uart.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_types.h"
  8. #include "esp_attr.h"
  9. #include "esp_intr_alloc.h"
  10. #include "esp_log.h"
  11. #include "esp_err.h"
  12. #include "esp_check.h"
  13. #include "malloc.h"
  14. #include "freertos/FreeRTOS.h"
  15. #include "freertos/semphr.h"
  16. #include "freertos/ringbuf.h"
  17. #include "hal/uart_hal.h"
  18. #include "hal/gpio_hal.h"
  19. #include "soc/uart_periph.h"
  20. #include "soc/rtc_cntl_reg.h"
  21. #include "driver/uart.h"
  22. #include "driver/gpio.h"
  23. #include "driver/uart_select.h"
  24. #include "driver/periph_ctrl.h"
  25. #include "sdkconfig.h"
  26. #include "esp_rom_gpio.h"
  27. #if CONFIG_IDF_TARGET_ESP32
  28. #include "esp32/clk.h"
  29. #elif CONFIG_IDF_TARGET_ESP32S2
  30. #include "esp32s2/clk.h"
  31. #elif CONFIG_IDF_TARGET_ESP32S3
  32. #include "esp32s3/clk.h"
  33. #elif CONFIG_IDF_TARGET_ESP32C3
  34. #include "esp32c3/clk.h"
  35. #elif CONFIG_IDF_TARGET_ESP32H2
  36. #include "esp32h2/clk.h"
  37. #endif
  38. #ifdef CONFIG_UART_ISR_IN_IRAM
  39. #define UART_ISR_ATTR IRAM_ATTR
  40. #else
  41. #define UART_ISR_ATTR
  42. #endif
  43. #define XOFF (0x13)
  44. #define XON (0x11)
  45. static const char* UART_TAG = "uart";
  46. #define UART_EMPTY_THRESH_DEFAULT (10)
  47. #define UART_FULL_THRESH_DEFAULT (120)
  48. #define UART_TOUT_THRESH_DEFAULT (10)
  49. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  50. #define UART_TX_IDLE_NUM_DEFAULT (0)
  51. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  52. #define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
  53. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  54. | (UART_INTR_RXFIFO_TOUT) \
  55. | (UART_INTR_RXFIFO_OVF) \
  56. | (UART_INTR_BRK_DET) \
  57. | (UART_INTR_PARITY_ERR))
  58. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  59. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  60. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  61. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  62. // Check actual UART mode set
  63. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  64. #define UART_CONTEX_INIT_DEF(uart_num) {\
  65. .hal.dev = UART_LL_GET_HW(uart_num),\
  66. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  67. .hw_enabled = false,\
  68. }
  69. #if SOC_UART_SUPPORT_RTC_CLK
  70. #define RTC_ENABLED(uart_num) (BIT(uart_num))
  71. #endif
  72. typedef struct {
  73. uart_event_type_t type; /*!< UART TX data type */
  74. struct {
  75. int brk_len;
  76. size_t size;
  77. uint8_t data[0];
  78. } tx_data;
  79. } uart_tx_data_t;
  80. typedef struct {
  81. int wr;
  82. int rd;
  83. int len;
  84. int* data;
  85. } uart_pat_rb_t;
  86. typedef struct {
  87. uart_port_t uart_num; /*!< UART port number*/
  88. int queue_size; /*!< UART event queue size*/
  89. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  90. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  91. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  92. bool coll_det_flg; /*!< UART collision detection flag */
  93. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  94. //rx parameters
  95. int rx_buffered_len; /*!< UART cached data length */
  96. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  97. int rx_buf_size; /*!< RX ring buffer size */
  98. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  99. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  100. uint32_t rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  101. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  102. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  103. uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  104. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  105. uart_pat_rb_t rx_pattern_pos;
  106. //tx parameters
  107. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  108. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  109. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  110. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  111. int tx_buf_size; /*!< TX ring buffer size */
  112. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  113. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  114. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  115. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  116. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  117. uint32_t tx_len_cur;
  118. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  119. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  120. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  121. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  122. } uart_obj_t;
  123. typedef struct {
  124. uart_hal_context_t hal; /*!< UART hal context*/
  125. portMUX_TYPE spinlock;
  126. bool hw_enabled;
  127. } uart_context_t;
  128. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  129. static uart_context_t uart_context[UART_NUM_MAX] = {
  130. UART_CONTEX_INIT_DEF(UART_NUM_0),
  131. UART_CONTEX_INIT_DEF(UART_NUM_1),
  132. #if UART_NUM_MAX > 2
  133. UART_CONTEX_INIT_DEF(UART_NUM_2),
  134. #endif
  135. };
  136. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  137. #if SOC_UART_SUPPORT_RTC_CLK
  138. static uint8_t rtc_enabled = 0;
  139. static portMUX_TYPE rtc_num_spinlock = portMUX_INITIALIZER_UNLOCKED;
  140. static void rtc_clk_enable(uart_port_t uart_num)
  141. {
  142. portENTER_CRITICAL(&rtc_num_spinlock);
  143. if (!(rtc_enabled & RTC_ENABLED(uart_num))) {
  144. rtc_enabled |= RTC_ENABLED(uart_num);
  145. }
  146. SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  147. portEXIT_CRITICAL(&rtc_num_spinlock);
  148. }
  149. static void rtc_clk_disable(uart_port_t uart_num)
  150. {
  151. assert(rtc_enabled & RTC_ENABLED(uart_num));
  152. portENTER_CRITICAL(&rtc_num_spinlock);
  153. rtc_enabled &= ~RTC_ENABLED(uart_num);
  154. if (rtc_enabled == 0) {
  155. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  156. }
  157. portEXIT_CRITICAL(&rtc_num_spinlock);
  158. }
  159. #endif
  160. static void uart_module_enable(uart_port_t uart_num)
  161. {
  162. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  163. if (uart_context[uart_num].hw_enabled != true) {
  164. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  165. periph_module_reset(uart_periph_signal[uart_num].module);
  166. }
  167. periph_module_enable(uart_periph_signal[uart_num].module);
  168. uart_context[uart_num].hw_enabled = true;
  169. }
  170. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  171. }
  172. static void uart_module_disable(uart_port_t uart_num)
  173. {
  174. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  175. if (uart_context[uart_num].hw_enabled != false) {
  176. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  177. periph_module_disable(uart_periph_signal[uart_num].module);
  178. }
  179. uart_context[uart_num].hw_enabled = false;
  180. }
  181. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  182. }
  183. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  184. {
  185. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  186. ESP_RETURN_ON_FALSE((data_bit < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  187. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  188. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  189. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  190. return ESP_OK;
  191. }
  192. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  193. {
