uart.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "malloc.h"
  21. #include "freertos/FreeRTOS.h"
  22. #include "freertos/semphr.h"
  23. #include "freertos/xtensa_api.h"
  24. #include "freertos/task.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/dport_reg.h"
  27. #include "soc/uart_struct.h"
  28. #include "driver/uart.h"
  29. #include "driver/gpio.h"
  30. static const char* UART_TAG = "uart";
  31. #define UART_CHECK(a, str, ret_val) \
  32. if (!(a)) { \
  33. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  34. return (ret_val); \
  35. }
  36. #define UART_EMPTY_THRESH_DEFAULT (10)
  37. #define UART_FULL_THRESH_DEFAULT (120)
  38. #define UART_TOUT_THRESH_DEFAULT (10)
  39. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  40. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  41. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  42. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  43. typedef struct {
  44. uart_event_type_t type; /*!< UART TX data type */
  45. struct {
  46. int brk_len;
  47. size_t size;
  48. uint8_t data[0];
  49. } tx_data;
  50. } uart_tx_data_t;
  51. typedef struct {
  52. uart_port_t uart_num; /*!< UART port number*/
  53. int queue_size; /*!< UART event queue size*/
  54. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  55. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  56. //rx parameters
  57. int rx_buffered_len; /*!< UART cached data length */
  58. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  59. int rx_buf_size; /*!< RX ring buffer size */
  60. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  61. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  62. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  63. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  64. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  65. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  66. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  67. //tx parameters
  68. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  69. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  70. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  71. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  72. int tx_buf_size; /*!< TX ring buffer size */
  73. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  74. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  75. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  76. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  77. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  78. uint32_t tx_len_cur;
  79. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  80. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  81. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  82. } uart_obj_t;
  83. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  84. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  85. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  86. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  87. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  88. {
  89. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  90. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  91. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  92. UART[uart_num]->conf0.bit_num = data_bit;
  93. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  94. return ESP_OK;
  95. }
  96. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  97. {
  98. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  99. *(data_bit) = UART[uart_num]->conf0.bit_num;
  100. return ESP_OK;
  101. }
  102. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  103. {
  104. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  105. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  106. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  107. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  108. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  109. return ESP_OK;
  110. }
  111. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  112. {
  113. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  114. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  115. return ESP_OK;
  116. }
  117. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  118. {
  119. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  120. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  121. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  122. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  123. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  124. return ESP_OK;
  125. }
  126. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  127. {
  128. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  129. int val = UART[uart_num]->conf0.val;
  130. if(val & UART_PARITY_EN_M) {
  131. if(val & UART_PARITY_M) {
  132. (*parity_mode) = UART_PARITY_ODD;
  133. } else {
  134. (*parity_mode) = UART_PARITY_EVEN;
  135. }
  136. } else {
  137. (*parity_mode) = UART_PARITY_DISABLE;
  138. }
  139. return ESP_OK;
  140. }
  141. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  142. {
  143. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  144. UART_CHECK((baud_rate < UART_BITRATE_MAX), "baud_rate error", ESP_FAIL);
  145. uint32_t clk_div = (((UART_CLK_FREQ) << 4) / baud_rate);
  146. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  147. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  148. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  149. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  150. return ESP_OK;
  151. }
  152. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  153. {
  154. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  155. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  156. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  157. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  158. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  159. return ESP_OK;
  160. }
  161. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  162. {
