cpu_start.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556
  1. // Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdint.h>
  15. #include <string.h>
  16. #include "esp_attr.h"
  17. #include "esp_err.h"
  18. #include "esp32/rom/ets_sys.h"
  19. #include "esp32/rom/uart.h"
  20. #include "esp32/rom/rtc.h"
  21. #include "esp32/rom/cache.h"
  22. #include "soc/cpu.h"
  23. #include "soc/rtc.h"
  24. #include "soc/dport_reg.h"
  25. #include "soc/gpio_periph.h"
  26. #include "soc/timer_periph.h"
  27. #include "soc/rtc_wdt.h"
  28. #include "soc/efuse_periph.h"
  29. #include "driver/rtc_io.h"
  30. #include "freertos/FreeRTOS.h"
  31. #include "freertos/task.h"
  32. #include "freertos/semphr.h"
  33. #include "freertos/queue.h"
  34. #include "freertos/portmacro.h"
  35. #include "esp_heap_caps_init.h"
  36. #include "sdkconfig.h"
  37. #include "esp_system.h"
  38. #include "esp_spi_flash.h"
  39. #include "esp_flash_internal.h"
  40. #include "nvs_flash.h"
  41. #include "esp_event.h"
  42. #include "esp_spi_flash.h"
  43. #include "esp_private/crosscore_int.h"
  44. #include "esp_log.h"
  45. #include "esp_vfs_dev.h"
  46. #include "esp_newlib.h"
  47. #include "esp32/brownout.h"
  48. #include "esp_int_wdt.h"
  49. #include "esp_task.h"
  50. #include "esp_task_wdt.h"
  51. #include "esp_phy_init.h"
  52. #include "esp32/cache_err_int.h"
  53. #include "esp_coexist_internal.h"
  54. #include "esp_core_dump.h"
  55. #include "esp_app_trace.h"
  56. #include "esp_private/dbg_stubs.h"
  57. #include "esp_flash_encrypt.h"
  58. #include "esp32/spiram.h"
  59. #include "esp_clk_internal.h"
  60. #include "esp_timer.h"
  61. #include "esp_pm.h"
  62. #include "esp_private/pm_impl.h"
  63. #include "trax.h"
  64. #include "esp_ota_ops.h"
  65. #include "esp_efuse.h"
  66. #include "bootloader_flash_config.h"
  67. #define STRINGIFY(s) STRINGIFY2(s)
  68. #define STRINGIFY2(s) #s
  69. void start_cpu0(void) __attribute__((weak, alias("start_cpu0_default"))) __attribute__((noreturn));
  70. void start_cpu0_default(void) IRAM_ATTR __attribute__((noreturn));
  71. #if !CONFIG_FREERTOS_UNICORE
  72. static void IRAM_ATTR call_start_cpu1() __attribute__((noreturn));
  73. void start_cpu1(void) __attribute__((weak, alias("start_cpu1_default"))) __attribute__((noreturn));
  74. void start_cpu1_default(void) IRAM_ATTR __attribute__((noreturn));
  75. static bool app_cpu_started = false;
  76. #endif //!CONFIG_FREERTOS_UNICORE
  77. static void do_global_ctors(void);
  78. static void main_task(void* args);
  79. extern void app_main(void);
  80. extern esp_err_t esp_pthread_init(void);
  81. extern int _bss_start;
  82. extern int _bss_end;
  83. extern int _rtc_bss_start;
  84. extern int _rtc_bss_end;
  85. #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
  86. extern int _ext_ram_bss_start;
  87. extern int _ext_ram_bss_end;
  88. #endif
  89. extern int _init_start;
  90. extern void (*__init_array_start)(void);
  91. extern void (*__init_array_end)(void);
  92. extern volatile int port_xSchedulerRunning[2];
  93. static const char* TAG = "cpu_start";
  94. struct object { long placeholder[ 10 ]; };
  95. void __register_frame_info (const void *begin, struct object *ob);
  96. extern char __eh_frame[];
  97. //If CONFIG_SPIRAM_IGNORE_NOTFOUND is set and external RAM is not found or errors out on testing, this is set to false.
