. }
  1326. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1327. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1328. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1329. }
  1330. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1331. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1332. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1333. }
  1334. heap_caps_free(p_uart_obj[uart_num]);
  1335. p_uart_obj[uart_num] = NULL;
  1336. uart_module_disable(uart_num);
  1337. return ESP_OK;
  1338. }
  1339. bool uart_is_driver_installed(uart_port_t uart_num)
  1340. {
  1341. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1342. }
  1343. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1344. {
  1345. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1346. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1347. }
  1348. }
  1349. portMUX_TYPE *uart_get_selectlock(void)
  1350. {
  1351. return &uart_selectlock;
  1352. }
  1353. // Set UART mode
  1354. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1355. {
  1356. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1357. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1358. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1359. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1360. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
  1361. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1362. }
  1363. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1364. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1365. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1366. // This mode allows read while transmitting that allows collision detection
  1367. p_uart_obj[uart_num]->coll_det_flg = false;
  1368. // Enable collision detection interrupts
  1369. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1370. | UART_INTR_RXFIFO_FULL
  1371. | UART_INTR_RS485_CLASH
  1372. | UART_INTR_RS485_FRM_ERR
  1373. | UART_INTR_RS485_PARITY_ERR);
  1374. }
  1375. p_uart_obj[uart_num]->uart_mode = mode;
  1376. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1377. return ESP_OK;
  1378. }
  1379. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1380. {
  1381. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1382. UART_CHECK((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0),
  1383. "rx fifo full threshold value error", ESP_ERR_INVALID_ARG);
  1384. if (p_uart_obj[uart_num] == NULL) {
  1385. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1386. return ESP_ERR_INVALID_STATE;
  1387. }
  1388. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1389. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1390. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1391. }
  1392. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1393. return ESP_OK;
  1394. }
  1395. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1396. {
  1397. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1398. UART_CHECK((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0),
  1399. "tx fifo empty threshold value error", ESP_ERR_INVALID_ARG);
  1400. if (p_uart_obj[uart_num] == NULL) {
  1401. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1402. return ESP_ERR_INVALID_STATE;
  1403. }
  1404. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1405. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1406. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1407. }
  1408. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1409. return ESP_OK;
  1410. }
  1411. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1412. {
  1413. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1414. // get maximum timeout threshold
  1415. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1416. if (tout_thresh > tout_max_thresh) {
  1417. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1418. return ESP_ERR_INVALID_ARG;
  1419. }
  1420. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1421. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1422. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1423. return ESP_OK;
  1424. }
  1425. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1426. {
  1427. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1428. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1429. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1430. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1431. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1432. "wrong mode", ESP_ERR_INVALID_ARG);
  1433. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1434. return ESP_OK;
  1435. }
  1436. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1437. {
  1438. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1439. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1440. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1441. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1442. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1443. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1444. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1445. return ESP_OK;
  1446. }
  1447. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1448. {
  1449. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1450. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1451. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1452. return ESP_OK;
  1453. }
  1454. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1455. {
  1456. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1457. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1458. return ESP_OK;
  1459. }
  1460. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1461. {
  1462. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1463. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1464. return ESP_OK;
  1465. }
  1466. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1467. {
  1468. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1469. if (rx_tout) {
  1470. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1471. } else {
  1472. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1473. }
  1474. }