bt.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <stddef.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include "sdkconfig.h"
  18. #include "esp_heap_caps.h"
  19. #include "esp_heap_caps_init.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/task.h"
  22. #include "freertos/queue.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/portmacro.h"
  26. #include "xtensa/core-macros.h"
  27. #include "esp_types.h"
  28. #include "esp_system.h"
  29. #include "esp_task.h"
  30. #include "esp_intr_alloc.h"
  31. #include "esp_attr.h"
  32. #include "esp_phy_init.h"
  33. #include "esp_bt.h"
  34. #include "esp_err.h"
  35. #include "esp_log.h"
  36. #include "esp_pm.h"
  37. #include "driver/periph_ctrl.h"
  38. #include "soc/rtc.h"
  39. #include "soc/soc_memory_layout.h"
  40. #include "esp32/clk.h"
  41. #include "esp_coexist_internal.h"
  42. #if !CONFIG_FREERTOS_UNICORE
  43. #include "esp_ipc.h"
  44. #endif
  45. #if CONFIG_BT_ENABLED
  46. /* Macro definition
  47. ************************************************************************
  48. */
  49. #define BTDM_LOG_TAG "BTDM_INIT"
  50. #define BTDM_INIT_PERIOD (5000) /* ms */
  51. /* Bluetooth system and controller config */
  52. #define BTDM_CFG_BT_DATA_RELEASE (1<<0)
  53. #define BTDM_CFG_HCI_UART (1<<1)
  54. #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
  55. #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
  56. #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
  57. #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
  58. /* Sleep mode */
  59. #define BTDM_MODEM_SLEEP_MODE_NONE (0)
  60. #define BTDM_MODEM_SLEEP_MODE_ORIG (1)
  61. #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
  62. /* Low Power Clock Selection */
  63. #define BTDM_LPCLK_SEL_XTAL (0)
  64. #define BTDM_LPCLK_SEL_XTAL32K (1)
  65. #define BTDM_LPCLK_SEL_RTC_SLOW (2)
  66. #define BTDM_LPCLK_SEL_8M (3)
  67. /* Sleep and wakeup interval control */
  68. #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
  69. #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
  70. #define BT_DEBUG(...)
  71. #define BT_API_CALL_CHECK(info, api_call, ret) \
  72. do{\
  73. esp_err_t __err = (api_call);\
  74. if ((ret) != __err) {\
  75. BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
  76. return __err;\
  77. }\
  78. } while(0)
  79. #define OSI_FUNCS_TIME_BLOCKING 0xffffffff
  80. #define OSI_VERSION 0x00010002
  81. #define OSI_MAGIC_VALUE 0xFADEBEAD
  82. /* SPIRAM Configuration */
  83. #if CONFIG_SPIRAM_USE_MALLOC
  84. #define BTDM_MAX_QUEUE_NUM (5)
  85. #endif
  86. /* Types definition
  87. ************************************************************************
  88. */
  89. /* VHCI function interface */
  90. typedef struct vhci_host_callback {
  91. void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
  92. int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
  93. } vhci_host_callback_t;
  94. /* Dram region */
  95. typedef struct {
  96. esp_bt_mode_t mode;
  97. intptr_t start;
  98. intptr_t end;
  99. } btdm_dram_available_region_t;
  100. /* PSRAM configuration */
  101. #if CONFIG_SPIRAM_USE_MALLOC
  102. typedef struct {
  103. QueueHandle_t handle;
  104. void *storage;
  105. void *buffer;
  106. } btdm_queue_item_t;
  107. #endif
  108. /* OSI function */
  109. struct osi_funcs_t {
  110. uint32_t _version;
  111. xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
  112. void (*_ints_on)(unsigned int mask);
  113. void (*_interrupt_disable)(void);
  114. void (*_interrupt_restore)(void);
  115. void (*_task_yield)(void);
  116. void (*_task_yield_from_isr)(void);
  117. void *(*_semphr_create)(uint32_t max, uint32_t init);
  118. void (*_semphr_delete)(void *semphr);
  119. int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
  120. int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
  121. int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
  122. int32_t (*_semphr_give)(void *semphr);
  123. void *(*_mutex_create)(void);
  124. void (*_mutex_delete)(void *mutex);
  125. int32_t (*_mutex_lock)(void *mutex);
  126. int32_t (*_mutex_unlock)(void *mutex);
  127. void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
  128. void (* _queue_delete)(void *queue);
  129. int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
  130. int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
  131. int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
  132. int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
  133. int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  134. void (* _task_delete)(void *task_handle);
  135. bool (* _is_in_isr)(void);
  136. int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
  137. void *(* _malloc)(uint32_t size);
  138. void *(* _malloc_internal)(uint32_t size);
  139. void (* _free)(void *p);
  140. int32_t (* _read_efuse_mac)(uint8_t mac[6]);
  141. void (* _srand)(unsigned int seed);
  142. int (* _rand)(void);
  143. uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
  144. uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
  145. bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
  146. void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
  147. void (* _btdm_sleep_enter_phase2)(void);
  148. void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
  149. void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
  150. void (* _btdm_sleep_exit_phase3)(void); /* called from task */
  151. bool (* _coex_bt_wakeup_request)(void);
  152. void (* _coex_bt_wakeup_request_end)(void);
  153. int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration);
  154. int (* _coex_bt_release)(uint32_t event);
  155. int (* _coex_register_bt_cb)(coex_func_cb_t cb);
  156. uint32_t (* _coex_bb_reset_lock)(void);
  157. void (* _coex_bb_reset_unlock)(uint32_t restore);
  158. uint32_t _magic;
  159. };
  160. typedef void (*workitem_handler_t)(void* arg);
  161. /* External functions or values
  162. ************************************************************************
  163. */
  164. /* not for user call, so don't put to include file */
  165. /* OSI */
  166. extern int btdm_osi_funcs_register(void *osi_funcs);
  167. /* Initialise and De-initialise */
  168. extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
  169. extern void btdm_controller_deinit(void);
  170. extern int btdm_controller_enable(esp_bt_mode_t mode);
  171. extern void btdm_controller_disable(void);
  172. extern uint8_t btdm_controller_get_mode(void);
  173. extern const char *btdm_controller_get_compile_version(void);
