uart.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "esp32/clk.h"
  20. #include "malloc.h"
  21. #include "freertos/FreeRTOS.h"
  22. #include "freertos/semphr.h"
  23. #include "freertos/xtensa_api.h"
  24. #include "freertos/task.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/uart_periph.h"
  27. #include "driver/uart.h"
  28. #include "driver/gpio.h"
  29. #include "driver/uart_select.h"
  30. #include "sdkconfig.h"
  31. #ifdef CONFIG_UART_ISR_IN_IRAM
  32. #define UART_ISR_ATTR IRAM_ATTR
  33. #else
  34. #define UART_ISR_ATTR
  35. #endif
  36. #define UART_NUM SOC_UART_NUM
  37. #define XOFF (char)0x13
  38. #define XON (char)0x11
  39. static const char* UART_TAG = "uart";
  40. #define UART_CHECK(a, str, ret_val) \
  41. if (!(a)) { \
  42. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  43. return (ret_val); \
  44. }
  45. #define UART_EMPTY_THRESH_DEFAULT (10)
  46. #define UART_FULL_THRESH_DEFAULT (120)
  47. #define UART_TOUT_THRESH_DEFAULT (10)
  48. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  49. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  50. #define UART_TX_IDLE_NUM_DEFAULT (0)
  51. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  52. #define UART_MIN_WAKEUP_THRESH (2)
  53. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  54. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  55. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  56. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  57. // Check actual UART mode set
  58. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  59. typedef struct {
  60. uart_event_type_t type; /*!< UART TX data type */
  61. struct {
  62. int brk_len;
  63. size_t size;
  64. uint8_t data[0];
  65. } tx_data;
  66. } uart_tx_data_t;
  67. typedef struct {
  68. int wr;
  69. int rd;
  70. int len;
  71. int* data;
  72. } uart_pat_rb_t;
  73. typedef struct {
  74. uart_port_t uart_num; /*!< UART port number*/
  75. int queue_size; /*!< UART event queue size*/
  76. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  77. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  78. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  79. bool coll_det_flg; /*!< UART collision detection flag */
  80. //rx parameters
  81. int rx_buffered_len; /*!< UART cached data length */
  82. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  83. int rx_buf_size; /*!< RX ring buffer size */
  84. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  85. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  86. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  87. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  88. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  89. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  90. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  91. uart_pat_rb_t rx_pattern_pos;
  92. //tx parameters
  93. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  94. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  95. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  96. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  97. int tx_buf_size; /*!< TX ring buffer size */
  98. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  99. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  100. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  101. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  102. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  103. uint32_t tx_len_cur;
  104. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  105. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  106. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  107. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  108. } uart_obj_t;
  109. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  110. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  111. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {
  112. &UART0,
  113. &UART1,
  114. #if UART_NUM > 2
  115. &UART2
  116. #endif
  117. };
  118. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {
  119. portMUX_INITIALIZER_UNLOCKED,
  120. portMUX_INITIALIZER_UNLOCKED,
  121. #if UART_NUM > 2
  122. portMUX_INITIALIZER_UNLOCKED
  123. #endif
  124. };
  125. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  126. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  127. {
  128. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  129. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  130. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  131. UART[uart_num]->conf0.bit_num = data_bit;
  132. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  133. return ESP_OK;
  134. }
  135. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  136. {
  137. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  138. *(data_bit) = UART[uart_num]->conf0.bit_num;
  139. return ESP_OK;
  140. }
  141. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  142. {
  143. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  144. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  145. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  146. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  147. if (stop_bit == UART_STOP_BITS_2) {
  148. stop_bit = UART_STOP_BITS_1;
  149. UART[uart_num]->rs485_conf.dl1_en = 1;
  150. } else {
  151. UART[uart_num]->rs485_conf.dl1_en = 0;
  152. }
  153. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  154. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  155. return ESP_OK;
  156. }
  157. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  158. {
  159. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  160. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  161. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  162. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  163. (*stop_bit) = UART_STOP_BITS_2;
  164. } else {
  165. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  166. }
  167. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  168. return ESP_OK;
  169. }
  170. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  171. {
  172. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  173. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  174. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  175. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  176. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  177. return ESP_OK;
  178. }
  179. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  180. {
  181. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  182. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  183. int val = UART[uart_num]->conf0.val;
  184. if(val & UART_PARITY_EN_M) {
  185. if(val & UART_PARITY_M) {
  186. (*parity_mode) = UART_PARITY_ODD;
  187. } else {
  188. (*parity_mode) = UART_PARITY_EVEN;
  189. }
  190. } else {
  191. (*parity_mode) = UART_PARITY_DISABLE;
  192. }
  193. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  194. return ESP_OK;
  195. }
  196. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  197. {
  198. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  199. esp_err_t ret = ESP_OK;
  200. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  201. int uart_clk_freq;
  202. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  203. /* this UART has been configured to use REF_TICK */
  204. uart_clk_freq = REF_CLK_FREQ;
  205. } else {
  206. uart_clk_freq = esp_clk_apb_freq();
  207. }
  208. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  209. if (clk_div < 16) {
  210. /* baud rate is too high for this clock frequency */
  211. ret = ESP_ERR_INVALID_ARG;
  212. } else {
  213. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  214. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  215. }
  216. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  217. return ret;
  218. }
  219. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  220. {
  221. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  222. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  223. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  224. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  225. uint32_t uart_clk_freq = esp_clk_apb_freq();
  226. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  227. uart_clk_freq = REF_CLK_FREQ;
  228. }