  194. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  195. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  196. return ESP_OK;
  197. }
  198. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  199. {
  200. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  201. ESP_RETURN_ON_FALSE((stop_bit < UART_STOP_BITS_MAX), ESP_FAIL, UART_TAG, "stop bit error");
  202. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  203. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  204. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  205. return ESP_OK;
  206. }
  207. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  208. {
  209. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  210. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  211. return ESP_OK;
  212. }
  213. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  214. {
  215. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  216. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  217. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  218. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  219. return ESP_OK;
  220. }
  221. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  222. {
  223. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  224. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  225. return ESP_OK;
  226. }
  227. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  228. {
  229. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  230. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  231. uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate);
  232. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  233. return ESP_OK;
  234. }
  235. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  236. {
  237. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  238. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  239. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  240. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  241. return ESP_OK;
  242. }
  243. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  244. {
  245. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  246. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  247. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  248. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  249. return ESP_OK;
  250. }
  251. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  252. {
  253. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  254. ESP_RETURN_ON_FALSE((rx_thresh_xon < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xon thresh error");
  255. ESP_RETURN_ON_FALSE((rx_thresh_xoff < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xon thresh error");
  256. uart_sw_flowctrl_t sw_flow_ctl = {
  257. .xon_char = XON,
  258. .xoff_char = XOFF,
  259. .xon_thrd = rx_thresh_xon,
  260. .xoff_thrd = rx_thresh_xoff,
  261. };
  262. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  263. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  264. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  265. return ESP_OK;
  266. }
  267. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  268. {
  269. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  270. ESP_RETURN_ON_FALSE((rx_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
  271. ESP_RETURN_ON_FALSE((flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  272. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  273. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  274. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  275. return ESP_OK;
  276. }
  277. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  278. {
  279. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  280. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  281. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  282. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  283. return ESP_OK;
  284. }
  285. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  286. {
  287. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  288. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  289. return ESP_OK;
  290. }
  291. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  292. {
  293. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  294. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  295. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  296. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  297. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  298. return ESP_OK;
  299. }
  300. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  301. {
  302. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  303. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  304. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  305. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  306. return ESP_OK;
  307. }
  308. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  309. {
  310. int* pdata = NULL;
  311. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  312. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  313. pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  314. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  315. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  316. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  317. }
  318. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  319. free(pdata);
  320. return ESP_OK;
  321. }
  322. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  323. {
  324. esp_err_t ret = ESP_OK;
  325. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  326. int next = p_pos->wr + 1;
  327. if (next >= p_pos->len) {
  328. next = 0;
  329. }
  330. if (next == p_pos->rd) {
  331. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  332. ret = ESP_FAIL;
  333. } else {
  334. p_pos->data[p_pos->wr] = pos;
  335. p_pos->wr = next;
  336. ret = ESP_OK;
  337. }
  338. return ret;
  339. }
  340. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  341. {
  342. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  343. return ESP_ERR_INVALID_STATE;
  344. } else {
  345. esp_err_t ret = ESP_OK;
  346. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  347. if (p_pos->rd == p_pos->wr) {
  348. ret = ESP_FAIL;
  349. } else {
  350. p_pos->rd++;
  351. }
  352. if (p_pos->rd >= p_pos->len) {
  353. p_pos->rd = 0;
  354. }
  355. return ret;
  356. }
  357. }
  358. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  359. {
  360. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  361. int rd = p_pos->rd;
  362. while(rd != p_pos->wr) {
  363. p_pos->data[rd] -= diff_len;
  364. int rd_rec = rd;
  365. rd ++;
  366. if (rd >= p_pos->len) {
  367. rd = 0;
  368. }
  369. if (p_pos->data[rd_rec] < 0) {
  370. p_pos->rd = rd;
  371. }
  372. }
  373. return ESP_OK;
  374. }
  375. int uart_pattern_pop_pos(uart_port_t uart_num)
  376. {
  377. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  378. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  379. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  380. int pos = -1;
  381. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  382. pos = pat_pos->data[pat_pos->rd];
  383. uart_pattern_dequeue(uart_num);
  384. }
  385. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  386. return pos;
  387. }
  388. int uart_pattern_get_pos(uart_port_t uart_num)
  389. {
  390. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  391. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  392. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  393. int pos = -1;