  174. extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
  175. extern int btdm_dispatch_work_to_controller(workitem_handler_t callback, void *arg, bool blocking);
  176. /* Sleep */
  177. extern void btdm_controller_enable_sleep(bool enable);
  178. extern void btdm_controller_set_sleep_mode(uint8_t mode);
  179. extern uint8_t btdm_controller_get_sleep_mode(void);
  180. extern bool btdm_power_state_active(void);
  181. extern void btdm_wakeup_request(void);
  182. extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting);
  183. /* Low Power Clock */
  184. extern bool btdm_lpclk_select_src(uint32_t sel);
  185. extern bool btdm_lpclk_set_div(uint32_t div);
  186. /* VHCI */
  187. extern bool API_vhci_host_check_send_available(void);
  188. extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
  189. extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
  190. /* TX power */
  191. extern int ble_txpwr_set(int power_type, int power_level);
  192. extern int ble_txpwr_get(int power_type);
  193. extern int bredr_txpwr_set(int min_power_level, int max_power_level);
  194. extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
  195. extern void bredr_sco_datapath_set(uint8_t data_path);
  196. extern void btdm_controller_scan_duplicate_list_clear(void);
  197. /* Coexistence */
  198. extern int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration);
  199. extern int coex_bt_release_wrapper(uint32_t event);
  200. extern int coex_register_bt_cb_wrapper(coex_func_cb_t cb);
  201. extern uint32_t coex_bb_reset_lock_wrapper(void);
  202. extern void coex_bb_reset_unlock_wrapper(uint32_t restore);
  203. extern void coex_ble_adv_priority_high_set(bool high);
  204. extern char _bss_start_btdm;
  205. extern char _bss_end_btdm;
  206. extern char _data_start_btdm;
  207. extern char _data_end_btdm;
  208. extern uint32_t _data_start_btdm_rom;
  209. extern uint32_t _data_end_btdm_rom;
  210. extern uint32_t _bt_bss_start;
  211. extern uint32_t _bt_bss_end;
  212. extern uint32_t _nimble_bss_start;
  213. extern uint32_t _nimble_bss_end;
  214. extern uint32_t _btdm_bss_start;
  215. extern uint32_t _btdm_bss_end;
  216. extern uint32_t _bt_data_start;
  217. extern uint32_t _bt_data_end;
  218. extern uint32_t _nimble_data_start;
  219. extern uint32_t _nimble_data_end;
  220. extern uint32_t _btdm_data_start;
  221. extern uint32_t _btdm_data_end;
  222. /* Local Function Declare
  223. *********************************************************************
  224. */
  225. #if CONFIG_SPIRAM_USE_MALLOC
  226. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue);
  227. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue);
  228. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  229. static void IRAM_ATTR interrupt_disable(void);
  230. static void IRAM_ATTR interrupt_restore(void);
  231. static void IRAM_ATTR task_yield_from_isr(void);
  232. static void *semphr_create_wrapper(uint32_t max, uint32_t init);
  233. static void semphr_delete_wrapper(void *semphr);
  234. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw);
  235. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw);
  236. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
  237. static int32_t semphr_give_wrapper(void *semphr);
  238. static void *mutex_create_wrapper(void);
  239. static void mutex_delete_wrapper(void *mutex);
  240. static int32_t mutex_lock_wrapper(void *mutex);
  241. static int32_t mutex_unlock_wrapper(void *mutex);
  242. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
  243. static void queue_delete_wrapper(void *queue);
  244. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
  245. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
  246. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
  247. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
  248. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  249. static void task_delete_wrapper(void *task_handle);
  250. static bool IRAM_ATTR is_in_isr_wrapper(void);
  251. static void IRAM_ATTR cause_sw_intr(void *arg);
  252. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
  253. static void *malloc_internal_wrapper(size_t size);
  254. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]);
  255. static void IRAM_ATTR srand_wrapper(unsigned int seed);
  256. static int IRAM_ATTR rand_wrapper(void);
  257. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles);
  258. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us);
  259. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt);
  260. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
  261. static void btdm_sleep_enter_phase2_wrapper(void);
  262. static void btdm_sleep_exit_phase3_wrapper(void);
  263. static bool coex_bt_wakeup_request(void);
  264. static void coex_bt_wakeup_request_end(void);
  265. /* Local variable definition
  266. ***************************************************************************
  267. */
  268. /* OSI funcs */
  269. static const struct osi_funcs_t osi_funcs_ro = {
  270. ._version = OSI_VERSION,
  271. ._set_isr = xt_set_interrupt_handler,
  272. ._ints_on = xt_ints_on,
  273. ._interrupt_disable = interrupt_disable,
  274. ._interrupt_restore = interrupt_restore,
  275. ._task_yield = vPortYield,
  276. ._task_yield_from_isr = task_yield_from_isr,
  277. ._semphr_create = semphr_create_wrapper,
  278. ._semphr_delete = semphr_delete_wrapper,
  279. ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
  280. ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
  281. ._semphr_take = semphr_take_wrapper,
  282. ._semphr_give = semphr_give_wrapper,
  283. ._mutex_create = mutex_create_wrapper,
  284. ._mutex_delete = mutex_delete_wrapper,
  285. ._mutex_lock = mutex_lock_wrapper,
  286. ._mutex_unlock = mutex_unlock_wrapper,
  287. ._queue_create = queue_create_wrapper,
  288. ._queue_delete = queue_delete_wrapper,
  289. ._queue_send = queue_send_wrapper,
  290. ._queue_send_from_isr = queue_send_from_isr_wrapper,
  291. ._queue_recv = queue_recv_wrapper,
  292. ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
  293. ._task_create = task_create_wrapper,
  294. ._task_delete = task_delete_wrapper,
  295. ._is_in_isr = is_in_isr_wrapper,
  296. ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
  297. ._malloc = malloc,
  298. ._malloc_internal = malloc_internal_wrapper,
  299. ._free = free,
  300. ._read_efuse_mac = read_mac_wrapper,
  301. ._srand = srand_wrapper,
  302. ._rand = rand_wrapper,
  303. ._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