  98. static bool s_spiram_okay=true;
  99. /*
  100. * We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
  101. * and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
  102. */
  103. void IRAM_ATTR call_start_cpu0()
  104. {
  105. #if CONFIG_FREERTOS_UNICORE
  106. RESET_REASON rst_reas[1];
  107. #else
  108. RESET_REASON rst_reas[2];
  109. #endif
  110. cpu_configure_region_protection();
  111. cpu_init_memctl();
  112. //Move exception vectors to IRAM
  113. asm volatile (\
  114. "wsr %0, vecbase\n" \
  115. ::"r"(&_init_start));
  116. rst_reas[0] = rtc_get_reset_reason(0);
  117. #if !CONFIG_FREERTOS_UNICORE
  118. rst_reas[1] = rtc_get_reset_reason(1);
  119. #endif
  120. // from panic handler we can be reset by RWDT or TG0WDT
  121. if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET
  122. #if !CONFIG_FREERTOS_UNICORE
  123. || rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET
  124. #endif
  125. ) {
  126. #ifndef CONFIG_BOOTLOADER_WDT_ENABLE
  127. rtc_wdt_disable();
  128. #endif
  129. }
  130. //Clear BSS. Please do not attempt to do any complex stuff (like early logging) before this.
  131. memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
  132. /* Unless waking from deep sleep (implying RTC memory is intact), clear RTC bss */
  133. if (rst_reas[0] != DEEPSLEEP_RESET) {
  134. memset(&_rtc_bss_start, 0, (&_rtc_bss_end - &_rtc_bss_start) * sizeof(_rtc_bss_start));
  135. }
  136. #if CONFIG_SPIRAM_BOOT_INIT
  137. esp_spiram_init_cache();
  138. if (esp_spiram_init() != ESP_OK) {
  139. #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
  140. ESP_EARLY_LOGE(TAG, "Failed to init external RAM, needed for external .bss segment");
  141. abort();
  142. #endif
  143. #if CONFIG_SPIRAM_IGNORE_NOTFOUND
  144. ESP_EARLY_LOGI(TAG, "Failed to init external RAM; continuing without it.");
  145. s_spiram_okay = false;
  146. #else
  147. ESP_EARLY_LOGE(TAG, "Failed to init external RAM!");
  148. abort();
  149. #endif
  150. }
  151. #endif
  152. ESP_EARLY_LOGI(TAG, "Pro cpu up.");
  153. if (LOG_LOCAL_LEVEL >= ESP_LOG_INFO) {
  154. const esp_app_desc_t *app_desc = esp_ota_get_app_description();
  155. ESP_EARLY_LOGI(TAG, "Application information:");
  156. #ifndef CONFIG_APP_EXCLUDE_PROJECT_NAME_VAR
  157. ESP_EARLY_LOGI(TAG, "Project name: %s", app_desc->project_name);
  158. #endif
  159. #ifndef CONFIG_APP_EXCLUDE_PROJECT_VER_VAR
  160. ESP_EARLY_LOGI(TAG, "App version: %s", app_desc->version);
  161. #endif
  162. #ifdef CONFIG_BOOTLOADER_APP_SECURE_VERSION
  163. ESP_EARLY_LOGI(TAG, "Secure version: %d", app_desc->secure_version);
  164. #endif
  165. #ifdef CONFIG_APP_COMPILE_TIME_DATE
  166. ESP_EARLY_LOGI(TAG, "Compile time: %s %s", app_desc->date, app_desc->time);
  167. #endif
  168. char buf[17];
  169. esp_ota_get_app_elf_sha256(buf, sizeof(buf));
  170. ESP_EARLY_LOGI(TAG, "ELF file SHA256: %s...", buf);
  171. ESP_EARLY_LOGI(TAG, "ESP-IDF: %s", app_desc->idf_ver);
  172. }
  173. #if !CONFIG_FREERTOS_UNICORE
  174. if (REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_DIS_APP_CPU)) {
  175. ESP_EARLY_LOGE(TAG, "Running on single core chip, but application is built with dual core support.");
  176. ESP_EARLY_LOGE(TAG, "Please enable CONFIG_FREERTOS_UNICORE option in menuconfig.");
  177. abort();
  178. }
  179. ESP_EARLY_LOGI(TAG, "Starting app cpu, entry point is %p", call_start_cpu1);
  180. #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
  181. esp_flash_encryption_init_checks();
  182. #endif
  183. //Flush and enable icache for APP CPU
  184. Cache_Flush(1);
  185. Cache_Read_Enable(1);
  186. esp_cpu_unstall(1);
  187. // Enable clock and reset APP CPU. Note that OpenOCD may have already
  188. // enabled clock and taken APP CPU out of reset. In this case don't reset
  189. // APP CPU again, as that will clear the breakpoints which may have already
  190. // been set.