  163. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  164. UART_CHECK((((inverse_mask & UART_LINE_INV_MASK) == 0) && (inverse_mask != 0)), "inverse_mask error", ESP_FAIL);
  165. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  166. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  167. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  168. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  169. return ESP_OK;
  170. }
  171. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  172. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  173. {
  174. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  175. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  176. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  177. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  178. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  179. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  180. UART[uart_num]->conf1.rx_flow_en = 1;
  181. } else {
  182. UART[uart_num]->conf1.rx_flow_en = 0;
  183. }
  184. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  185. UART[uart_num]->conf0.tx_flow_en = 1;
  186. } else {
  187. UART[uart_num]->conf0.tx_flow_en = 0;
  188. }
  189. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  190. return ESP_OK;
  191. }
  192. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  193. {
  194. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  195. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  196. if(UART[uart_num]->conf1.rx_flow_en) {
  197. val |= UART_HW_FLOWCTRL_RTS;
  198. }
  199. if(UART[uart_num]->conf0.tx_flow_en) {
  200. val |= UART_HW_FLOWCTRL_CTS;
  201. }
  202. (*flow_ctrl) = val;
  203. return ESP_OK;
  204. }
  205. static esp_err_t uart_reset_fifo(uart_port_t uart_num)
  206. {
  207. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  208. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  209. UART[uart_num]->conf0.rxfifo_rst = 1;
  210. UART[uart_num]->conf0.rxfifo_rst = 0;
  211. UART[uart_num]->conf0.txfifo_rst = 1;
  212. UART[uart_num]->conf0.txfifo_rst = 0;
  213. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  214. return ESP_OK;
  215. }
  216. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  217. {
  218. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  219. //intr_clr register is write-only
  220. UART[uart_num]->int_clr.val = clr_mask;
  221. return ESP_OK;
  222. }
  223. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  224. {
  225. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  226. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  227. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  228. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  229. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  230. return ESP_OK;
  231. }
  232. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  233. {
  234. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  235. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  236. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  237. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  238. return ESP_OK;
  239. }
  240. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  241. {
  242. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  243. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  244. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  245. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  246. UART[uart_num]->at_cmd_char.data = pattern_chr;
  247. UART[uart_num]->at_cmd_char.char_num = chr_num;
  248. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  249. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  250. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  251. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  252. }
  253. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  254. {
  255. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  256. }
  257. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  258. {
  259. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  260. }
  261. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  262. {
  263. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  264. }
  265. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  266. {
  267. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  268. }
  269. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  270. {
  271. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  272. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  273. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  274. UART[uart_num]->int_clr.txfifo_empty = 1;
  275. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  276. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  277. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  278. return ESP_OK;
  279. }
  280. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  281. {
  282. int ret;
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  285. switch(uart_num) {
  286. case UART_NUM_1:
  287. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  288. break;
  289. case UART_NUM_2:
  290. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  291. break;
  292. case UART_NUM_0:
  293. default:
  294. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  295. break;
  296. }
  297. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  298. return ret;
  299. }
  300. esp_err_t uart_isr_free(uart_port_t uart_num)
  301. {
  302. esp_err_t ret;
  303. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  304. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  305. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  306. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  307. p_uart_obj[uart_num]->intr_handle=NULL;
  308. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  309. return ret;
  310. }
  311. //internal signal can be output to multiple GPIO pads
  312. //only one GPIO pad can connect with input signal
  313. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  314. {