  304. ._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
  305. ._btdm_sleep_check_duration = btdm_sleep_check_duration,
  306. ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
  307. ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
  308. ._btdm_sleep_exit_phase1 = NULL,
  309. ._btdm_sleep_exit_phase2 = NULL,
  310. ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
  311. ._coex_bt_wakeup_request = coex_bt_wakeup_request,
  312. ._coex_bt_wakeup_request_end = coex_bt_wakeup_request_end,
  313. ._coex_bt_request = coex_bt_request_wrapper,
  314. ._coex_bt_release = coex_bt_release_wrapper,
  315. ._coex_register_bt_cb = coex_register_bt_cb_wrapper,
  316. ._coex_bb_reset_lock = coex_bb_reset_lock_wrapper,
  317. ._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper,
  318. ._magic = OSI_MAGIC_VALUE,
  319. };
  320. /* the mode column will be modified by release function to indicate the available region */
  321. static btdm_dram_available_region_t btdm_dram_available_region[] = {
  322. //following is .data
  323. {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
  324. //following is memory which HW will use
  325. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
  326. {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
  327. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
  328. {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
  329. //following is .bss
  330. {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
  331. {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
  332. };
  333. /* Reserve the full memory region used by Bluetooth Controller,
  334. * some may be released later at runtime. */
  335. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
  336. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
  337. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
  338. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
  339. static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
  340. #if CONFIG_SPIRAM_USE_MALLOC
  341. static DRAM_ATTR btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM];
  342. static DRAM_ATTR SemaphoreHandle_t btdm_queue_table_mux = NULL;
  343. #endif /* #if CONFIG_SPIRAM_USE_MALLOC */
  344. /* Static variable declare */
  345. // timestamp when PHY/RF was switched on
  346. static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
  347. static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  348. static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
  349. // measured average low power clock period in micro seconds
  350. static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
  351. static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
  352. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  353. // used low power clock
  354. static DRAM_ATTR uint8_t btdm_lpclk_sel;
  355. #endif /* #ifdef CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG */
  356. static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL;
  357. #ifdef CONFIG_PM_ENABLE
  358. static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
  359. static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
  360. static bool s_pm_lock_acquired = true;
  361. static DRAM_ATTR bool s_btdm_allow_light_sleep;
  362. // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
  363. static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
  364. static void btdm_slp_tmr_callback(void *arg);
  365. #endif /* #ifdef CONFIG_PM_ENABLE */
  366. static inline void btdm_check_and_init_bb(void)
  367. {
  368. /* init BT-BB if PHY/RF has been switched off since last BT-BB init */
  369. int64_t latest_ts = esp_phy_rf_get_on_ts();
  370. if (latest_ts != s_time_phy_rf_just_enabled ||
  371. s_time_phy_rf_just_enabled == 0) {
  372. btdm_rf_bb_init_phase2();
  373. s_time_phy_rf_just_enabled = latest_ts;
  374. }
  375. }
  376. #if CONFIG_SPIRAM_USE_MALLOC
  377. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue)
  378. {
  379. if (!btdm_queue_table_mux || !queue) {
  380. return NULL;
  381. }
  382. bool ret = false;
  383. btdm_queue_item_t *item;
  384. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  385. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  386. item = &btdm_queue_table[i];
  387. if (item->handle == NULL) {
  388. memcpy(item, queue, sizeof(btdm_queue_item_t));
  389. ret = true;
  390. break;
  391. }
  392. }
  393. xSemaphoreGive(btdm_queue_table_mux);
  394. return ret;
  395. }
  396. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue)
  397. {
  398. if (!btdm_queue_table_mux || !queue) {
  399. return false;
  400. }
  401. bool ret = false;
  402. btdm_queue_item_t *item;
  403. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  404. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  405. item = &btdm_queue_table[i];
  406. if (item->handle == queue->handle) {
  407. memcpy(queue, item, sizeof(btdm_queue_item_t));
  408. memset(item, 0, sizeof(btdm_queue_item_t));
  409. ret = true;
  410. break;
  411. }
  412. }
  413. xSemaphoreGive(btdm_queue_table_mux);
  414. return ret;
  415. }
  416. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  417. static void IRAM_ATTR interrupt_disable(void)
  418. {
  419. if (xPortInIsrContext()) {
  420. portENTER_CRITICAL_ISR(&global_int_mux);
  421. } else {
  422. portENTER_CRITICAL(&global_int_mux);
  423. }
  424. }
  425. static void IRAM_ATTR interrupt_restore(void)
  426. {
  427. if (xPortInIsrContext()) {
  428. portEXIT_CRITICAL_ISR(&global_int_mux);
  429. } else {
  430. portEXIT_CRITICAL(&global_int_mux);
  431. }
  432. }
  433. static void IRAM_ATTR task_yield_from_isr(void)
  434. {
  435. portYIELD_FROM_ISR();
  436. }
  437. static void *semphr_create_wrapper(uint32_t max, uint32_t init)
  438. {
  439. #if !CONFIG_SPIRAM_USE_MALLOC
  440. return (void *)xSemaphoreCreateCounting(max, init);
  441. #else
  442. StaticQueue_t *queue_buffer = NULL;
  443. QueueHandle_t handle = NULL;
  444. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  445. if (!queue_buffer) {
  446. goto error;
  447. }
  448. handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer);
  449. if (!handle) {
  450. goto error;
  451. }
  452. btdm_queue_item_t item = {
  453. .handle = handle,
  454. .storage = NULL,
  455. .buffer = queue_buffer,
  456. };
  457. if (!btdm_queue_generic_register(&item)) {
  458. goto error;
  459. }
  460. return handle;
  461. error:
  462. if (handle) {
  463. vSemaphoreDelete(handle);
  464. }
  465. if (queue_buffer) {