  191. if (!DPORT_GET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN)) {
  192. DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
  193. DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_C_REG, DPORT_APPCPU_RUNSTALL);
  194. DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
  195. DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
  196. }
  197. ets_set_appcpu_boot_addr((uint32_t)call_start_cpu1);
  198. while (!app_cpu_started) {
  199. ets_delay_us(100);
  200. }
  201. #else
  202. ESP_EARLY_LOGI(TAG, "Single core mode");
  203. DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
  204. #endif
  205. #if CONFIG_SPIRAM_MEMTEST
  206. if (s_spiram_okay) {
  207. bool ext_ram_ok=esp_spiram_test();
  208. if (!ext_ram_ok) {
  209. ESP_EARLY_LOGE(TAG, "External RAM failed memory test!");
  210. abort();
  211. }
  212. }
  213. #endif
  214. #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
  215. memset(&_ext_ram_bss_start, 0, (&_ext_ram_bss_end - &_ext_ram_bss_start) * sizeof(_ext_ram_bss_start));
  216. #endif
  217. /* Initialize heap allocator. WARNING: This *needs* to happen *after* the app cpu has booted.
  218. If the heap allocator is initialized first, it will put free memory linked list items into
  219. memory also used by the ROM. Starting the app cpu will let its ROM initialize that memory,
  220. corrupting those linked lists. Initializing the allocator *after* the app cpu has booted
  221. works around this problem.
  222. With SPI RAM enabled, there's a second reason: half of the SPI RAM will be managed by the
  223. app CPU, and when that is not up yet, the memory will be inaccessible and heap_caps_init may
  224. fail initializing it properly. */
  225. heap_caps_init();
  226. ESP_EARLY_LOGI(TAG, "Pro cpu start user code");
  227. start_cpu0();
  228. }
  229. #if !CONFIG_FREERTOS_UNICORE
  230. static void wdt_reset_cpu1_info_enable(void)
  231. {
  232. DPORT_REG_SET_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_PDEBUG_ENABLE | DPORT_APP_CPU_RECORD_ENABLE);
  233. DPORT_REG_CLR_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_RECORD_ENABLE);
  234. }
  235. void IRAM_ATTR call_start_cpu1()
  236. {
  237. asm volatile (\
  238. "wsr %0, vecbase\n" \
  239. ::"r"(&_init_start));
  240. ets_set_appcpu_boot_addr(0);
  241. cpu_configure_region_protection();
  242. cpu_init_memctl();
  243. #if CONFIG_ESP_CONSOLE_UART_NONE
  244. ets_install_putc1(NULL);
  245. ets_install_putc2(NULL);
  246. #else // CONFIG_ESP_CONSOLE_UART_NONE
  247. uartAttach();
  248. ets_install_uart_printf();
  249. uart_tx_switch(CONFIG_ESP_CONSOLE_UART_NUM);
  250. #endif
  251. wdt_reset_cpu1_info_enable();
  252. ESP_EARLY_LOGI(TAG, "App cpu up.");
  253. app_cpu_started = 1;
  254. start_cpu1();
  255. }
  256. #endif //!CONFIG_FREERTOS_UNICORE
  257. static void intr_matrix_clear(void)
  258. {
  259. //Clear all the interrupt matrix register
  260. for (int i = ETS_WIFI_MAC_INTR_SOURCE; i <= ETS_CACHE_IA_INTR_SOURCE; i++) {
  261. intr_matrix_set(0, i, ETS_INVALID_INUM);
  262. #if !CONFIG_FREERTOS_UNICORE
  263. intr_matrix_set(1, i, ETS_INVALID_INUM);
  264. #endif
  265. }
  266. }
  267. void start_cpu0_default(void)
  268. {
  269. esp_err_t err;
  270. esp_setup_syscall_table();
  271. if (s_spiram_okay) {
  272. #if CONFIG_SPIRAM_BOOT_INIT && (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
  273. esp_err_t r=esp_spiram_add_to_heapalloc();
  274. if (r != ESP_OK) {
  275. ESP_EARLY_LOGE(TAG, "External RAM could not be added to heap!");
  276. abort();
  277. }
  278. #if CONFIG_SPIRAM_USE_MALLOC
  279. heap_caps_malloc_extmem_enable(CONFIG_SPIRAM_MALLOC_ALWAYSINTERNAL);
  280. #endif
  281. #endif
  282. }
  283. //Enable trace memory and immediately start trace.