  315. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  316. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  317. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  318. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  319. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  320. int tx_sig, rx_sig, rts_sig, cts_sig;
  321. switch(uart_num) {
  322. case UART_NUM_0:
  323. tx_sig = U0TXD_OUT_IDX;
  324. rx_sig = U0RXD_IN_IDX;
  325. rts_sig = U0RTS_OUT_IDX;
  326. cts_sig = U0CTS_IN_IDX;
  327. break;
  328. case UART_NUM_1:
  329. tx_sig = U1TXD_OUT_IDX;
  330. rx_sig = U1RXD_IN_IDX;
  331. rts_sig = U1RTS_OUT_IDX;
  332. cts_sig = U1CTS_IN_IDX;
  333. break;
  334. case UART_NUM_2:
  335. tx_sig = U2TXD_OUT_IDX;
  336. rx_sig = U2RXD_IN_IDX;
  337. rts_sig = U2RTS_OUT_IDX;
  338. cts_sig = U2CTS_IN_IDX;
  339. break;
  340. case UART_NUM_MAX:
  341. default:
  342. tx_sig = U0TXD_OUT_IDX;
  343. rx_sig = U0RXD_IN_IDX;
  344. rts_sig = U0RTS_OUT_IDX;
  345. cts_sig = U0CTS_IN_IDX;
  346. break;
  347. }
  348. if(tx_io_num >= 0) {
  349. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  350. gpio_set_direction(tx_io_num, GPIO_MODE_OUTPUT);
  351. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  352. }
  353. if(rx_io_num >= 0) {
  354. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  355. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  356. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  357. gpio_matrix_in(rx_io_num, rx_sig, 0);
  358. }
  359. if(rts_io_num >= 0) {
  360. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  361. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  362. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  363. }
  364. if(cts_io_num >= 0) {
  365. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  366. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  367. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  368. gpio_matrix_in(cts_io_num, cts_sig, 0);
  369. }
  370. return ESP_OK;
  371. }
  372. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  373. {
  374. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  375. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  376. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  377. UART[uart_num]->conf0.sw_rts = level & 0x1;
  378. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  379. return ESP_OK;
  380. }
  381. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  382. {
  383. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  384. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  385. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  386. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  387. return ESP_OK;
  388. }
  389. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  390. {
  391. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  392. UART_CHECK((uart_config), "param null", ESP_FAIL);
  393. if(uart_num == UART_NUM_0) {
  394. periph_module_enable(PERIPH_UART0_MODULE);
  395. } else if(uart_num == UART_NUM_1) {
  396. periph_module_enable(PERIPH_UART1_MODULE);
  397. } else if(uart_num == UART_NUM_2) {
  398. periph_module_enable(PERIPH_UART2_MODULE);
  399. }
  400. uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  401. uart_set_baudrate(uart_num, uart_config->baud_rate);
  402. UART[uart_num]->conf0.val = (
  403. (uart_config->parity << UART_PARITY_S)
  404. | (uart_config->stop_bits << UART_STOP_BIT_NUM_S)
  405. | (uart_config->data_bits << UART_BIT_NUM_S)
  406. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  407. | UART_TICK_REF_ALWAYS_ON_M);
  408. return ESP_OK;
  409. }
  410. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  411. {
  412. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  413. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  414. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  415. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  416. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  417. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  418. UART[uart_num]->conf1.rx_tout_en = 1;
  419. } else {
  420. UART[uart_num]->conf1.rx_tout_en = 0;
  421. }
  422. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  423. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  424. }
  425. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  426. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  427. }
  428. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  429. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  430. return ESP_OK;
  431. }
  432. //internal isr handler for default driver code.
  433. static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
  434. {
  435. uart_obj_t *p_uart = (uart_obj_t*) param;
  436. uint8_t uart_num = p_uart->uart_num;
  437. uart_dev_t* uart_reg = UART[uart_num];
  438. uint8_t buf_idx = 0;
  439. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  440. int rx_fifo_len = 0;
  441. uart_event_t uart_event;
  442. portBASE_TYPE HPTaskAwoken = 0;
  443. while(uart_intr_status != 0x0) {
  444. buf_idx = 0;
  445. uart_event.type = UART_EVENT_MAX;
  446. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  447. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  448. uart_reg->int_ena.txfifo_empty = 0;
  449. uart_reg->int_clr.txfifo_empty = 1;
  450. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  451. if(p_uart->tx_waiting_brk) {
  452. continue;
  453. }
  454. //TX semaphore will only be used when tx_buf_size is zero.
  455. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  456. p_uart->tx_waiting_fifo = false;
  457. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  458. if(HPTaskAwoken == pdTRUE) {
  459. portYIELD_FROM_ISR() ;
  460. }
  461. }
  462. else {
  463. //We don't use TX ring buffer, because the size is zero.
  464. if(p_uart->tx_buf_size == 0) {
  465. continue;
  466. }
  467. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  468. bool en_tx_flg = false;
  469. //We need to put a loop here, in case all the buffer items are very short.
  470. //That would cause a watch_dog reset because empty interrupt happens so often.