  394. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  395. pos = pat_pos->data[pat_pos->rd];
  396. }
  397. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  398. return pos;
  399. }
  400. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  401. {
  402. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  403. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  404. int* pdata = (int*) malloc(queue_length * sizeof(int));
  405. if(pdata == NULL) {
  406. return ESP_ERR_NO_MEM;
  407. }
  408. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  409. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  410. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  411. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  412. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  413. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  414. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  415. free(ptmp);
  416. return ESP_OK;
  417. }
  418. #if CONFIG_IDF_TARGET_ESP32
  419. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  420. {
  421. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  422. ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  423. ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  424. ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  425. uart_at_cmd_t at_cmd = {0};
  426. at_cmd.cmd_char = pattern_chr;
  427. at_cmd.char_num = chr_num;
  428. at_cmd.gap_tout = chr_tout;
  429. at_cmd.pre_idle = pre_idle;
  430. at_cmd.post_idle = post_idle;
  431. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  432. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  433. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  434. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  435. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  436. return ESP_OK;
  437. }
  438. #endif
  439. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  440. {
  441. ESP_RETURN_ON_FALSE(uart_num < UART_NUM_MAX, ESP_FAIL, UART_TAG, "uart_num error");
  442. ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  443. ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  444. ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  445. uart_at_cmd_t at_cmd = {0};
  446. at_cmd.cmd_char = pattern_chr;
  447. at_cmd.char_num = chr_num;
  448. #if CONFIG_IDF_TARGET_ESP32
  449. int apb_clk_freq = 0;
  450. uint32_t uart_baud = 0;
  451. uint32_t uart_div = 0;
  452. uart_get_baudrate(uart_num, &uart_baud);
  453. apb_clk_freq = esp_clk_apb_freq();
  454. uart_div = apb_clk_freq / uart_baud;
  455. at_cmd.gap_tout = chr_tout * uart_div;
  456. at_cmd.pre_idle = pre_idle * uart_div;
  457. at_cmd.post_idle = post_idle * uart_div;
  458. #elif CONFIG_IDF_TARGET_ESP32S2
  459. at_cmd.gap_tout = chr_tout;
  460. at_cmd.pre_idle = pre_idle;
  461. at_cmd.post_idle = post_idle;
  462. #endif
  463. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  464. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  465. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  466. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  467. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  468. return ESP_OK;
  469. }
  470. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  471. {
  472. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  473. }
  474. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  475. {
  476. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  477. }
  478. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  479. {
  480. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  481. }
  482. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  483. {
  484. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  485. }
  486. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  487. {
  488. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  489. ESP_RETURN_ON_FALSE((thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "empty intr threshold error");
  490. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  491. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  492. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  493. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  494. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  495. return ESP_OK;
  496. }
  497. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  498. {
  499. int ret;
  500. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  501. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  502. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  503. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  504. return ret;
  505. }
  506. esp_err_t uart_isr_free(uart_port_t uart_num)
  507. {
  508. esp_err_t ret;
  509. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  510. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  511. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]->intr_handle != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "uart driver error");
  512. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  513. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  514. p_uart_obj[uart_num]->intr_handle=NULL;
  515. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  516. return ret;
  517. }
  518. //internal signal can be output to multiple GPIO pads
  519. //only one GPIO pad can connect with input signal
  520. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  521. {
  522. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  523. ESP_RETURN_ON_FALSE((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), ESP_FAIL, UART_TAG, "tx_io_num error");
  524. ESP_RETURN_ON_FALSE((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), ESP_FAIL, UART_TAG, "rx_io_num error");
  525. ESP_RETURN_ON_FALSE((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), ESP_FAIL, UART_TAG, "rts_io_num error");
  526. ESP_RETURN_ON_FALSE((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), ESP_FAIL, UART_TAG, "cts_io_num error");
  527. if(tx_io_num >= 0) {
  528. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  529. gpio_set_level(tx_io_num, 1);
  530. esp_rom_gpio_connect_out_signal(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  531. }
  532. if(rx_io_num >= 0) {
  533. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  534. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  535. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  536. esp_rom_gpio_connect_in_signal(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  537. }
  538. if(rts_io_num >= 0) {
  539. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  540. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  541. esp_rom_gpio_connect_out_signal(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  542. }
  543. if(cts_io_num >= 0) {
  544. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  545. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  546. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  547. esp_rom_gpio_connect_in_signal(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  548. }
  549. return ESP_OK;
  550. }
  551. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  552. {
  553. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  554. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_FAIL, UART_TAG, "disable hw flowctrl before using sw control");
  555. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  556. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  557. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  558. return ESP_OK;