  284. #if CONFIG_ESP32_TRAX
  285. #if CONFIG_ESP32_TRAX_TWOBANKS
  286. trax_enable(TRAX_ENA_PRO_APP);
  287. #else
  288. trax_enable(TRAX_ENA_PRO);
  289. #endif
  290. trax_start_trace(TRAX_DOWNCOUNT_WORDS);
  291. #endif
  292. esp_clk_init();
  293. esp_perip_clk_init();
  294. intr_matrix_clear();
  295. #ifndef CONFIG_ESP_CONSOLE_UART_NONE
  296. #ifdef CONFIG_PM_ENABLE
  297. const int uart_clk_freq = REF_CLK_FREQ;
  298. /* When DFS is enabled, use REFTICK as UART clock source */
  299. CLEAR_PERI_REG_MASK(UART_CONF0_REG(CONFIG_ESP_CONSOLE_UART_NUM), UART_TICK_REF_ALWAYS_ON);
  300. #else
  301. const int uart_clk_freq = APB_CLK_FREQ;
  302. #endif // CONFIG_PM_DFS_ENABLE
  303. uart_div_modify(CONFIG_ESP_CONSOLE_UART_NUM, (uart_clk_freq << 4) / CONFIG_ESP_CONSOLE_UART_BAUDRATE);
  304. #endif // CONFIG_ESP_CONSOLE_UART_NONE
  305. #if CONFIG_ESP32_BROWNOUT_DET
  306. esp_brownout_init();
  307. #endif
  308. #if CONFIG_ESP32_DISABLE_BASIC_ROM_CONSOLE
  309. esp_efuse_disable_basic_rom_console();
  310. #endif
  311. rtc_gpio_force_hold_dis_all();
  312. esp_vfs_dev_uart_register();
  313. esp_reent_init(_GLOBAL_REENT);
  314. #ifndef CONFIG_ESP_CONSOLE_UART_NONE
  315. const char* default_uart_dev = "/dev/uart/" STRINGIFY(CONFIG_ESP_CONSOLE_UART_NUM);
  316. _GLOBAL_REENT->_stdin = fopen(default_uart_dev, "r");
  317. _GLOBAL_REENT->_stdout = fopen(default_uart_dev, "w");
  318. _GLOBAL_REENT->_stderr = fopen(default_uart_dev, "w");
  319. #else
  320. _GLOBAL_REENT->_stdin = (FILE*) &__sf_fake_stdin;
  321. _GLOBAL_REENT->_stdout = (FILE*) &__sf_fake_stdout;
  322. _GLOBAL_REENT->_stderr = (FILE*) &__sf_fake_stderr;
  323. #endif
  324. esp_timer_init();
  325. esp_set_time_from_rtc();
  326. #if CONFIG_ESP32_APPTRACE_ENABLE
  327. err = esp_apptrace_init();
  328. assert(err == ESP_OK && "Failed to init apptrace module on PRO CPU!");
  329. #endif
  330. #if CONFIG_SYSVIEW_ENABLE
  331. SEGGER_SYSVIEW_Conf();
  332. #endif
  333. #if CONFIG_ESP32_DEBUG_STUBS_ENABLE
  334. esp_dbg_stubs_init();
  335. #endif
  336. err = esp_pthread_init();
  337. assert(err == ESP_OK && "Failed to init pthread module!");
  338. do_global_ctors();
  339. #if CONFIG_ESP_INT_WDT
  340. esp_int_wdt_init();
  341. //Initialize the interrupt watch dog for CPU0.