  466. free(queue_buffer);
  467. }
  468. return NULL;
  469. #endif
  470. }
  471. static void semphr_delete_wrapper(void *semphr)
  472. {
  473. #if !CONFIG_SPIRAM_USE_MALLOC
  474. vSemaphoreDelete(semphr);
  475. #else
  476. btdm_queue_item_t item = {
  477. .handle = semphr,
  478. .storage = NULL,
  479. .buffer = NULL,
  480. };
  481. if (btdm_queue_generic_deregister(&item)) {
  482. vSemaphoreDelete(item.handle);
  483. free(item.buffer);
  484. }
  485. return;
  486. #endif
  487. }
  488. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
  489. {
  490. return (int32_t)xSemaphoreTakeFromISR(semphr, hptw);
  491. }
  492. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
  493. {
  494. return (int32_t)xSemaphoreGiveFromISR(semphr, hptw);
  495. }
  496. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
  497. {
  498. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  499. return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY);
  500. } else {
  501. return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
  502. }
  503. }
  504. static int32_t semphr_give_wrapper(void *semphr)
  505. {
  506. return (int32_t)xSemaphoreGive(semphr);
  507. }
  508. static void *mutex_create_wrapper(void)
  509. {
  510. #if CONFIG_SPIRAM_USE_MALLOC
  511. StaticQueue_t *queue_buffer = NULL;
  512. QueueHandle_t handle = NULL;
  513. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  514. if (!queue_buffer) {
  515. goto error;
  516. }
  517. handle = xSemaphoreCreateMutexStatic(queue_buffer);
  518. if (!handle) {
  519. goto error;
  520. }
  521. btdm_queue_item_t item = {
  522. .handle = handle,
  523. .storage = NULL,
  524. .buffer = queue_buffer,
  525. };
  526. if (!btdm_queue_generic_register(&item)) {
  527. goto error;
  528. }
  529. return handle;
  530. error:
  531. if (handle) {
  532. vSemaphoreDelete(handle);
  533. }
  534. if (queue_buffer) {
  535. free(queue_buffer);
  536. }
  537. return NULL;
  538. #else
  539. return (void *)xSemaphoreCreateMutex();
  540. #endif
  541. }
  542. static void mutex_delete_wrapper(void *mutex)
  543. {
  544. #if !CONFIG_SPIRAM_USE_MALLOC
  545. vSemaphoreDelete(mutex);
  546. #else
  547. btdm_queue_item_t item = {
  548. .handle = mutex,
  549. .storage = NULL,
  550. .buffer = NULL,
  551. };
  552. if (btdm_queue_generic_deregister(&item)) {
  553. vSemaphoreDelete(item.handle);
  554. free(item.buffer);
  555. }
  556. return;
  557. #endif
  558. }
  559. static int32_t mutex_lock_wrapper(void *mutex)
  560. {
  561. return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
  562. }
  563. static int32_t mutex_unlock_wrapper(void *mutex)
  564. {
  565. return (int32_t)xSemaphoreGive(mutex);
  566. }
  567. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
  568. {
  569. #if CONFIG_SPIRAM_USE_MALLOC
  570. StaticQueue_t *queue_buffer = NULL;
  571. uint8_t *queue_storage = NULL;
  572. QueueHandle_t handle = NULL;
  573. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  574. if (!queue_buffer) {
  575. goto error;
  576. }
  577. queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  578. if (!queue_storage ) {
  579. goto error;
  580. }
  581. handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer);
  582. if (!handle) {
  583. goto error;
  584. }
  585. btdm_queue_item_t item = {
  586. .handle = handle,
  587. .storage = queue_storage,
  588. .buffer = queue_buffer,
  589. };
  590. if (!btdm_queue_generic_register(&item)) {
  591. goto error;
  592. }
  593. return handle;
  594. error:
  595. if (handle) {
  596. vQueueDelete(handle);
  597. }
  598. if (queue_storage) {
  599. free(queue_storage);
  600. }
  601. if (queue_buffer) {
  602. free(queue_buffer);
  603. }
  604. return NULL;
  605. #else
  606. return (void *)xQueueCreate(queue_len, item_size);
  607. #endif
  608. }
  609. static void queue_delete_wrapper(void *queue)
  610. {
  611. #if !CONFIG_SPIRAM_USE_MALLOC
  612. vQueueDelete(queue);
  613. #else
  614. btdm_queue_item_t item = {
  615. .handle = queue,
  616. .storage = NULL,
  617. .buffer = NULL,
  618. };
  619. if (btdm_queue_generic_deregister(&item)) {
  620. vQueueDelete(item.handle);
  621. free(item.storage);
  622. free(item.buffer);
  623. }
  624. return;
  625. #endif
  626. }
  627. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
  628. {
  629. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  630. return (int32_t)xQueueSend(queue, item, portMAX_DELAY);
  631. } else {
  632. return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
  633. }
  634. }
  635. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
  636. {
  637. return (int32_t)xQueueSendFromISR(queue, item, hptw);
  638. }
  639. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
  640. {
  641. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  642. return (int32_t)xQueueReceive(queue, item, portMAX_DELAY);
  643. } else {
  644. return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
  645. }
  646. }
  647. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
  648. {
  649. return (int32_t)xQueueReceiveFromISR(queue, item, hptw);
  650. }
  651. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
  652. {
  653. return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
  654. }
  655. static void task_delete_wrapper(void *task_handle)
  656. {
  657. vTaskDelete(task_handle);
  658. }
  659. static bool IRAM_ATTR is_in_isr_wrapper(void)
  660. {
  661. return !xPortCanYield();
  662. }
  663. static void IRAM_ATTR cause_sw_intr(void *arg)
  664. {
  665. /* just convert void * to int, because the width is the same */
  666. uint32_t intr_no = (uint32_t)arg;
  667. XTHAL_SET_INTSET((1<<intr_no));
  668. }
  669. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
  670. {
  671. esp_err_t err = ESP_OK;
  672. #if CONFIG_FREERTOS_UNICORE
  673. cause_sw_intr((void *)intr_no);
  674. #else /* CONFIG_FREERTOS_UNICORE */
  675. if (xPortGetCoreID() == core_id) {
  676. cause_sw_intr((void *)intr_no);
  677. } else {
  678. err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
  679. }
  680. #endif /* !CONFIG_FREERTOS_UNICORE */
  681. return err;
  682. }
  683. static void *malloc_internal_wrapper(size_t size)
  684. {
  685. return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
  686. }
  687. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
  688. {
  689. return esp_read_mac(mac, ESP_MAC_BT);
  690. }
  691. static void IRAM_ATTR srand_wrapper(unsigned int seed)
  692. {
  693. /* empty function */
  694. }