  229. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  230. return ESP_OK;
  231. }
  232. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  233. {
  234. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  235. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  236. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  237. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  238. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  239. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  240. return ESP_OK;
  241. }
  242. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  243. {
  244. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  245. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  246. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xoff thresh error", ESP_FAIL);
  247. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  248. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  249. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  250. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  251. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  252. UART[uart_num]->swfc_conf.xon_char = XON;
  253. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  254. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  255. return ESP_OK;
  256. }
  257. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  258. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  259. {
  260. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  261. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  262. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  263. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  264. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  265. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  266. UART[uart_num]->conf1.rx_flow_en = 1;
  267. } else {
  268. UART[uart_num]->conf1.rx_flow_en = 0;
  269. }
  270. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  271. UART[uart_num]->conf0.tx_flow_en = 1;
  272. } else {
  273. UART[uart_num]->conf0.tx_flow_en = 0;
  274. }
  275. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  276. return ESP_OK;
  277. }
  278. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  279. {
  280. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  281. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  282. if(UART[uart_num]->conf1.rx_flow_en) {
  283. val |= UART_HW_FLOWCTRL_RTS;
  284. }
  285. if(UART[uart_num]->conf0.tx_flow_en) {
  286. val |= UART_HW_FLOWCTRL_CTS;
  287. }
  288. (*flow_ctrl) = val;
  289. return ESP_OK;
  290. }
  291. static esp_err_t UART_ISR_ATTR uart_reset_rx_fifo(uart_port_t uart_num)
  292. {
  293. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  294. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  295. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  296. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  297. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  298. READ_PERI_REG(UART_FIFO_REG(uart_num));
  299. }
  300. return ESP_OK;
  301. }
  302. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  303. {
  304. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  305. //intr_clr register is write-only
  306. UART[uart_num]->int_clr.val = clr_mask;
  307. return ESP_OK;
  308. }
  309. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  310. {
  311. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  312. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  313. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  314. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  315. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  316. return ESP_OK;
  317. }
  318. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  319. {
  320. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  321. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  322. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  323. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  324. return ESP_OK;
  325. }
  326. static void UART_ISR_ATTR uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  327. {
  328. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  329. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  330. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  331. }
  332. static void UART_ISR_ATTR uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  333. {
  334. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  335. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  336. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  337. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  338. }
  339. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  340. {
  341. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  342. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  343. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  344. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  345. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  346. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  347. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  348. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  349. free(pdata);
  350. }
  351. return ESP_OK;
  352. }
  353. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  354. {
  355. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  356. esp_err_t ret = ESP_OK;
  357. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  358. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  359. int next = p_pos->wr + 1;
  360. if (next >= p_pos->len) {
  361. next = 0;
  362. }
  363. if (next == p_pos->rd) {
  364. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  365. ret = ESP_FAIL;
  366. } else {
  367. p_pos->data[p_pos->wr] = pos;
  368. p_pos->wr = next;
  369. ret = ESP_OK;
  370. }
  371. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  372. return ret;
  373. }
  374. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  375. {
  376. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  377. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  378. return ESP_ERR_INVALID_STATE;
  379. } else {
  380. esp_err_t ret = ESP_OK;
  381. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  382. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  383. if (p_pos->rd == p_pos->wr) {
  384. ret = ESP_FAIL;
  385. } else {
  386. p_pos->rd++;
  387. }
  388. if (p_pos->rd >= p_pos->len) {
  389. p_pos->rd = 0;
  390. }
  391. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  392. return ret;
  393. }
  394. }
  395. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  396. {
  397. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  398. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  399. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  400. int rd = p_pos->rd;
  401. while(rd != p_pos->wr) {
  402. p_pos->data[rd] -= diff_len;
  403. int rd_rec = rd;
  404. rd ++;
  405. if (rd >= p_pos->len) {
  406. rd = 0;
  407. }
  408. if (p_pos->data[rd_rec] < 0) {
  409. p_pos->rd = rd;
  410. }
  411. }
  412. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  413. return ESP_OK;
  414. }
  415. int uart_pattern_pop_pos(uart_port_t uart_num)
  416. {
  417. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  418. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  419. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  420. int pos = -1;
  421. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  422. pos = pat_pos->data[pat_pos->rd];
  423. uart_pattern_dequeue(uart_num);
  424. }
  425. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  426. return pos;
  427. }
  428. int uart_pattern_get_pos(uart_port_t uart_num)
  429. {
  430. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  431. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  432. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  433. int pos = -1;
  434. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  435. pos = pat_pos->data[pat_pos->rd];
  436. }
  437. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  438. return pos;
  439. }
  440. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  441. {
  442. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  443. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  444. int* pdata = (int*) malloc(queue_length * sizeof(int));