  559. }
  560. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  561. {
  562. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  563. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  564. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  565. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  566. return ESP_OK;
  567. }
  568. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  569. {
  570. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  571. ESP_RETURN_ON_FALSE((idle_num <= UART_TX_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart idle num error");
  572. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  573. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  574. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  575. return ESP_OK;
  576. }
  577. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  578. {
  579. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  580. ESP_RETURN_ON_FALSE((uart_config), ESP_FAIL, UART_TAG, "param null");
  581. ESP_RETURN_ON_FALSE((uart_config->rx_flow_ctrl_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
  582. ESP_RETURN_ON_FALSE((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  583. ESP_RETURN_ON_FALSE((uart_config->data_bits < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  584. uart_module_enable(uart_num);
  585. #if SOC_UART_SUPPORT_RTC_CLK
  586. if (uart_config->source_clk == UART_SCLK_RTC) {
  587. rtc_clk_enable(uart_num);
  588. }
  589. #endif
  590. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  591. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  592. uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_config->source_clk);
  593. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate);
  594. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  595. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  596. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  597. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  598. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  599. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  600. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  601. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  602. return ESP_OK;
  603. }
  604. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  605. {
  606. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  607. ESP_RETURN_ON_FALSE((intr_conf), ESP_FAIL, UART_TAG, "param null");
  608. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  609. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  610. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  611. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  612. } else {
  613. //Disable rx_tout intr
  614. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  615. }
  616. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  617. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  618. }
  619. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  620. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  621. }
  622. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  623. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  624. return ESP_OK;
  625. }
  626. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  627. {
  628. int cnt = 0;
  629. int len = length;
  630. while (len >= 0) {
  631. if (buf[len] == pat_chr) {
  632. cnt++;
  633. } else {
  634. cnt = 0;
  635. }
  636. if (cnt >= pat_num) {
  637. break;
  638. }
  639. len --;
  640. }
  641. return len;
  642. }
  643. //internal isr handler for default driver code.
  644. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  645. {
  646. uart_obj_t *p_uart = (uart_obj_t*) param;
  647. uint8_t uart_num = p_uart->uart_num;
  648. int rx_fifo_len = 0;
  649. uint32_t uart_intr_status = 0;
  650. uart_event_t uart_event;
  651. portBASE_TYPE HPTaskAwoken = 0;
  652. static uint8_t pat_flg = 0;
  653. while(1) {
  654. // The `continue statement` may cause the interrupt to loop infinitely
  655. // we exit the interrupt here
  656. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  657. //Exit form while loop
  658. if(uart_intr_status == 0){
  659. break;
  660. }
  661. uart_event.type = UART_EVENT_MAX;
  662. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  663. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  664. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  665. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  666. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  667. if(p_uart->tx_waiting_brk) {
  668. continue;
  669. }
  670. //TX semaphore will only be used when tx_buf_size is zero.
  671. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  672. p_uart->tx_waiting_fifo = false;
  673. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  674. } else {
  675. //We don't use TX ring buffer, because the size is zero.
  676. if(p_uart->tx_buf_size == 0) {
  677. continue;
  678. }
  679. bool en_tx_flg = false;
  680. uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  681. //We need to put a loop here, in case all the buffer items are very short.
  682. //That would cause a watch_dog reset because empty interrupt happens so often.
  683. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  684. while(tx_fifo_rem) {
  685. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  686. size_t size;
  687. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  688. if(p_uart->tx_head) {
  689. //The first item is the data description
  690. //Get the first item to get the data information
  691. if(p_uart->tx_len_tot == 0) {
  692. p_uart->tx_ptr = NULL;
  693. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  694. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  695. p_uart->tx_brk_flg = 1;
  696. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  697. }
  698. //We have saved the data description from the 1st item, return buffer.
  699. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  700. } else if(p_uart->tx_ptr == NULL) {
  701. //Update the TX item pointer, we will need this to return item to buffer.
  702. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  703. en_tx_flg = true;
  704. p_uart->tx_len_cur = size;
  705. }
  706. } else {
  707. //Can not get data from ring buffer, return;
  708. break;
  709. }
  710. }
  711. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  712. //To fill the TX FIFO.
  713. uint32_t send_len = 0;
  714. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  715. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  716. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  717. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  718. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  719. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  720. }
  721. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  722. (const uint8_t *)p_uart->tx_ptr,
  723. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  724. &send_len);
  725. p_uart->tx_ptr += send_len;
  726. p_uart->tx_len_tot -= send_len;
  727. p_uart->tx_len_cur -= send_len;
  728. tx_fifo_rem -= send_len;
  729. if (p_uart->tx_len_cur == 0) {
  730. //Return item to ring buffer.
  731. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  732. p_uart->tx_head = NULL;
  733. p_uart->tx_ptr = NULL;
  734. //Sending item done, now we need to send break if there is a record.