  695. static int IRAM_ATTR rand_wrapper(void)
  696. {
  697. return (int)esp_random();
  698. }
  699. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
  700. {
  701. // The number of lp cycles should not lead to overflow. Thrs: 100s
  702. // clock measurement is conducted
  703. uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
  704. us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
  705. return (uint32_t)us;
  706. }
  707. /*
  708. * @brief Converts a duration in slots into a number of low power clock cycles.
  709. */
  710. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
  711. {
  712. // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
  713. // Compute the sleep duration in us to low power clock cycles, with calibration result applied
  714. // clock measurement is conducted
  715. uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
  716. return (uint32_t)cycles;
  717. }
  718. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
  719. {
  720. if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
  721. return false;
  722. }
  723. /* wake up in advance considering the delay in enabling PHY/RF */
  724. *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
  725. return true;
  726. }
  727. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
  728. {
  729. #ifdef CONFIG_PM_ENABLE
  730. // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
  731. uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
  732. #define BTDM_MIN_TIMER_UNCERTAINTY_US (500)
  733. assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
  734. // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
  735. // and set the timer in advance
  736. uint32_t uncertainty = (us_to_sleep >> 11);
  737. if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
  738. uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
  739. }
  740. if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
  741. ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
  742. }
  743. #endif
  744. }
  745. static void btdm_sleep_enter_phase2_wrapper(void)
  746. {
  747. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  748. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  749. esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE);
  750. #ifdef CONFIG_PM_ENABLE
  751. if (s_pm_lock_acquired) {
  752. esp_pm_lock_release(s_pm_lock);
  753. s_pm_lock_acquired = false;
  754. }
  755. #endif
  756. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  757. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  758. // pause bluetooth baseband
  759. periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
  760. }
  761. }
  762. static void btdm_sleep_exit_phase3_wrapper(void)
  763. {
  764. #ifdef CONFIG_PM_ENABLE
  765. if (!s_pm_lock_acquired) {
  766. s_pm_lock_acquired = true;
  767. esp_pm_lock_acquire(s_pm_lock);
  768. }
  769. #endif
  770. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  771. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  772. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  773. btdm_check_and_init_bb();
  774. #ifdef CONFIG_PM_ENABLE
  775. esp_timer_stop(s_btdm_slp_tmr);
  776. #endif
  777. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  778. // resume bluetooth baseband
  779. periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
  780. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  781. }
  782. }
  783. #ifdef CONFIG_PM_ENABLE
  784. static void btdm_slp_tmr_customer_callback(void * arg)
  785. {
  786. (void)(arg);
  787. if (!s_pm_lock_acquired) {
  788. s_pm_lock_acquired = true;
  789. esp_pm_lock_acquire(s_pm_lock);
  790. }
  791. }
  792. static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
  793. {
  794. (void)(arg);
  795. btdm_dispatch_work_to_controller(btdm_slp_tmr_customer_callback, NULL, true);
  796. }
  797. #endif
  798. #define BTDM_ASYNC_WAKEUP_REQ_HCI 0
  799. #define BTDM_ASYNC_WAKEUP_REQ_COEX 1
  800. #define BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA 2
  801. #define BTDM_ASYNC_WAKEUP_REQMAX 3
  802. static void btdm_wakeup_request_callback(void * arg)
  803. {
  804. (void)(arg);
  805. #if CONFIG_PM_ENABLE
  806. if (!s_pm_lock_acquired) {
  807. s_pm_lock_acquired = true;
  808. esp_pm_lock_acquire(s_pm_lock);
  809. }
  810. esp_timer_stop(s_btdm_slp_tmr);
  811. #endif
  812. btdm_wakeup_request();
  813. semphr_give_wrapper(s_wakeup_req_sem);
  814. }
  815. static bool async_wakeup_request(int event)
  816. {
  817. bool do_wakeup_request = false;
  818. switch (event) {
  819. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  820. btdm_in_wakeup_requesting_set(true);
  821. // NO break
  822. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  823. if (!btdm_power_state_active()) {
  824. do_wakeup_request = true;
  825. btdm_dispatch_work_to_controller(btdm_wakeup_request_callback, NULL, true);
  826. semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING);
  827. }
  828. break;
  829. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  830. if (!btdm_power_state_active()) {
  831. do_wakeup_request = true;
  832. #if CONFIG_PM_ENABLE
  833. if (!s_pm_lock_acquired) {
  834. s_pm_lock_acquired = true;
  835. esp_pm_lock_acquire(s_pm_lock);
  836. }
  837. esp_timer_stop(s_btdm_slp_tmr);
  838. #endif
  839. btdm_wakeup_request();
  840. }
  841. break;
  842. default:
  843. return false;
  844. }
  845. return do_wakeup_request;
  846. }
  847. static void async_wakeup_request_end(int event)
  848. {
  849. bool request_lock = false;
  850. switch (event) {
  851. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  852. request_lock = true;
  853. break;
  854. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  855. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  856. request_lock = false;
  857. break;
  858. default:
  859. return;
  860. }
  861. if (request_lock) {
  862. btdm_in_wakeup_requesting_set(false);
  863. }
  864. return;
  865. }
  866. static bool coex_bt_wakeup_request(void)
  867. {
  868. return async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_COEX);
  869. }
  870. static void coex_bt_wakeup_request_end(void)
  871. {
  872. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_COEX);
  873. return;
  874. }
  875. bool esp_vhci_host_check_send_available(void)
  876. {
  877. return API_vhci_host_check_send_available();
  878. }
  879. void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
  880. {
  881. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_HCI);
  882. API_vhci_host_send_packet(data, len);