  471. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  472. while(tx_fifo_rem) {
  473. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  474. size_t size;
  475. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  476. if(p_uart->tx_head) {
  477. //The first item is the data description
  478. //Get the first item to get the data information
  479. if(p_uart->tx_len_tot == 0) {
  480. p_uart->tx_ptr = NULL;
  481. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  482. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  483. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  484. p_uart->tx_brk_flg = 1;
  485. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  486. }
  487. //We have saved the data description from the 1st item, return buffer.
  488. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  489. if(HPTaskAwoken == pdTRUE) {
  490. portYIELD_FROM_ISR() ;
  491. }
  492. }else if(p_uart->tx_ptr == NULL) {
  493. //Update the TX item pointer, we will need this to return item to buffer.
  494. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  495. en_tx_flg = true;
  496. p_uart->tx_len_cur = size;
  497. }
  498. }
  499. else {
  500. //Can not get data from ring buffer, return;
  501. break;
  502. }
  503. }
  504. if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  505. //To fill the TX FIFO.
  506. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  507. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  508. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  509. }
  510. p_uart->tx_len_tot -= send_len;
  511. p_uart->tx_len_cur -= send_len;
  512. tx_fifo_rem -= send_len;
  513. if(p_uart->tx_len_cur == 0) {
  514. //Return item to ring buffer.
  515. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  516. if(HPTaskAwoken == pdTRUE) {
  517. portYIELD_FROM_ISR() ;
  518. }
  519. p_uart->tx_head = NULL;
  520. p_uart->tx_ptr = NULL;
  521. //Sending item done, now we need to send break if there is a record.
  522. //Set TX break signal after FIFO is empty
  523. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  524. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  525. uart_reg->int_ena.tx_brk_done = 0;
  526. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  527. uart_reg->conf0.txd_brk = 1;
  528. uart_reg->int_clr.tx_brk_done = 1;
  529. uart_reg->int_ena.tx_brk_done = 1;
  530. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  531. p_uart->tx_waiting_brk = 1;
  532. } else {
  533. //enable TX empty interrupt
  534. en_tx_flg = true;
  535. }
  536. } else {
  537. //enable TX empty interrupt
  538. en_tx_flg = true;
  539. }
  540. }
  541. }
  542. if(en_tx_flg) {
  543. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  544. uart_reg->int_clr.txfifo_empty = 1;
  545. uart_reg->int_ena.txfifo_empty = 1;
  546. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  547. }
  548. }
  549. }
  550. else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
  551. if(p_uart->rx_buffer_full_flg == false) {
  552. //Get the buffer from the FIFO
  553. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  554. p_uart->rx_stash_len = rx_fifo_len;
  555. //We have to read out all data in RX FIFO to clear the interrupt signal
  556. while(buf_idx < rx_fifo_len) {
  557. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  558. }
  559. //After Copying the Data From FIFO ,Clear intr_status
  560. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  561. uart_reg->int_clr.rxfifo_tout = 1;
  562. uart_reg->int_clr.rxfifo_full = 1;
  563. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  564. uart_event.type = UART_DATA;
  565. uart_event.size = rx_fifo_len;
  566. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  567. //Mainly for applications that uses flow control or small ring buffer.