  735. //Set TX break signal after FIFO is empty
  736. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  737. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  738. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  739. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  740. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  741. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  742. p_uart->tx_waiting_brk = 1;
  743. //do not enable TX empty interrupt
  744. en_tx_flg = false;
  745. } else {
  746. //enable TX empty interrupt
  747. en_tx_flg = true;
  748. }
  749. } else {
  750. //enable TX empty interrupt
  751. en_tx_flg = true;
  752. }
  753. }
  754. }
  755. if (en_tx_flg) {
  756. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  757. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  758. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  759. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  760. }
  761. }
  762. }
  763. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  764. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  765. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  766. ) {
  767. if(pat_flg == 1) {
  768. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  769. pat_flg = 0;
  770. }
  771. if (p_uart->rx_buffer_full_flg == false) {
  772. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  773. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  774. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  775. }
  776. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  777. uint8_t pat_chr = 0;
  778. uint8_t pat_num = 0;
  779. int pat_idx = -1;
  780. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  781. //Get the buffer from the FIFO
  782. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  783. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  784. uart_event.type = UART_PATTERN_DET;
  785. uart_event.size = rx_fifo_len;
  786. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  787. } else {
  788. //After Copying the Data From FIFO ,Clear intr_status
  789. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  790. uart_event.type = UART_DATA;
  791. uart_event.size = rx_fifo_len;
  792. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  793. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  794. if (p_uart->uart_select_notif_callback) {
  795. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  796. }
  797. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  798. }
  799. p_uart->rx_stash_len = rx_fifo_len;
  800. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  801. //Mainly for applications that uses flow control or small ring buffer.
  802. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  803. p_uart->rx_buffer_full_flg = true;
  804. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  805. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  806. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  807. if (uart_event.type == UART_PATTERN_DET) {
  808. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  809. if (rx_fifo_len < pat_num) {
  810. //some of the characters are read out in last interrupt
  811. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  812. } else {
  813. uart_pattern_enqueue(uart_num,
  814. pat_idx <= -1 ?
  815. //can not find the pattern in buffer,
  816. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  817. // find the pattern in buffer
  818. p_uart->rx_buffered_len + pat_idx);
  819. }
  820. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  821. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  822. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  823. }
  824. }
  825. uart_event.type = UART_BUFFER_FULL;
  826. } else {
  827. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  828. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  829. if (rx_fifo_len < pat_num) {
  830. //some of the characters are read out in last interrupt
  831. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  832. } else if(pat_idx >= 0) {
  833. // find the pattern in stash buffer.
  834. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  835. }
  836. }
  837. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  838. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  839. }
  840. } else {
  841. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  842. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  843. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  844. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  845. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  846. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  847. uart_event.type = UART_PATTERN_DET;
  848. uart_event.size = rx_fifo_len;
  849. pat_flg = 1;
  850. }
  851. }
  852. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  853. // When fifo overflows, we reset the fifo.
  854. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  855. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  856. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  857. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  858. if (p_uart->uart_select_notif_callback) {
  859. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  860. }
  861. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  862. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  863. uart_event.type = UART_FIFO_OVF;
  864. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  865. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  866. uart_event.type = UART_BREAK;
  867. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  868. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  869. if (p_uart->uart_select_notif_callback) {
  870. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  871. }
  872. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  873. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  874. uart_event.type = UART_FRAME_ERR;
  875. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  876. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  877. if (p_uart->uart_select_notif_callback) {
  878. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  879. }
  880. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  881. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  882. uart_event.type = UART_PARITY_ERR;
  883. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  884. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  885. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  886. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  887. if(p_uart->tx_brk_flg == 1) {
  888. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  889. }
  890. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  891. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  892. if(p_uart->tx_brk_flg == 1) {
  893. p_uart->tx_brk_flg = 0;
  894. p_uart->tx_waiting_brk = 0;
  895. } else {
  896. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  897. }
  898. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  899. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  900. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  901. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  902. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  903. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  904. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  905. uart_event.type = UART_PATTERN_DET;
  906. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  907. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  908. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  909. // RS485 collision or frame error interrupt triggered
  910. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  911. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  912. // Set collision detection flag
  913. p_uart_obj[uart_num]->coll_det_flg = true;
  914. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  915. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  916. uart_event.type = UART_EVENT_MAX;
  917. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  918. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  919. // The TX_DONE interrupt is triggered but transmit is active
  920. // then postpone interrupt processing for next interrupt
  921. uart_event.type = UART_EVENT_MAX;