  883. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_HCI);
  884. }
  885. esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
  886. {
  887. return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
  888. }
  889. static uint32_t btdm_config_mask_load(void)
  890. {
  891. uint32_t mask = 0x0;
  892. #if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4
  893. mask |= BTDM_CFG_HCI_UART;
  894. #endif
  895. #if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1
  896. mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
  897. #endif
  898. #if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED
  899. mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
  900. #endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */
  901. mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
  902. mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
  903. return mask;
  904. }
  905. static void btdm_controller_mem_init(void)
  906. {
  907. /* initialise .data section */
  908. memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
  909. ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
  910. //initial em, .bss section
  911. for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  912. if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
  913. memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
  914. ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
  915. }
  916. }
  917. }
  918. static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
  919. {
  920. int ret = heap_caps_add_region(start, end);
  921. /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
  922. * is too small to fit a heap. This cannot be termed as a fatal error and hence
  923. * we replace it by ESP_OK
  924. */
  925. if (ret == ESP_ERR_INVALID_SIZE) {
  926. return ESP_OK;
  927. }
  928. return ret;
  929. }
  930. esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
  931. {
  932. bool update = true;
  933. intptr_t mem_start=(intptr_t) NULL, mem_end=(intptr_t) NULL;
  934. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  935. return ESP_ERR_INVALID_STATE;
  936. }
  937. //already released
  938. if (!(mode & btdm_dram_available_region[0].mode)) {
  939. return ESP_ERR_INVALID_STATE;
  940. }
  941. for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  942. //skip the share mode, idle mode and other mode
  943. if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
  944. || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
  945. //clear the bit of the mode which will be released
  946. btdm_dram_available_region[i].mode &= ~mode;
  947. continue;
  948. } else {
  949. //clear the bit of the mode which will be released
  950. btdm_dram_available_region[i].mode &= ~mode;
  951. }
  952. if (update) {
  953. mem_start = btdm_dram_available_region[i].start;
  954. mem_end = btdm_dram_available_region[i].end;
  955. update = false;
  956. }
  957. if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
  958. mem_end = btdm_dram_available_region[i].end;
  959. if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
  960. && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
  961. && mem_end == btdm_dram_available_region[i+1].start) {
  962. continue;
  963. } else {
  964. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  965. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  966. update = true;
  967. }
  968. } else {
  969. mem_end = btdm_dram_available_region[i].end;
  970. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  971. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  972. update = true;
  973. }
  974. }
  975. if (mode == ESP_BT_MODE_BTDM) {
  976. mem_start = (intptr_t)&_btdm_bss_start;
  977. mem_end = (intptr_t)&_btdm_bss_end;
  978. if (mem_start != mem_end) {
  979. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  980. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  981. }
  982. mem_start = (intptr_t)&_btdm_data_start;
  983. mem_end = (intptr_t)&_btdm_data_end;
  984. if (mem_start != mem_end) {
  985. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  986. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  987. }
  988. }
  989. return ESP_OK;
  990. }
  991. esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
  992. {
  993. int ret;
  994. intptr_t mem_start, mem_end;
  995. ret = esp_bt_controller_mem_release(mode);
  996. if (ret != ESP_OK) {
  997. return ret;
  998. }
  999. if (mode == ESP_BT_MODE_BTDM) {
  1000. mem_start = (intptr_t)&_bt_bss_start;
  1001. mem_end = (intptr_t)&_bt_bss_end;
  1002. if (mem_start != mem_end) {
  1003. ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1004. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1005. }
  1006. mem_start = (intptr_t)&_bt_data_start;
  1007. mem_end = (intptr_t)&_bt_data_end;
  1008. if (mem_start != mem_end) {
  1009. ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1010. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1011. }
  1012. mem_start = (intptr_t)&_nimble_bss_start;
  1013. mem_end = (intptr_t)&_nimble_bss_end;
  1014. if (mem_start != mem_end) {
  1015. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1016. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1017. }
  1018. mem_start = (intptr_t)&_nimble_data_start;
  1019. mem_end = (intptr_t)&_nimble_data_end;
  1020. if (mem_start != mem_end) {
  1021. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1022. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1023. }
  1024. }
  1025. return ESP_OK;
  1026. }
  1027. esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
  1028. {
  1029. esp_err_t err;
  1030. uint32_t btdm_cfg_mask = 0;
  1031. //if all the bt available memory was already released, cannot initialize bluetooth controller
  1032. if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
  1033. return ESP_ERR_INVALID_STATE;
  1034. }
  1035. osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
  1036. if (osi_funcs_p == NULL) {
  1037. return ESP_ERR_NO_MEM;
  1038. }
  1039. memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
  1040. if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
  1041. return ESP_ERR_INVALID_ARG;
  1042. }
  1043. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  1044. return ESP_ERR_INVALID_STATE;
  1045. }
  1046. if (cfg == NULL) {
  1047. return ESP_ERR_INVALID_ARG;
  1048. }
  1049. if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
  1050. || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
  1051. return ESP_ERR_INVALID_ARG;