  445. if(pdata == NULL) {
  446. return ESP_ERR_NO_MEM;
  447. }
  448. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  449. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  450. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  451. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  452. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  453. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  454. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  455. free(ptmp);
  456. return ESP_OK;
  457. }
  458. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  459. {
  460. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  461. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  462. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  463. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  464. UART[uart_num]->at_cmd_char.data = pattern_chr;
  465. UART[uart_num]->at_cmd_char.char_num = chr_num;
  466. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  467. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  468. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  469. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  470. }
  471. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  472. {
  473. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  474. }
  475. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  476. {
  477. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  478. }
  479. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  480. {
  481. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  482. }
  483. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  484. {
  485. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  486. }
  487. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  488. {
  489. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  490. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  491. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  492. UART[uart_num]->int_clr.txfifo_empty = 1;
  493. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  494. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  495. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  496. return ESP_OK;
  497. }
  498. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  499. {
  500. int ret;
  501. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  502. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  503. switch(uart_num) {
  504. case UART_NUM_1:
  505. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  506. break;
  507. #if UART_NUM > 2
  508. case UART_NUM_2:
  509. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  510. break;
  511. #endif
  512. case UART_NUM_0:
  513. default:
  514. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  515. break;
  516. }
  517. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  518. return ret;
  519. }
  520. esp_err_t uart_isr_free(uart_port_t uart_num)
  521. {
  522. esp_err_t ret;
  523. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  524. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  525. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  526. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  527. p_uart_obj[uart_num]->intr_handle=NULL;
  528. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  529. return ret;
  530. }
  531. //internal signal can be output to multiple GPIO pads
  532. //only one GPIO pad can connect with input signal
  533. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  534. {
  535. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  536. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  537. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  538. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  539. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  540. int tx_sig, rx_sig, rts_sig, cts_sig;
  541. switch(uart_num) {
  542. case UART_NUM_0:
  543. tx_sig = U0TXD_OUT_IDX;
  544. rx_sig = U0RXD_IN_IDX;
  545. rts_sig = U0RTS_OUT_IDX;
  546. cts_sig = U0CTS_IN_IDX;
  547. break;
  548. case UART_NUM_1:
  549. tx_sig = U1TXD_OUT_IDX;
  550. rx_sig = U1RXD_IN_IDX;
  551. rts_sig = U1RTS_OUT_IDX;
  552. cts_sig = U1CTS_IN_IDX;
  553. break;
  554. #if UART_NUM > 2
  555. case UART_NUM_2:
  556. tx_sig = U2TXD_OUT_IDX;
  557. rx_sig = U2RXD_IN_IDX;
  558. rts_sig = U2RTS_OUT_IDX;
  559. cts_sig = U2CTS_IN_IDX;
  560. break;
  561. #endif
  562. case UART_NUM_MAX:
  563. default:
  564. tx_sig = U0TXD_OUT_IDX;
  565. rx_sig = U0RXD_IN_IDX;
  566. rts_sig = U0RTS_OUT_IDX;
  567. cts_sig = U0CTS_IN_IDX;
  568. break;
  569. }
  570. if(tx_io_num >= 0) {
  571. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  572. gpio_set_level(tx_io_num, 1);
  573. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  574. }
  575. if(rx_io_num >= 0) {
  576. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  577. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  578. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  579. gpio_matrix_in(rx_io_num, rx_sig, 0);
  580. }
  581. if(rts_io_num >= 0) {
  582. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  583. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  584. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  585. }
  586. if(cts_io_num >= 0) {
  587. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  588. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  589. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  590. gpio_matrix_in(cts_io_num, cts_sig, 0);
  591. }
  592. return ESP_OK;
  593. }
  594. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  595. {
  596. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  597. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  598. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  599. UART[uart_num]->conf0.sw_rts = level & 0x1;
  600. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  601. return ESP_OK;
  602. }
  603. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  604. {
  605. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  606. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  607. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  608. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  609. return ESP_OK;
  610. }
  611. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  612. {
  613. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  614. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  615. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  616. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  617. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  618. return ESP_OK;
  619. }
  620. static periph_module_t get_periph_module(uart_port_t uart_num)
  621. {
  622. periph_module_t periph_module = PERIPH_UART0_MODULE;
  623. if (uart_num == UART_NUM_0) {
  624. periph_module = PERIPH_UART0_MODULE;
  625. } else if (uart_num == UART_NUM_1) {
  626. periph_module = PERIPH_UART1_MODULE;
  627. }
  628. #if SOC_UART_NUM > 2
  629. else if (uart_num == UART_NUM_2) {
  630. periph_module = PERIPH_UART2_MODULE;
  631. }
  632. #endif
  633. else {
  634. assert(0 && "uart_num error");
  635. }
  636. return periph_module;
  637. }
  638. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  639. {
  640. esp_err_t r;
  641. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  642. UART_CHECK((uart_config), "param null", ESP_FAIL);
  643. periph_module_t periph_module = get_periph_module(uart_num);
  644. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  645. periph_module_reset(periph_module);
  646. }
  647. periph_module_enable(periph_module);
  648. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  649. if (r != ESP_OK) return r;
  650. UART[uart_num]->conf0.val =
  651. (uart_config->parity << UART_PARITY_S)
  652. | (uart_config->data_bits << UART_BIT_NUM_S)
  653. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  654. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  655. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  656. if (r != ESP_OK) return r;
  657. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  658. if (r != ESP_OK) return r;
  659. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  660. //A hardware reset does not reset the fifo,
  661. //so we need to reset the fifo manually.