  568. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  569. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  570. uart_reg->int_ena.rxfifo_full = 0;
  571. uart_reg->int_ena.rxfifo_tout = 0;
  572. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  573. p_uart->rx_buffer_full_flg = true;
  574. uart_event.type = UART_BUFFER_FULL;
  575. } else {
  576. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  577. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  578. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  579. uart_event.type = UART_DATA;
  580. }
  581. if(HPTaskAwoken == pdTRUE) {
  582. portYIELD_FROM_ISR() ;
  583. }
  584. } else {
  585. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  586. uart_reg->int_ena.rxfifo_full = 0;
  587. uart_reg->int_ena.rxfifo_tout = 0;
  588. uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
  589. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  590. uart_event.type = UART_BUFFER_FULL;
  591. }
  592. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  593. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  594. uart_reg->conf0.rxfifo_rst = 1;
  595. uart_reg->conf0.rxfifo_rst = 0;
  596. uart_reg->int_clr.rxfifo_ovf = 1;
  597. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  598. uart_event.type = UART_FIFO_OVF;
  599. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  600. uart_reg->int_clr.brk_det = 1;
  601. uart_event.type = UART_BREAK;
  602. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  603. uart_reg->int_clr.frm_err = 1;
  604. uart_event.type = UART_FRAME_ERR;
  605. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  606. uart_reg->int_clr.parity_err = 1;
  607. uart_event.type = UART_PARITY_ERR;
  608. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  609. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  610. uart_reg->conf0.txd_brk = 0;
  611. uart_reg->int_ena.tx_brk_done = 0;
  612. uart_reg->int_clr.tx_brk_done = 1;
  613. if(p_uart->tx_brk_flg == 1) {
  614. uart_reg->int_ena.txfifo_empty = 1;
  615. }
  616. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  617. if(p_uart->tx_brk_flg == 1) {
  618. p_uart->tx_brk_flg = 0;
  619. p_uart->tx_waiting_brk = 0;
  620. } else {
  621. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  622. if(HPTaskAwoken == pdTRUE) {
  623. portYIELD_FROM_ISR() ;
  624. }
  625. }
  626. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  627. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  628. uart_reg->int_ena.tx_brk_idle_done = 0;
  629. uart_reg->int_clr.tx_brk_idle_done = 1;
  630. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  631. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  632. uart_reg->int_clr.at_cmd_char_det = 1;
  633. uart_event.type = UART_PATTERN_DET;
  634. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  635. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  636. uart_reg->int_ena.tx_done = 0;
  637. uart_reg->int_clr.tx_done = 1;
  638. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  639. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  640. if(HPTaskAwoken == pdTRUE) {
  641. portYIELD_FROM_ISR() ;
  642. }
  643. } else {
  644. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  645. uart_event.type = UART_EVENT_MAX;
  646. }
  647. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  648. xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
  649. if(HPTaskAwoken == pdTRUE) {
  650. portYIELD_FROM_ISR() ;
  651. }
  652. }
  653. uart_intr_status = uart_reg->int_st.val;
  654. }
  655. }
  656. /**************************************************************/
  657. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  658. {
  659. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  660. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  661. BaseType_t res;
  662. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  663. //Take tx_mux
  664. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  665. if(res == pdFALSE) {
  666. return ESP_ERR_TIMEOUT;
  667. }
  668. ticks_to_wait = ticks_end - xTaskGetTickCount();
  669. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  670. ticks_to_wait = ticks_end - xTaskGetTickCount();
  671. if(UART[uart_num]->status.txfifo_cnt == 0) {
  672. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  673. return ESP_OK;
  674. }
  675. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  676. //take 2nd tx_done_sem, wait given from ISR
  677. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  678. if(res == pdFALSE) {
  679. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  680. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  681. return ESP_ERR_TIMEOUT;
  682. }
  683. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  684. return ESP_OK;
  685. }
  686. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  687. {
  688. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  689. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  690. UART[uart_num]->conf0.txd_brk = 1;
  691. UART[uart_num]->int_clr.tx_brk_done = 1;
  692. UART[uart_num]->int_ena.tx_brk_done = 1;
  693. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  694. return ESP_OK;
  695. }
  696. //Fill UART tx_fifo and return a number,
  697. //This function by itself is not thread-safe, always call from within a muxed section.