  1052. }
  1053. //overwrite some parameters
  1054. cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF;
  1055. cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
  1056. if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
  1057. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
  1058. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
  1059. return ESP_ERR_INVALID_ARG;
  1060. }
  1061. ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
  1062. #if CONFIG_SPIRAM_USE_MALLOC
  1063. btdm_queue_table_mux = xSemaphoreCreateMutex();
  1064. if (btdm_queue_table_mux == NULL) {
  1065. return ESP_ERR_NO_MEM;
  1066. }
  1067. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1068. #endif
  1069. s_wakeup_req_sem = semphr_create_wrapper(1, 0);
  1070. if (s_wakeup_req_sem == NULL) {
  1071. err = ESP_ERR_NO_MEM;
  1072. goto error;
  1073. }
  1074. btdm_controller_mem_init();
  1075. periph_module_enable(PERIPH_BT_MODULE);
  1076. #ifdef CONFIG_PM_ENABLE
  1077. s_btdm_allow_light_sleep = false;
  1078. #endif
  1079. // set default sleep clock cycle and its fractional bits
  1080. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1081. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1082. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  1083. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1084. #if CONFIG_BTDM_LPCLK_SEL_EXT_32K_XTAL
  1085. // check whether or not EXT_CRYS is working
  1086. if (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_32K_XTAL) {
  1087. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // set default value
  1088. #ifdef CONFIG_PM_ENABLE
  1089. s_btdm_allow_light_sleep = true;
  1090. #endif
  1091. } else {
  1092. ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n"
  1093. "light sleep mode will not be able to apply when bluetooth is enabled");
  1094. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1095. }
  1096. #else
  1097. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1098. #endif
  1099. bool select_src_ret, set_div_ret;
  1100. if (btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
  1101. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
  1102. set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2 - 1);
  1103. assert(select_src_ret && set_div_ret);
  1104. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1105. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1106. } else { // btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL32K
  1107. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
  1108. set_div_ret = btdm_lpclk_set_div(0);
  1109. assert(select_src_ret && set_div_ret);
  1110. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1111. btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
  1112. (1000000 >> (15 - RTC_CLK_CAL_FRACT));
  1113. assert(btdm_lpcycle_us != 0);
  1114. }
  1115. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
  1116. #elif CONFIG_BTDM_MODEM_SLEEP_MODE_EVED
  1117. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
  1118. #else
  1119. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1120. #endif
  1121. #ifdef CONFIG_PM_ENABLE
  1122. if (!s_btdm_allow_light_sleep) {
  1123. if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
  1124. goto error;
  1125. }
  1126. }
  1127. if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
  1128. goto error;
  1129. }
  1130. esp_timer_create_args_t create_args = {
  1131. .callback = btdm_slp_tmr_callback,
  1132. .arg = NULL,
  1133. .name = "btSlp"
  1134. };
  1135. if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
  1136. goto error;
  1137. }
  1138. s_pm_lock_acquired = true;
  1139. #endif
  1140. btdm_cfg_mask = btdm_config_mask_load();
  1141. if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
  1142. err = ESP_ERR_NO_MEM;
  1143. goto error;
  1144. }
  1145. #ifdef CONFIG_BTDM_COEX_BLE_ADV_HIGH_PRIORITY
  1146. coex_ble_adv_priority_high_set(true);
  1147. #else
  1148. coex_ble_adv_priority_high_set(false);
  1149. #endif
  1150. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1151. return ESP_OK;
  1152. error:
  1153. #ifdef CONFIG_PM_ENABLE
  1154. if (!s_btdm_allow_light_sleep) {
  1155. if (s_light_sleep_pm_lock != NULL) {
  1156. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1157. s_light_sleep_pm_lock = NULL;
  1158. }
  1159. }
  1160. if (s_pm_lock != NULL) {
  1161. esp_pm_lock_delete(s_pm_lock);
  1162. s_pm_lock = NULL;
  1163. }
  1164. if (s_btdm_slp_tmr != NULL) {
  1165. esp_timer_delete(s_btdm_slp_tmr);
  1166. s_btdm_slp_tmr = NULL;
  1167. }
  1168. #endif
  1169. if (s_wakeup_req_sem) {
  1170. semphr_delete_wrapper(s_wakeup_req_sem);
  1171. s_wakeup_req_sem = NULL;
  1172. }
  1173. return err;
  1174. }
  1175. esp_err_t esp_bt_controller_deinit(void)
  1176. {
  1177. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1178. return ESP_ERR_INVALID_STATE;
  1179. }
  1180. btdm_controller_deinit();
  1181. periph_module_disable(PERIPH_BT_MODULE);
  1182. #ifdef CONFIG_PM_ENABLE
  1183. if (!s_btdm_allow_light_sleep) {
  1184. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1185. s_light_sleep_pm_lock = NULL;
  1186. }
  1187. esp_timer_stop(s_btdm_slp_tmr);
  1188. esp_timer_delete(s_btdm_slp_tmr);
  1189. s_btdm_slp_tmr = NULL;
  1190. s_pm_lock_acquired = false;
  1191. #endif
  1192. semphr_delete_wrapper(s_wakeup_req_sem);
  1193. s_wakeup_req_sem = NULL;
  1194. #if CONFIG_SPIRAM_USE_MALLOC
  1195. vSemaphoreDelete(btdm_queue_table_mux);
  1196. btdm_queue_table_mux = NULL;
  1197. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1198. #endif
  1199. free(osi_funcs_p);
  1200. osi_funcs_p = NULL;
  1201. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  1202. btdm_lpcycle_us = 0;
  1203. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1204. return ESP_OK;
  1205. }
  1206. esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
  1207. {
  1208. int ret;
  1209. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1210. return ESP_ERR_INVALID_STATE;
  1211. }
  1212. //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
  1213. if (mode != btdm_controller_get_mode()) {
  1214. return ESP_ERR_INVALID_ARG;
  1215. }
  1216. #ifdef CONFIG_PM_ENABLE
  1217. if (!s_btdm_allow_light_sleep) {
  1218. esp_pm_lock_acquire(s_light_sleep_pm_lock);
  1219. }
  1220. esp_pm_lock_acquire(s_pm_lock);
  1221. #endif
  1222. esp_phy_load_cal_and_init(PHY_BT_MODULE);
  1223. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) {
  1224. //Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter.