  662. uart_reset_rx_fifo(uart_num);
  663. return r;
  664. }
  665. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  666. {
  667. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  668. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  669. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  670. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  671. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  672. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  673. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  674. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  675. UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
  676. } else {
  677. UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
  678. }
  679. UART[uart_num]->conf1.rx_tout_en = 1;
  680. } else {
  681. UART[uart_num]->conf1.rx_tout_en = 0;
  682. }
  683. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  684. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  685. }
  686. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  687. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  688. }
  689. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  690. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  691. return ESP_OK;
  692. }
  693. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  694. {
  695. int cnt = 0;
  696. int len = length;
  697. while (len >= 0) {
  698. if (buf[len] == pat_chr) {
  699. cnt++;
  700. } else {
  701. cnt = 0;
  702. }
  703. if (cnt >= pat_num) {
  704. break;
  705. }
  706. len --;
  707. }
  708. return len;
  709. }
  710. //internal isr handler for default driver code.
  711. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  712. {
  713. uart_obj_t *p_uart = (uart_obj_t*) param;
  714. uint8_t uart_num = p_uart->uart_num;
  715. uart_dev_t* uart_reg = UART[uart_num];
  716. int rx_fifo_len = 0;
  717. uint8_t buf_idx = 0;
  718. uint32_t uart_intr_status = 0;
  719. uart_event_t uart_event;
  720. portBASE_TYPE HPTaskAwoken = 0;
  721. static uint8_t pat_flg = 0;
  722. while(1) {
  723. uart_intr_status = uart_reg->int_st.val;
  724. // The `continue statement` may cause the interrupt to loop infinitely
  725. // we exit the interrupt here
  726. if(uart_intr_status == 0) {
  727. break;
  728. }
  729. uart_event.type = UART_EVENT_MAX;
  730. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  731. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  732. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  733. if(p_uart->tx_waiting_brk) {
  734. continue;
  735. }
  736. //TX semaphore will only be used when tx_buf_size is zero.
  737. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  738. p_uart->tx_waiting_fifo = false;
  739. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  740. } else {
  741. //We don't use TX ring buffer, because the size is zero.
  742. if(p_uart->tx_buf_size == 0) {
  743. continue;
  744. }
  745. int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
  746. bool en_tx_flg = false;
  747. //We need to put a loop here, in case all the buffer items are very short.
  748. //That would cause a watch_dog reset because empty interrupt happens so often.
  749. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  750. while(tx_fifo_rem) {
  751. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  752. size_t size;
  753. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  754. if(p_uart->tx_head) {
  755. //The first item is the data description
  756. //Get the first item to get the data information
  757. if(p_uart->tx_len_tot == 0) {
  758. p_uart->tx_ptr = NULL;
  759. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  760. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  761. p_uart->tx_brk_flg = 1;
  762. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  763. }
  764. //We have saved the data description from the 1st item, return buffer.
  765. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  766. }else if(p_uart->tx_ptr == NULL) {
  767. //Update the TX item pointer, we will need this to return item to buffer.
  768. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  769. en_tx_flg = true;
  770. p_uart->tx_len_cur = size;
  771. }
  772. }
  773. else {
  774. //Can not get data from ring buffer, return;
  775. break;
  776. }
  777. }
  778. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  779. //To fill the TX FIFO.
  780. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  781. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  782. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  783. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  784. uart_reg->conf0.sw_rts = 0;
  785. uart_reg->int_ena.tx_done = 1;
  786. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  787. }
  788. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  789. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  790. *(p_uart->tx_ptr++) & 0xff);
  791. }
  792. p_uart->tx_len_tot -= send_len;
  793. p_uart->tx_len_cur -= send_len;
  794. tx_fifo_rem -= send_len;
  795. if (p_uart->tx_len_cur == 0) {
  796. //Return item to ring buffer.
  797. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  798. p_uart->tx_head = NULL;
  799. p_uart->tx_ptr = NULL;
  800. //Sending item done, now we need to send break if there is a record.
  801. //Set TX break signal after FIFO is empty
  802. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  803. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  804. uart_reg->int_ena.tx_brk_done = 0;
  805. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  806. uart_reg->conf0.txd_brk = 1;
  807. uart_reg->int_clr.tx_brk_done = 1;
  808. uart_reg->int_ena.tx_brk_done = 1;
  809. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  810. p_uart->tx_waiting_brk = 1;
  811. //do not enable TX empty interrupt
  812. en_tx_flg = false;
  813. } else {
  814. //enable TX empty interrupt
  815. en_tx_flg = true;
  816. }
  817. } else {
  818. //enable TX empty interrupt
  819. en_tx_flg = true;
  820. }
  821. }
  822. }
  823. if (en_tx_flg) {
  824. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  825. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  826. }
  827. }
  828. }
  829. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  830. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  831. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  832. ) {
  833. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  834. typeof(uart_reg->mem_rx_status) rx_status = uart_reg->mem_rx_status;
  835. // When using DPort to read fifo, fifo_cnt is not credible, we need to calculate the real cnt based on the fifo read and write pointer.