  922. } else {
  923. // Workaround for RS485: If the RS485 half duplex mode is active
  924. // and transmitter is in idle state then reset received buffer and reset RTS pin
  925. // skip this behavior for other UART modes
  926. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  927. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  928. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  929. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  930. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  931. }
  932. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  933. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  934. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  935. }
  936. } else {
  937. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  938. uart_event.type = UART_EVENT_MAX;
  939. }
  940. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  941. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  942. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  943. }
  944. }
  945. }
  946. if(HPTaskAwoken == pdTRUE) {
  947. portYIELD_FROM_ISR();
  948. }
  949. }
  950. /**************************************************************/
  951. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  952. {
  953. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  954. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  955. BaseType_t res;
  956. portTickType ticks_start = xTaskGetTickCount();
  957. //Take tx_mux
  958. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  959. if(res == pdFALSE) {
  960. return ESP_ERR_TIMEOUT;
  961. }
  962. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  963. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  964. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  965. return ESP_OK;
  966. }
  967. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  968. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  969. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  970. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  971. TickType_t ticks_end = xTaskGetTickCount();
  972. if (ticks_end - ticks_start > ticks_to_wait) {
  973. ticks_to_wait = 0;
  974. } else {
  975. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  976. }
  977. //take 2nd tx_done_sem, wait given from ISR
  978. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  979. if(res == pdFALSE) {
  980. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  981. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  982. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  983. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  984. return ESP_ERR_TIMEOUT;
  985. }
  986. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  987. return ESP_OK;
  988. }
  989. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  990. {
  991. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  992. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  993. ESP_RETURN_ON_FALSE(buffer, (-1), UART_TAG, "buffer null");
  994. if(len == 0) {
  995. return 0;
  996. }
  997. int tx_len = 0;
  998. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  999. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1000. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1001. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1002. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1003. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1004. }
  1005. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  1006. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1007. return tx_len;
  1008. }
  1009. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1010. {
  1011. if(size == 0) {
  1012. return 0;
  1013. }
  1014. size_t original_size = size;
  1015. //lock for uart_tx
  1016. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1017. p_uart_obj[uart_num]->coll_det_flg = false;
  1018. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1019. size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1020. int offset = 0;
  1021. uart_tx_data_t evt;
  1022. evt.tx_data.size = size;
  1023. evt.tx_data.brk_len = brk_len;
  1024. if(brk_en) {
  1025. evt.type = UART_DATA_BREAK;
  1026. } else {
  1027. evt.type = UART_DATA;
  1028. }
  1029. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1030. while(size > 0) {
  1031. size_t send_size = size > max_size / 2 ? max_size / 2 : size;
  1032. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1033. size -= send_size;
  1034. offset += send_size;
  1035. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1036. }
  1037. } else {
  1038. while(size) {
  1039. //semaphore for tx_fifo available
  1040. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1041. uint32_t sent = 0;
  1042. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1043. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1044. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1045. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1046. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1047. }
  1048. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1049. if(sent < size) {
  1050. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1051. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1052. }
  1053. size -= sent;
  1054. src += sent;
  1055. }
  1056. }
  1057. if(brk_en) {
  1058. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1059. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1060. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1061. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1062. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1063. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1064. }
  1065. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1066. }
  1067. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1068. return original_size;
  1069. }
  1070. int uart_write_bytes(uart_port_t uart_num, const void* src, size_t size)
  1071. {
  1072. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1073. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num] != NULL), (-1), UART_TAG, "uart driver error");
  1074. ESP_RETURN_ON_FALSE(src, (-1), UART_TAG, "buffer null");
  1075. return uart_tx_all(uart_num, src, size, 0, 0);
  1076. }
  1077. int uart_write_bytes_with_break(uart_port_t uart_num, const void* src, size_t size, int brk_len)
  1078. {
  1079. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1080. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1081. ESP_RETURN_ON_FALSE((size > 0), (-1), UART_TAG, "uart size error");
  1082. ESP_RETURN_ON_FALSE((src), (-1), UART_TAG, "uart data null");
  1083. ESP_RETURN_ON_FALSE((brk_len > 0 && brk_len < 256), (-1), UART_TAG, "break_num error");
  1084. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1085. }
  1086. static bool uart_check_buf_full(uart_port_t uart_num)
  1087. {
  1088. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1089. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1090. if(res == pdTRUE) {
  1091. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1092. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1093. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1094. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1095. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1096. return true;
  1097. }
  1098. }
  1099. return false;
  1100. }
  1101. int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t ticks_to_wait)
  1102. {
  1103. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1104. ESP_RETURN_ON_FALSE((buf), (-1), UART_TAG, "uart data null");
  1105. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1106. uint8_t* data = NULL;
  1107. size_t size;
  1108. size_t copy_len = 0;
  1109. int len_tmp;
  1110. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1111. return -1;
  1112. }
  1113. while(length) {
  1114. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1115. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1116. if(data) {
  1117. p_uart_obj[uart_num]->rx_head_ptr = data;
  1118. p_uart_obj[uart_num]->rx_ptr = data;
  1119. p_uart_obj[uart_num]->rx_cur_remain = size;
  1120. } else {
  1121. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1122. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1123. //to solve the possible asynchronous issues.