  698. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  699. {
  700. uint8_t i = 0;
  701. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  702. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  703. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  704. for(i = 0; i < copy_cnt; i++) {
  705. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  706. }
  707. return copy_cnt;
  708. }
  709. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  710. {
  711. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  712. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  713. UART_CHECK(buffer, "buffer null", (-1));
  714. if(len == 0) {
  715. return 0;
  716. }
  717. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  718. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  719. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  720. return tx_len;
  721. }
  722. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  723. {
  724. if(size == 0) {
  725. return 0;
  726. }
  727. size_t original_size = size;
  728. //lock for uart_tx
  729. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  730. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  731. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  732. int offset = 0;
  733. uart_tx_data_t evt;
  734. evt.tx_data.size = size;
  735. evt.tx_data.brk_len = brk_len;
  736. if(brk_en) {
  737. evt.type = UART_DATA_BREAK;
  738. } else {
  739. evt.type = UART_DATA;
  740. }
  741. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  742. while(size > 0) {
  743. int send_size = size > max_size / 2 ? max_size / 2 : size;
  744. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  745. size -= send_size;
  746. offset += send_size;
  747. }
  748. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  749. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  750. } else {
  751. while(size) {
  752. //semaphore for tx_fifo available
  753. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  754. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  755. if(sent < size) {
  756. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  757. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  758. }
  759. size -= sent;
  760. src += sent;
  761. }
  762. }
  763. if(brk_en) {
  764. uart_set_break(uart_num, brk_len);
  765. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  766. }
  767. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  768. }
  769. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  770. return original_size;
  771. }
  772. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  773. {
  774. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  775. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  776. UART_CHECK(src, "buffer null", (-1));
  777. return uart_tx_all(uart_num, src, size, 0, 0);
  778. }
  779. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  780. {
  781. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  782. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  783. UART_CHECK((size > 0), "uart size error", (-1));
  784. UART_CHECK((src), "uart data null", (-1));
  785. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  786. return uart_tx_all(uart_num, src, size, 1, brk_len);
  787. }
  788. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  789. {
  790. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  791. UART_CHECK((buf), "uart_num error", (-1));
  792. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  793. uint8_t* data = NULL;
  794. size_t size;
  795. size_t copy_len = 0;
  796. int len_tmp;
  797. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  798. return -1;
  799. }
  800. while(length) {
  801. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  802. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  803. if(data) {
  804. p_uart_obj[uart_num]->rx_head_ptr = data;
  805. p_uart_obj[uart_num]->rx_ptr = data;
  806. p_uart_obj[uart_num]->rx_cur_remain = size;
  807. } else {
  808. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  809. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  810. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  811. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  812. return copy_len;
  813. }
  814. }
  815. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  816. len_tmp = length;
  817. } else {
  818. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  819. }
  820. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  821. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  822. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  823. copy_len += len_tmp;
  824. length -= len_tmp;
  825. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  826. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  827. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  828. p_uart_obj[uart_num]->rx_ptr = NULL;
  829. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  830. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  831. if(res == pdTRUE) {
  832. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  833. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  834. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  835. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  836. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  837. }
  838. }
  839. }
  840. }
  841. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  842. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  843. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  844. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  845. return copy_len;
  846. }
  847. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  848. {
  849. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  850. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  851. *size = p_uart_obj[uart_num]->rx_buffered_len;
  852. return ESP_OK;
  853. }
  854. esp_err_t uart_flush(uart_port_t uart_num)
  855. {
  856. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  857. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  858. uart_obj_t* p_uart = p_uart_obj[uart_num];
  859. uint8_t* data;
  860. size_t size;
  861. //rx sem protect the ring buffer read related functions