  836. // When using AHB to read FIFO, we can use fifo_cnt to indicate the data length in fifo.
  837. if (rx_status.wr_addr > rx_status.rd_addr) {
  838. rx_fifo_len = rx_status.wr_addr - rx_status.rd_addr;
  839. } else if (rx_status.wr_addr < rx_status.rd_addr) {
  840. rx_fifo_len = (rx_status.wr_addr + 128) - rx_status.rd_addr;
  841. } else {
  842. rx_fifo_len = rx_fifo_len > 0 ? 128 : 0;
  843. }
  844. if(pat_flg == 1) {
  845. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  846. pat_flg = 0;
  847. }
  848. if (p_uart->rx_buffer_full_flg == false) {
  849. //We have to read out all data in RX FIFO to clear the interrupt signal
  850. for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
  851. p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte;
  852. }
  853. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  854. int pat_num = uart_reg->at_cmd_char.char_num;
  855. int pat_idx = -1;
  856. //Get the buffer from the FIFO
  857. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  858. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  859. uart_event.type = UART_PATTERN_DET;
  860. uart_event.size = rx_fifo_len;
  861. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  862. } else {
  863. //After Copying the Data From FIFO ,Clear intr_status
  864. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  865. uart_event.type = UART_DATA;
  866. uart_event.size = rx_fifo_len;
  867. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  868. if (p_uart->uart_select_notif_callback) {
  869. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  870. }
  871. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  872. }
  873. p_uart->rx_stash_len = rx_fifo_len;
  874. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  875. //Mainly for applications that uses flow control or small ring buffer.
  876. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  877. p_uart->rx_buffer_full_flg = true;
  878. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  879. if (uart_event.type == UART_PATTERN_DET) {
  880. if (rx_fifo_len < pat_num) {
  881. //some of the characters are read out in last interrupt
  882. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  883. } else {
  884. uart_pattern_enqueue(uart_num,
  885. pat_idx <= -1 ?
  886. //can not find the pattern in buffer,
  887. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  888. // find the pattern in buffer
  889. p_uart->rx_buffered_len + pat_idx);
  890. }
  891. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  892. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  893. }
  894. }
  895. uart_event.type = UART_BUFFER_FULL;
  896. } else {
  897. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  898. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  899. if (rx_fifo_len < pat_num) {
  900. //some of the characters are read out in last interrupt
  901. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  902. } else if(pat_idx >= 0) {
  903. // find pattern in statsh buffer.
  904. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  905. }
  906. }
  907. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  908. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  909. }
  910. } else {
  911. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  912. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  913. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  914. uart_reg->int_clr.at_cmd_char_det = 1;
  915. uart_event.type = UART_PATTERN_DET;
  916. uart_event.size = rx_fifo_len;
  917. pat_flg = 1;
  918. }
  919. }
  920. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  921. // When fifo overflows, we reset the fifo.
  922. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  923. uart_reset_rx_fifo(uart_num);
  924. uart_reg->int_clr.rxfifo_ovf = 1;
  925. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  926. uart_event.type = UART_FIFO_OVF;
  927. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  928. if (p_uart->uart_select_notif_callback) {
  929. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  930. }
  931. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  932. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  933. uart_reg->int_clr.brk_det = 1;
  934. uart_event.type = UART_BREAK;
  935. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  936. uart_reg->int_clr.frm_err = 1;
  937. uart_event.type = UART_FRAME_ERR;
  938. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  939. if (p_uart->uart_select_notif_callback) {
  940. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  941. }
  942. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  943. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  944. uart_reg->int_clr.parity_err = 1;
  945. uart_event.type = UART_PARITY_ERR;
  946. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  947. if (p_uart->uart_select_notif_callback) {
  948. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  949. }
  950. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  951. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  952. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  953. uart_reg->conf0.txd_brk = 0;
  954. uart_reg->int_ena.tx_brk_done = 0;
  955. uart_reg->int_clr.tx_brk_done = 1;
  956. if(p_uart->tx_brk_flg == 1) {
  957. uart_reg->int_ena.txfifo_empty = 1;
  958. }
  959. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  960. if(p_uart->tx_brk_flg == 1) {
  961. p_uart->tx_brk_flg = 0;
  962. p_uart->tx_waiting_brk = 0;
  963. } else {
  964. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  965. }
  966. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  967. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  968. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  969. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  970. uart_reg->int_clr.at_cmd_char_det = 1;
  971. uart_event.type = UART_PATTERN_DET;
  972. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  973. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  974. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  975. // RS485 collision or frame error interrupt triggered
  976. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  977. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  978. uart_reset_rx_fifo(uart_num);
  979. // Set collision detection flag
  980. p_uart_obj[uart_num]->coll_det_flg = true;
  981. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  982. uart_event.type = UART_EVENT_MAX;
  983. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  984. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  985. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  986. // If RS485 half duplex mode is enable then reset FIFO and
  987. // reset RTS pin to start receiver driver
  988. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  989. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  990. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  991. uart_reg->conf0.sw_rts = 1;
  992. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  993. }
  994. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  995. } else {
  996. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  997. uart_event.type = UART_EVENT_MAX;
  998. }