  1124. if(uart_check_buf_full(uart_num)) {
  1125. //This condition will never be true if `uart_read_bytes`
  1126. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1127. continue;
  1128. } else {
  1129. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1130. return copy_len;
  1131. }
  1132. }
  1133. }
  1134. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1135. len_tmp = length;
  1136. } else {
  1137. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1138. }
  1139. memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1140. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1141. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1142. uart_pattern_queue_update(uart_num, len_tmp);
  1143. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1144. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1145. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1146. copy_len += len_tmp;
  1147. length -= len_tmp;
  1148. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1149. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1150. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1151. p_uart_obj[uart_num]->rx_ptr = NULL;
  1152. uart_check_buf_full(uart_num);
  1153. }
  1154. }
  1155. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1156. return copy_len;
  1157. }
  1158. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1159. {
  1160. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1161. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1162. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1163. return ESP_OK;
  1164. }
  1165. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1166. static esp_err_t uart_disable_intr_mask_and_return_prev(uart_port_t uart_num, uint32_t disable_mask, uint32_t* prev_mask)
  1167. {
  1168. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1169. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1170. *prev_mask = uart_hal_get_intr_ena_status(&uart_context[uart_num].hal) & disable_mask;
  1171. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  1172. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1173. return ESP_OK;
  1174. }
  1175. esp_err_t uart_flush_input(uart_port_t uart_num)
  1176. {
  1177. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1178. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1179. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1180. uint8_t* data;
  1181. size_t size;
  1182. uint32_t prev_mask;
  1183. //rx sem protect the ring buffer read related functions
  1184. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1185. uart_disable_intr_mask_and_return_prev(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT, &prev_mask);
  1186. while(true) {
  1187. if(p_uart->rx_head_ptr) {
  1188. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1189. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1190. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1191. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1192. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1193. p_uart->rx_ptr = NULL;
  1194. p_uart->rx_cur_remain = 0;
  1195. p_uart->rx_head_ptr = NULL;
  1196. }
  1197. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1198. if(data == NULL) {
  1199. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1200. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1201. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1202. }
  1203. //We also need to clear the `rx_buffer_full_flg` here.
  1204. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1205. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1206. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1207. break;
  1208. }
  1209. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1210. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1211. uart_pattern_queue_update(uart_num, size);
  1212. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1213. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1214. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1215. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1216. if(res == pdTRUE) {
  1217. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1218. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1219. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1220. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1221. }
  1222. }
  1223. }
  1224. p_uart->rx_ptr = NULL;
  1225. p_uart->rx_cur_remain = 0;
  1226. p_uart->rx_head_ptr = NULL;
  1227. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1228. uart_enable_intr_mask(uart_num, prev_mask);
  1229. xSemaphoreGive(p_uart->rx_mux);
  1230. return ESP_OK;
  1231. }
  1232. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1233. {
  1234. esp_err_t r;
  1235. #ifdef CONFIG_ESP_GDBSTUB_ENABLED
  1236. ESP_RETURN_ON_FALSE((uart_num != CONFIG_ESP_CONSOLE_UART_NUM), ESP_FAIL, UART_TAG, "UART used by GDB-stubs! Please disable GDB in menuconfig.");
  1237. #endif // CONFIG_ESP_GDBSTUB_ENABLED
  1238. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1239. ESP_RETURN_ON_FALSE((rx_buffer_size > SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "uart rx buffer length error");
  1240. ESP_RETURN_ON_FALSE((tx_buffer_size > SOC_UART_FIFO_LEN) || (tx_buffer_size == 0), ESP_FAIL, UART_TAG, "uart tx buffer length error");
  1241. #if CONFIG_UART_ISR_IN_IRAM
  1242. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1243. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1244. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1245. }
  1246. #else
  1247. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1248. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1249. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1250. }
  1251. #endif
  1252. if(p_uart_obj[uart_num] == NULL) {
  1253. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1254. if(p_uart_obj[uart_num] == NULL) {
  1255. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1256. return ESP_FAIL;
  1257. }
  1258. p_uart_obj[uart_num]->uart_num = uart_num;
  1259. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1260. p_uart_obj[uart_num]->coll_det_flg = false;
  1261. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1262. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1263. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1264. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1265. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1266. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1267. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1268. p_uart_obj[uart_num]->queue_size = queue_size;
  1269. p_uart_obj[uart_num]->tx_ptr = NULL;
  1270. p_uart_obj[uart_num]->tx_head = NULL;
  1271. p_uart_obj[uart_num]->tx_len_tot = 0;
  1272. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1273. p_uart_obj[uart_num]->tx_brk_len = 0;
  1274. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1275. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1276. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1277. if(uart_queue) {
  1278. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1279. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1280. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1281. } else {
  1282. p_uart_obj[uart_num]->xQueueUart = NULL;
  1283. }
  1284. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1285. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1286. p_uart_obj[uart_num]->rx_ptr = NULL;
  1287. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1288. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1289. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1290. if(tx_buffer_size > 0) {
  1291. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1292. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1293. } else {
  1294. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1295. p_uart_obj[uart_num]->tx_buf_size = 0;
  1296. }
  1297. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1298. } else {
  1299. ESP_LOGE(UART_TAG, "UART driver already installed");
  1300. return ESP_FAIL;
  1301. }
  1302. uart_intr_config_t uart_intr = {
  1303. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1304. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1305. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1306. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
  1307. };
  1308. uart_module_enable(uart_num);