  862. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  863. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  864. while(true) {
  865. if(p_uart->rx_head_ptr) {
  866. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  867. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  868. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  869. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  870. p_uart->rx_ptr = NULL;
  871. p_uart->rx_cur_remain = 0;
  872. p_uart->rx_head_ptr = NULL;
  873. }
  874. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  875. if(data == NULL) {
  876. break;
  877. }
  878. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  879. p_uart_obj[uart_num]->rx_buffered_len -= size;
  880. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  881. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  882. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  883. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  884. if(res == pdTRUE) {
  885. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  886. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  887. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  888. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  889. }
  890. }
  891. }
  892. p_uart->rx_ptr = NULL;
  893. p_uart->rx_cur_remain = 0;
  894. p_uart->rx_head_ptr = NULL;
  895. uart_reset_fifo(uart_num);
  896. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  897. xSemaphoreGive(p_uart->rx_mux);
  898. return ESP_OK;
  899. }
  900. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  901. {
  902. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  903. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  904. if(p_uart_obj[uart_num] == NULL) {
  905. p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
  906. if(p_uart_obj[uart_num] == NULL) {
  907. ESP_LOGE(UART_TAG, "UART driver malloc error");
  908. return ESP_FAIL;
  909. }
  910. p_uart_obj[uart_num]->uart_num = uart_num;
  911. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  912. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  913. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  914. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  915. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  916. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  917. p_uart_obj[uart_num]->queue_size = queue_size;
  918. p_uart_obj[uart_num]->tx_ptr = NULL;
  919. p_uart_obj[uart_num]->tx_head = NULL;
  920. p_uart_obj[uart_num]->tx_len_tot = 0;
  921. p_uart_obj[uart_num]->tx_brk_flg = 0;
  922. p_uart_obj[uart_num]->tx_brk_len = 0;
  923. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  924. p_uart_obj[uart_num]->rx_buffered_len = 0;
  925. if(uart_queue) {
  926. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  927. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  928. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  929. } else {
  930. p_uart_obj[uart_num]->xQueueUart = NULL;
  931. }
  932. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  933. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  934. p_uart_obj[uart_num]->rx_ptr = NULL;
  935. p_uart_obj[uart_num]->rx_cur_remain = 0;
  936. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  937. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  938. if(tx_buffer_size > 0) {
  939. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  940. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  941. } else {
  942. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  943. p_uart_obj[uart_num]->tx_buf_size = 0;
  944. }
  945. } else {
  946. ESP_LOGE(UART_TAG, "UART driver already installed");
  947. return ESP_FAIL;
  948. }
  949. uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  950. uart_intr_config_t uart_intr = {
  951. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  952. | UART_RXFIFO_TOUT_INT_ENA_M
  953. | UART_FRM_ERR_INT_ENA_M
  954. | UART_RXFIFO_OVF_INT_ENA_M
  955. | UART_BRK_DET_INT_ENA_M
  956. | UART_PARITY_ERR_INT_ENA_M,
  957. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  958. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  959. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  960. };
  961. uart_intr_config(uart_num, &uart_intr);
  962. return ESP_OK;
  963. }
  964. //Make sure no other tasks are still using UART before you call this function
  965. esp_err_t uart_driver_delete(uart_port_t uart_num)
  966. {
  967. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  968. if(p_uart_obj[uart_num] == NULL) {
  969. ESP_LOGI(UART_TAG, "ALREADY NULL");
  970. return ESP_OK;
  971. }
  972. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  973. uart_disable_rx_intr(uart_num);
  974. uart_disable_tx_intr(uart_num);
  975. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  976. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  977. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  978. }
  979. if(p_uart_obj[uart_num]->tx_done_sem) {
  980. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  981. p_uart_obj[uart_num]->tx_done_sem = NULL;
  982. }
  983. if(p_uart_obj[uart_num]->tx_brk_sem) {
  984. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  985. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  986. }
  987. if(p_uart_obj[uart_num]->tx_mux) {
  988. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  989. p_uart_obj[uart_num]->tx_mux = NULL;
  990. }
  991. if(p_uart_obj[uart_num]->rx_mux) {
  992. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  993. p_uart_obj[uart_num]->rx_mux = NULL;
  994. }
  995. if(p_uart_obj[uart_num]->xQueueUart) {
  996. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  997. p_uart_obj[uart_num]->xQueueUart = NULL;
  998. }
  999. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1000. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1001. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1002. }
  1003. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1004. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1005. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1006. }
  1007. free(p_uart_obj[uart_num]);
  1008. p_uart_obj[uart_num] = NULL;
  1009. return ESP_OK;
  1010. }