  999. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  1000. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  1001. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  1002. }
  1003. }
  1004. }
  1005. if(HPTaskAwoken == pdTRUE) {
  1006. portYIELD_FROM_ISR();
  1007. }
  1008. }
  1009. /**************************************************************/
  1010. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  1011. {
  1012. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1013. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1014. BaseType_t res;
  1015. portTickType ticks_start = xTaskGetTickCount();
  1016. //Take tx_mux
  1017. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  1018. if(res == pdFALSE) {
  1019. return ESP_ERR_TIMEOUT;
  1020. }
  1021. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1022. typeof(UART0.status) status = UART[uart_num]->status;
  1023. //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
  1024. if(status.txfifo_cnt == 0 && status.st_utx_out == 0) {
  1025. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1026. return ESP_OK;
  1027. }
  1028. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1029. TickType_t ticks_end = xTaskGetTickCount();
  1030. if (ticks_end - ticks_start > ticks_to_wait) {
  1031. ticks_to_wait = 0;
  1032. } else {
  1033. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1034. }
  1035. //take 2nd tx_done_sem, wait given from ISR
  1036. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1037. if(res == pdFALSE) {
  1038. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1039. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1040. return ESP_ERR_TIMEOUT;
  1041. }
  1042. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1043. return ESP_OK;
  1044. }
  1045. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1046. {
  1047. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1048. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1049. UART[uart_num]->conf0.txd_brk = 1;
  1050. UART[uart_num]->int_clr.tx_brk_done = 1;
  1051. UART[uart_num]->int_ena.tx_brk_done = 1;
  1052. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1053. return ESP_OK;
  1054. }
  1055. //Fill UART tx_fifo and return a number,
  1056. //This function by itself is not thread-safe, always call from within a muxed section.
  1057. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1058. {
  1059. uint8_t i = 0;
  1060. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1061. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1062. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1063. // Set the RTS pin if RS485 mode is enabled
  1064. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1065. UART[uart_num]->conf0.sw_rts = 0;
  1066. UART[uart_num]->int_ena.tx_done = 1;
  1067. }
  1068. for (i = 0; i < copy_cnt; i++) {
  1069. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1070. }
  1071. return copy_cnt;
  1072. }
  1073. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1074. {
  1075. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1076. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1077. UART_CHECK(buffer, "buffer null", (-1));
  1078. if(len == 0) {
  1079. return 0;
  1080. }
  1081. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1082. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1083. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1084. return tx_len;
  1085. }
  1086. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1087. {
  1088. if(size == 0) {
  1089. return 0;
  1090. }
  1091. size_t original_size = size;
  1092. //lock for uart_tx
  1093. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1094. p_uart_obj[uart_num]->coll_det_flg = false;
  1095. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1096. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1097. int offset = 0;
  1098. uart_tx_data_t evt;
  1099. evt.tx_data.size = size;
  1100. evt.tx_data.brk_len = brk_len;
  1101. if(brk_en) {
  1102. evt.type = UART_DATA_BREAK;
  1103. } else {
  1104. evt.type = UART_DATA;
  1105. }
  1106. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1107. while(size > 0) {
  1108. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1109. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1110. size -= send_size;
  1111. offset += send_size;
  1112. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1113. }
  1114. } else {
  1115. while(size) {
  1116. //semaphore for tx_fifo available
  1117. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1118. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1119. if(sent < size) {
  1120. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1121. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1122. }
  1123. size -= sent;
  1124. src += sent;
  1125. }
  1126. }
  1127. if(brk_en) {
  1128. uart_set_break(uart_num, brk_len);
  1129. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1130. }
  1131. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1132. }
  1133. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1134. return original_size;
  1135. }
  1136. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1137. {
  1138. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1139. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1140. UART_CHECK(src, "buffer null", (-1));
  1141. return uart_tx_all(uart_num, src, size, 0, 0);
  1142. }
  1143. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1144. {
  1145. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1146. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1147. UART_CHECK((size > 0), "uart size error", (-1));
  1148. UART_CHECK((src), "uart data null", (-1));
  1149. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1150. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1151. }
  1152. static bool uart_check_buf_full(uart_port_t uart_num)
  1153. {
  1154. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1155. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1156. if(res == pdTRUE) {
  1157. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1158. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1159. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1160. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1161. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1162. return true;
  1163. }
  1164. }
  1165. return false;
  1166. }
  1167. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1168. {
  1169. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1170. UART_CHECK((buf), "uart data null", (-1));
  1171. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1172. uint8_t* data = NULL;
  1173. size_t size;
  1174. size_t copy_len = 0;
  1175. int len_tmp;
  1176. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1177. return -1;
  1178. }
  1179. while(length) {
  1180. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1181. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1182. if(data) {
  1183. p_uart_obj[uart_num]->rx_head_ptr = data;
  1184. p_uart_obj[uart_num]->rx_ptr = data;
  1185. p_uart_obj[uart_num]->rx_cur_remain = size;
  1186. } else {
  1187. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1188. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1189. //to solve the possible asynchronous issues.