  1225. //Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF.
  1226. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1227. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1228. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  1229. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  1230. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1231. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1232. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1233. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1234. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1235. }
  1236. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1237. btdm_controller_enable_sleep(true);
  1238. }
  1239. // inititalize bluetooth baseband
  1240. btdm_check_and_init_bb();
  1241. ret = btdm_controller_enable(mode);
  1242. if (ret) {
  1243. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1244. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1245. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1246. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1247. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1248. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1249. }
  1250. esp_phy_rf_deinit(PHY_BT_MODULE);
  1251. #ifdef CONFIG_PM_ENABLE
  1252. if (!s_btdm_allow_light_sleep) {
  1253. esp_pm_lock_release(s_light_sleep_pm_lock);
  1254. }
  1255. esp_pm_lock_release(s_pm_lock);
  1256. #endif
  1257. return ESP_ERR_INVALID_STATE;
  1258. }
  1259. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
  1260. return ESP_OK;
  1261. }
  1262. esp_err_t esp_bt_controller_disable(void)
  1263. {
  1264. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1265. return ESP_ERR_INVALID_STATE;
  1266. }
  1267. // disable modem sleep and wake up from sleep mode
  1268. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1269. btdm_controller_enable_sleep(false);
  1270. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA);
  1271. while (!btdm_power_state_active()) {
  1272. ets_delay_us(1000);
  1273. }
  1274. }
  1275. btdm_controller_disable();
  1276. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1277. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1278. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1279. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1280. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1281. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1282. }
  1283. esp_phy_rf_deinit(PHY_BT_MODULE);
  1284. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1285. #ifdef CONFIG_PM_ENABLE
  1286. if (!s_btdm_allow_light_sleep) {
  1287. esp_pm_lock_release(s_light_sleep_pm_lock);
  1288. }
  1289. esp_pm_lock_release(s_pm_lock);
  1290. #endif
  1291. return ESP_OK;
  1292. }
  1293. esp_bt_controller_status_t esp_bt_controller_get_status(void)
  1294. {
  1295. return btdm_controller_status;
  1296. }
  1297. /* extra functions */
  1298. esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
  1299. {
  1300. if (ble_txpwr_set(power_type, power_level) != 0) {
  1301. return ESP_ERR_INVALID_ARG;
  1302. }
  1303. return ESP_OK;
  1304. }
  1305. esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
  1306. {
  1307. return (esp_power_level_t)ble_txpwr_get(power_type);
  1308. }
  1309. esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
  1310. {
  1311. esp_err_t err;
  1312. int ret;
  1313. ret = bredr_txpwr_set(min_power_level, max_power_level);
  1314. if (ret == 0) {
  1315. err = ESP_OK;
  1316. } else if (ret == -1) {
  1317. err = ESP_ERR_INVALID_ARG;
  1318. } else {
  1319. err = ESP_ERR_INVALID_STATE;
  1320. }
  1321. return err;
  1322. }
  1323. esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
  1324. {
  1325. if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
  1326. return ESP_ERR_INVALID_ARG;
  1327. }
  1328. return ESP_OK;
  1329. }
  1330. esp_err_t esp_bt_sleep_enable (void)
  1331. {
  1332. esp_err_t status;
  1333. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1334. return ESP_ERR_INVALID_STATE;
  1335. }
  1336. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1337. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1338. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1339. btdm_controller_enable_sleep (true);
  1340. status = ESP_OK;
  1341. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1342. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1343. btdm_controller_enable_sleep (true);
  1344. status = ESP_OK;
  1345. } else {
  1346. status = ESP_ERR_NOT_SUPPORTED;
  1347. }
  1348. return status;
  1349. }
  1350. esp_err_t esp_bt_sleep_disable (void)
  1351. {
  1352. esp_err_t status;
  1353. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1354. return ESP_ERR_INVALID_STATE;
  1355. }
  1356. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1357. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1358. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1359. btdm_controller_enable_sleep (false);
  1360. status = ESP_OK;
  1361. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1362. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1363. btdm_controller_enable_sleep (false);
  1364. status = ESP_OK;
  1365. } else {
  1366. status = ESP_ERR_NOT_SUPPORTED;
  1367. }
  1368. return status;
  1369. }
  1370. esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
  1371. {
  1372. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1373. return ESP_ERR_INVALID_STATE;
  1374. }
  1375. bredr_sco_datapath_set(data_path);
  1376. return ESP_OK;
  1377. }
  1378. esp_err_t esp_ble_scan_dupilcate_list_flush(void)
  1379. {
  1380. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1381. return ESP_ERR_INVALID_STATE;
  1382. }
  1383. btdm_controller_scan_duplicate_list_clear();
  1384. return ESP_OK;
  1385. }
  1386. #endif /* CONFIG_BT_ENABLED */