  342. esp_int_wdt_cpu_init();
  343. #endif
  344. esp_cache_err_int_init();
  345. esp_crosscore_int_init();
  346. #ifndef CONFIG_FREERTOS_UNICORE
  347. esp_dport_access_int_init();
  348. #endif
  349. spi_flash_init();
  350. /* init default OS-aware flash access critical section */
  351. spi_flash_guard_set(&g_flash_guard_default_ops);
  352. esp_flash_app_init();
  353. esp_err_t flash_ret = esp_flash_init_default_chip();
  354. assert(flash_ret == ESP_OK);
  355. #ifdef CONFIG_PM_ENABLE
  356. esp_pm_impl_init();
  357. #ifdef CONFIG_PM_DFS_INIT_AUTO
  358. int xtal_freq = (int) rtc_clk_xtal_freq_get();
  359. esp_pm_config_esp32_t cfg = {
  360. .max_freq_mhz = CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ,
  361. .min_freq_mhz = xtal_freq,
  362. };
  363. esp_pm_configure(&cfg);
  364. #endif //CONFIG_PM_DFS_INIT_AUTO
  365. #endif //CONFIG_PM_ENABLE
  366. #if CONFIG_ESP32_ENABLE_COREDUMP
  367. esp_core_dump_init();
  368. size_t core_data_sz = 0;
  369. size_t core_data_addr = 0;
  370. if (esp_core_dump_image_get(&core_data_addr, &core_data_sz) == ESP_OK && core_data_sz > 0) {
  371. ESP_LOGI(TAG, "Found core dump %d bytes in flash @ 0x%x", core_data_sz, core_data_addr);
  372. }
  373. #endif
  374. #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
  375. esp_coex_adapter_register(&g_coex_adapter_funcs);
  376. coex_pre_init();
  377. #endif
  378. bootloader_flash_update_id();
  379. #if !CONFIG_SPIRAM_BOOT_INIT
  380. // Read the application binary image header. This will also decrypt the header if the image is encrypted.
  381. esp_image_header_t fhdr = {0};
  382. // This assumes that DROM is the first segment in the application binary, i.e. that we can read
  383. // the binary header through cache by accessing SOC_DROM_LOW address.
  384. memcpy(&fhdr, (void*) SOC_DROM_LOW, sizeof(fhdr));
  385. // If psram is uninitialized, we need to improve some flash configuration.
  386. bootloader_flash_clock_config(&fhdr);
  387. bootloader_flash_gpio_config(&fhdr);
  388. bootloader_flash_dummy_config(&fhdr);
  389. bootloader_flash_cs_timing_config();
  390. #endif
  391. portBASE_TYPE res = xTaskCreatePinnedToCore(&main_task, "main",
  392. ESP_TASK_MAIN_STACK, NULL,
  393. ESP_TASK_MAIN_PRIO, NULL, 0);
  394. assert(res == pdTRUE);
  395. ESP_LOGI(TAG, "Starting scheduler on PRO CPU.");
  396. vTaskStartScheduler();
  397. abort(); /* Only get to here if not enough free heap to start scheduler */
  398. }
  399. #if !CONFIG_FREERTOS_UNICORE
  400. void start_cpu1_default(void)
  401. {
  402. // Wait for FreeRTOS initialization to finish on PRO CPU
  403. while (port_xSchedulerRunning[0] == 0) {
  404. ;
  405. }
  406. #if CONFIG_ESP32_TRAX_TWOBANKS
  407. trax_start_trace(TRAX_DOWNCOUNT_WORDS);
  408. #endif
  409. #if CONFIG_ESP32_APPTRACE_ENABLE
  410. esp_err_t err = esp_apptrace_init();
  411. assert(err == ESP_OK && "Failed to init apptrace module on APP CPU!");
  412. #endif
  413. #if CONFIG_ESP_INT_WDT
  414. //Initialize the interrupt watch dog for CPU1.