  1190. if(uart_check_buf_full(uart_num)) {
  1191. //This condition will never be true if `uart_read_bytes`
  1192. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1193. continue;
  1194. } else {
  1195. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1196. return copy_len;
  1197. }
  1198. }
  1199. }
  1200. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1201. len_tmp = length;
  1202. } else {
  1203. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1204. }
  1205. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1206. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1207. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1208. uart_pattern_queue_update(uart_num, len_tmp);
  1209. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1210. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1211. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1212. copy_len += len_tmp;
  1213. length -= len_tmp;
  1214. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1215. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1216. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1217. p_uart_obj[uart_num]->rx_ptr = NULL;
  1218. uart_check_buf_full(uart_num);
  1219. }
  1220. }
  1221. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1222. return copy_len;
  1223. }
  1224. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1225. {
  1226. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1227. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1228. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1229. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1230. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1231. return ESP_OK;
  1232. }
  1233. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1234. esp_err_t uart_flush_input(uart_port_t uart_num)
  1235. {
  1236. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1237. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1238. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1239. uint8_t* data;
  1240. size_t size;
  1241. //rx sem protect the ring buffer read related functions
  1242. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1243. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1244. while(true) {
  1245. if(p_uart->rx_head_ptr) {
  1246. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1247. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1248. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1249. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1250. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1251. p_uart->rx_ptr = NULL;
  1252. p_uart->rx_cur_remain = 0;
  1253. p_uart->rx_head_ptr = NULL;
  1254. }
  1255. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1256. if(data == NULL) {
  1257. bool error = false;
  1258. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1259. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1260. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1261. error = true;
  1262. }
  1263. //We also need to clear the `rx_buffer_full_flg` here.
  1264. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1265. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1266. if (error) {
  1267. // this must be called outside the critical section
  1268. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1269. }
  1270. break;
  1271. }
  1272. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1273. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1274. uart_pattern_queue_update(uart_num, size);
  1275. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1276. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1277. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1278. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1279. if(res == pdTRUE) {
  1280. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1281. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1282. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1283. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1284. }
  1285. }
  1286. }
  1287. p_uart->rx_ptr = NULL;
  1288. p_uart->rx_cur_remain = 0;
  1289. p_uart->rx_head_ptr = NULL;
  1290. uart_reset_rx_fifo(uart_num);
  1291. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1292. xSemaphoreGive(p_uart->rx_mux);
  1293. return ESP_OK;
  1294. }
  1295. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1296. {
  1297. esp_err_t r;
  1298. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1299. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1300. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1301. #if CONFIG_UART_ISR_IN_IRAM
  1302. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0,
  1303. "should set ESP_INTR_FLAG_IRAM flag when CONFIG_UART_ISR_IN_IRAM is enabled", ESP_FAIL);
  1304. #else
  1305. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0,
  1306. "should not set ESP_INTR_FLAG_IRAM when CONFIG_UART_ISR_IN_IRAM is not enabled", ESP_FAIL);
  1307. #endif
  1308. if(p_uart_obj[uart_num] == NULL) {
  1309. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1310. if(p_uart_obj[uart_num] == NULL) {
  1311. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1312. return ESP_FAIL;
  1313. }
  1314. p_uart_obj[uart_num]->uart_num = uart_num;
  1315. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1316. p_uart_obj[uart_num]->coll_det_flg = false;
  1317. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1318. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1319. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1320. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1321. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1322. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1323. p_uart_obj[uart_num]->queue_size = queue_size;
  1324. p_uart_obj[uart_num]->tx_ptr = NULL;
  1325. p_uart_obj[uart_num]->tx_head = NULL;
  1326. p_uart_obj[uart_num]->tx_len_tot = 0;
  1327. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1328. p_uart_obj[uart_num]->tx_brk_len = 0;
  1329. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1330. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1331. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1332. if(uart_queue) {
  1333. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1334. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1335. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1336. } else {
  1337. p_uart_obj[uart_num]->xQueueUart = NULL;
  1338. }
  1339. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1340. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1341. p_uart_obj[uart_num]->rx_ptr = NULL;
  1342. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1343. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1344. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1345. if(tx_buffer_size > 0) {
  1346. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1347. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1348. } else {
  1349. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1350. p_uart_obj[uart_num]->tx_buf_size = 0;
  1351. }
  1352. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1353. } else {
  1354. ESP_LOGE(UART_TAG, "UART driver already installed");
  1355. return ESP_FAIL;
  1356. }
  1357. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1358. if (r!=ESP_OK) goto err;
  1359. uart_intr_config_t uart_intr = {
  1360. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1361. | UART_RXFIFO_TOUT_INT_ENA_M
  1362. | UART_FRM_ERR_INT_ENA_M
  1363. | UART_RXFIFO_OVF_INT_ENA_M
  1364. | UART_BRK_DET_INT_ENA_M
  1365. | UART_PARITY_ERR_INT_ENA_M,