  1309. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1310. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1311. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1312. if (r!=ESP_OK) goto err;
  1313. r=uart_intr_config(uart_num, &uart_intr);
  1314. if (r!=ESP_OK) goto err;
  1315. return r;
  1316. err:
  1317. uart_driver_delete(uart_num);
  1318. return r;
  1319. }
  1320. //Make sure no other tasks are still using UART before you call this function
  1321. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1322. {
  1323. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1324. if(p_uart_obj[uart_num] == NULL) {
  1325. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1326. return ESP_OK;
  1327. }
  1328. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1329. uart_disable_rx_intr(uart_num);
  1330. uart_disable_tx_intr(uart_num);
  1331. uart_pattern_link_free(uart_num);
  1332. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1333. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1334. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1335. }
  1336. if(p_uart_obj[uart_num]->tx_done_sem) {
  1337. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1338. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1339. }
  1340. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1341. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1342. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1343. }
  1344. if(p_uart_obj[uart_num]->tx_mux) {
  1345. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1346. p_uart_obj[uart_num]->tx_mux = NULL;
  1347. }
  1348. if(p_uart_obj[uart_num]->rx_mux) {
  1349. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1350. p_uart_obj[uart_num]->rx_mux = NULL;
  1351. }
  1352. if(p_uart_obj[uart_num]->xQueueUart) {
  1353. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1354. p_uart_obj[uart_num]->xQueueUart = NULL;
  1355. }
  1356. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1357. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1358. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1359. }
  1360. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1361. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1362. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1363. }
  1364. heap_caps_free(p_uart_obj[uart_num]);
  1365. p_uart_obj[uart_num] = NULL;
  1366. #if SOC_UART_SUPPORT_RTC_CLK
  1367. uart_sclk_t sclk = 0;
  1368. uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk);
  1369. if (sclk == UART_SCLK_RTC) {
  1370. rtc_clk_disable(uart_num);
  1371. }
  1372. #endif
  1373. uart_module_disable(uart_num);
  1374. return ESP_OK;
  1375. }
  1376. bool uart_is_driver_installed(uart_port_t uart_num)
  1377. {
  1378. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1379. }
  1380. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1381. {
  1382. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1383. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1384. }
  1385. }
  1386. portMUX_TYPE *uart_get_selectlock(void)
  1387. {
  1388. return &uart_selectlock;
  1389. }
  1390. // Set UART mode
  1391. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1392. {
  1393. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1394. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  1395. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1396. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1397. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_ERR_INVALID_ARG, UART_TAG,
  1398. "disable hw flowctrl before using RS485 mode");
  1399. }
  1400. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1401. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1402. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1403. // This mode allows read while transmitting that allows collision detection
  1404. p_uart_obj[uart_num]->coll_det_flg = false;
  1405. // Enable collision detection interrupts
  1406. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1407. | UART_INTR_RXFIFO_FULL
  1408. | UART_INTR_RS485_CLASH
  1409. | UART_INTR_RS485_FRM_ERR
  1410. | UART_INTR_RS485_PARITY_ERR);
  1411. }
  1412. p_uart_obj[uart_num]->uart_mode = mode;
  1413. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1414. return ESP_OK;
  1415. }
  1416. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1417. {
  1418. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1419. ESP_RETURN_ON_FALSE((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1420. "rx fifo full threshold value error");
  1421. if (p_uart_obj[uart_num] == NULL) {
  1422. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1423. return ESP_ERR_INVALID_STATE;
  1424. }
  1425. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1426. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1427. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1428. }
  1429. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1430. return ESP_OK;
  1431. }
  1432. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1433. {
  1434. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1435. ESP_RETURN_ON_FALSE((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1436. "tx fifo empty threshold value error");
  1437. if (p_uart_obj[uart_num] == NULL) {
  1438. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1439. return ESP_ERR_INVALID_STATE;
  1440. }
  1441. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1442. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1443. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1444. }
  1445. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1446. return ESP_OK;
  1447. }
  1448. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1449. {
  1450. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1451. // get maximum timeout threshold
  1452. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1453. if (tout_thresh > tout_max_thresh) {
  1454. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1455. return ESP_ERR_INVALID_ARG;
  1456. }
  1457. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1458. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1459. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1460. return ESP_OK;
  1461. }
  1462. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1463. {
  1464. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1465. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1466. ESP_RETURN_ON_FALSE((collision_flag != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "wrong parameter pointer");
  1467. ESP_RETURN_ON_FALSE(
  1468. (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1469. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1470. ESP_ERR_INVALID_ARG, UART_TAG, "wrong mode");
  1471. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1472. return ESP_OK;
  1473. }
  1474. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1475. {
  1476. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1477. ESP_RETURN_ON_FALSE((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1478. wakeup_threshold > UART_MIN_WAKEUP_THRESH), ESP_ERR_INVALID_ARG, UART_TAG,
  1479. "wakeup_threshold out of bounds");
  1480. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1481. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1482. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1483. return ESP_OK;
  1484. }
  1485. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1486. {
  1487. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1488. ESP_RETURN_ON_FALSE((out_wakeup_threshold != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "argument is NULL");
  1489. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1490. return ESP_OK;
  1491. }
  1492. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1493. {
  1494. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1495. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1496. return ESP_OK;
  1497. }
  1498. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1499. {
  1500. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1501. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1502. return ESP_OK;
  1503. }
  1504. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1505. {
  1506. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1507. if (rx_tout) {
  1508. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1509. } else {
  1510. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1511. }
  1512. }