  415. esp_int_wdt_cpu_init();
  416. #endif
  417. //Take care putting stuff here: if asked, FreeRTOS will happily tell you the scheduler
  418. //has started, but it isn't active *on this CPU* yet.
  419. esp_cache_err_int_init();
  420. esp_crosscore_int_init();
  421. esp_dport_access_int_init();
  422. ESP_EARLY_LOGI(TAG, "Starting scheduler on APP CPU.");
  423. xPortStartScheduler();
  424. abort(); /* Only get to here if FreeRTOS somehow very broken */
  425. }
  426. #endif //!CONFIG_FREERTOS_UNICORE
  427. #ifdef CONFIG_COMPILER_CXX_EXCEPTIONS
  428. size_t __cxx_eh_arena_size_get()
  429. {
  430. return CONFIG_COMPILER_CXX_EXCEPTIONS_EMG_POOL_SIZE;
  431. }
  432. #endif
  433. static void do_global_ctors(void)
  434. {
  435. #ifdef CONFIG_COMPILER_CXX_EXCEPTIONS
  436. static struct object ob;
  437. __register_frame_info( __eh_frame, &ob );
  438. #endif
  439. void (**p)(void);
  440. for (p = &__init_array_end - 1; p >= &__init_array_start; --p) {
  441. (*p)();
  442. }
  443. }
  444. static void main_task(void* args)
  445. {
  446. #if !CONFIG_FREERTOS_UNICORE
  447. // Wait for FreeRTOS initialization to finish on APP CPU, before replacing its startup stack
  448. while (port_xSchedulerRunning[1] == 0) {
  449. ;
  450. }
  451. #endif
  452. //Enable allocation in region where the startup stacks were located.
  453. heap_caps_enable_nonos_stack_heaps();
  454. // Now we have startup stack RAM available for heap, enable any DMA pool memory
  455. #if CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL
  456. esp_err_t r = esp_spiram_reserve_dma_pool(CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL);
  457. if (r != ESP_OK) {
  458. ESP_EARLY_LOGE(TAG, "Could not reserve internal/DMA pool (error 0x%x)", r);
  459. abort();
  460. }
  461. #endif
  462. //Initialize task wdt if configured to do so
  463. #ifdef CONFIG_ESP_TASK_WDT_PANIC
  464. ESP_ERROR_CHECK(esp_task_wdt_init(CONFIG_ESP_TASK_WDT_TIMEOUT_S, true));
  465. #elif CONFIG_ESP_TASK_WDT
  466. ESP_ERROR_CHECK(esp_task_wdt_init(CONFIG_ESP_TASK_WDT_TIMEOUT_S, false));
  467. #endif
  468. //Add IDLE 0 to task wdt
  469. #ifdef CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU0
  470. TaskHandle_t idle_0 = xTaskGetIdleTaskHandleForCPU(0);
  471. if(idle_0 != NULL){
  472. ESP_ERROR_CHECK(esp_task_wdt_add(idle_0));
  473. }
  474. #endif
  475. //Add IDLE 1 to task wdt
  476. #ifdef CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU1
  477. TaskHandle_t idle_1 = xTaskGetIdleTaskHandleForCPU(1);
  478. if(idle_1 != NULL){
  479. ESP_ERROR_CHECK(esp_task_wdt_add(idle_1));
  480. }
  481. #endif
  482. // Now that the application is about to start, disable boot watchdog
  483. #ifndef CONFIG_BOOTLOADER_WDT_DISABLE_IN_USER_CODE
  484. rtc_wdt_disable();
  485. #endif
  486. #ifdef CONFIG_BOOTLOADER_EFUSE_SECURE_VERSION_EMULATE
  487. const esp_partition_t *efuse_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_EFUSE_EM, NULL);
  488. if (efuse_partition) {
  489. esp_efuse_init(efuse_partition->address, efuse_partition->size);
  490. }
  491. #endif
  492. app_main();
  493. vTaskDelete(NULL);
  494. }