  1366. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1367. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1368. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1369. };
  1370. r=uart_intr_config(uart_num, &uart_intr);
  1371. if (r!=ESP_OK) goto err;
  1372. return r;
  1373. err:
  1374. uart_driver_delete(uart_num);
  1375. return r;
  1376. }
  1377. //Make sure no other tasks are still using UART before you call this function
  1378. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1379. {
  1380. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1381. if(p_uart_obj[uart_num] == NULL) {
  1382. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1383. return ESP_OK;
  1384. }
  1385. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1386. uart_disable_rx_intr(uart_num);
  1387. uart_disable_tx_intr(uart_num);
  1388. uart_pattern_link_free(uart_num);
  1389. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1390. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1391. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1392. }
  1393. if(p_uart_obj[uart_num]->tx_done_sem) {
  1394. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1395. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1396. }
  1397. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1398. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1399. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1400. }
  1401. if(p_uart_obj[uart_num]->tx_mux) {
  1402. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1403. p_uart_obj[uart_num]->tx_mux = NULL;
  1404. }
  1405. if(p_uart_obj[uart_num]->rx_mux) {
  1406. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1407. p_uart_obj[uart_num]->rx_mux = NULL;
  1408. }
  1409. if(p_uart_obj[uart_num]->xQueueUart) {
  1410. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1411. p_uart_obj[uart_num]->xQueueUart = NULL;
  1412. }
  1413. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1414. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1415. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1416. }
  1417. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1418. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1419. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1420. }
  1421. free(p_uart_obj[uart_num]);
  1422. p_uart_obj[uart_num] = NULL;
  1423. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  1424. periph_module_t periph_module = get_periph_module(uart_num);
  1425. periph_module_disable(periph_module);
  1426. }
  1427. return ESP_OK;
  1428. }
  1429. bool uart_is_driver_installed(uart_port_t uart_num)
  1430. {
  1431. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1432. }
  1433. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1434. {
  1435. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1436. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1437. }
  1438. }
  1439. portMUX_TYPE *uart_get_selectlock()
  1440. {
  1441. return &uart_selectlock;
  1442. }
  1443. // Set UART mode
  1444. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1445. {
  1446. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1447. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1448. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1449. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1450. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1451. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1452. }
  1453. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1454. UART[uart_num]->rs485_conf.en = 0;
  1455. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1456. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1457. UART[uart_num]->conf0.irda_en = 0;
  1458. UART[uart_num]->conf0.sw_rts = 0;
  1459. switch (mode) {
  1460. case UART_MODE_UART:
  1461. break;
  1462. case UART_MODE_RS485_COLLISION_DETECT:
  1463. // This mode allows read while transmitting that allows collision detection
  1464. p_uart_obj[uart_num]->coll_det_flg = false;
  1465. // Transmitter’s output signal loop back to the receiver’s input signal
  1466. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1467. // Transmitter should send data when its receiver is busy
  1468. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1469. UART[uart_num]->rs485_conf.en = 1;
  1470. // Enable collision detection interrupts
  1471. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1472. | UART_RXFIFO_FULL_INT_ENA
  1473. | UART_RS485_CLASH_INT_ENA
  1474. | UART_RS485_FRM_ERR_INT_ENA
  1475. | UART_RS485_PARITY_ERR_INT_ENA);
  1476. break;
  1477. case UART_MODE_RS485_APP_CTRL:
  1478. // Application software control, remove echo
  1479. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1480. UART[uart_num]->rs485_conf.en = 1;
  1481. break;
  1482. case UART_MODE_RS485_HALF_DUPLEX:
  1483. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1484. UART[uart_num]->conf0.sw_rts = 1;
  1485. UART[uart_num]->rs485_conf.en = 1;
  1486. // Must be set to 0 to automatically remove echo
  1487. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1488. // This is to void collision
  1489. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1490. break;
  1491. case UART_MODE_IRDA:
  1492. UART[uart_num]->conf0.irda_en = 1;
  1493. break;
  1494. default:
  1495. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1496. break;
  1497. }
  1498. p_uart_obj[uart_num]->uart_mode = mode;
  1499. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1500. return ESP_OK;
  1501. }
  1502. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1503. {
  1504. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1505. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1506. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1507. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1508. // transmission time of one symbol (~11 bit) on current baudrate
  1509. if (tout_thresh > 0) {
  1510. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  1511. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  1512. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  1513. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT;
  1514. } else {
  1515. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh;
  1516. }
  1517. UART[uart_num]->conf1.rx_tout_en = 1;
  1518. } else {
  1519. UART[uart_num]->conf1.rx_tout_en = 0;
  1520. }
  1521. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1522. return ESP_OK;
  1523. }
  1524. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1525. {
  1526. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1527. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1528. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1529. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1530. "wrong mode", ESP_ERR_INVALID_ARG);
  1531. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1532. return ESP_OK;
  1533. }
  1534. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1535. {
  1536. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1537. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1538. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1539. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1540. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1541. return ESP_OK;
  1542. }
  1543. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1544. {
  1545. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1546. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1547. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1548. return ESP_OK;
  1549. }