spiram_psram.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861
  1. /*
  2. Driver bits for PSRAM chips (at the moment only the ESP-PSRAM32 chip).
  3. */
  4. // Copyright 2013-2017 Espressif Systems (Shanghai) PTE LTD
  5. //
  6. // Licensed under the Apache License, Version 2.0 (the "License");
  7. // you may not use this file except in compliance with the License.
  8. // You may obtain a copy of the License at
  9. //
  10. // http://www.apache.org/licenses/LICENSE-2.0
  11. //
  12. // Unless required by applicable law or agreed to in writing, software
  13. // distributed under the License is distributed on an "AS IS" BASIS,
  14. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. // See the License for the specific language governing permissions and
  16. // limitations under the License.
  17. #include "sdkconfig.h"
  18. #include "string.h"
  19. #include "esp_attr.h"
  20. #include "esp_err.h"
  21. #include "esp_types.h"
  22. #include "esp_log.h"
  23. #include "spiram_psram.h"
  24. #include "esp32/rom/ets_sys.h"
  25. #include "esp32/rom/spi_flash.h"
  26. #include "esp32/rom/gpio.h"
  27. #include "esp32/rom/cache.h"
  28. #include "esp32/rom/efuse.h"
  29. #include "soc/dport_reg.h"
  30. #include "soc/efuse_periph.h"
  31. #include "soc/spi_caps.h"
  32. #include "driver/gpio.h"
  33. #include "driver/spi_common_internal.h"
  34. #include "driver/periph_ctrl.h"
  35. #include "bootloader_common.h"
  36. #if CONFIG_ESP32_SPIRAM_SUPPORT
  37. #include "soc/rtc.h"
  38. //Commands for PSRAM chip
  39. #define PSRAM_READ 0x03
  40. #define PSRAM_FAST_READ 0x0B
  41. #define PSRAM_FAST_READ_DUMMY 0x3
  42. #define PSRAM_FAST_READ_QUAD 0xEB
  43. #define PSRAM_FAST_READ_QUAD_DUMMY 0x5
  44. #define PSRAM_WRITE 0x02
  45. #define PSRAM_QUAD_WRITE 0x38
  46. #define PSRAM_ENTER_QMODE 0x35
  47. #define PSRAM_EXIT_QMODE 0xF5
  48. #define PSRAM_RESET_EN 0x66
  49. #define PSRAM_RESET 0x99
  50. #define PSRAM_SET_BURST_LEN 0xC0
  51. #define PSRAM_DEVICE_ID 0x9F
  52. typedef enum {
  53. PSRAM_CLK_MODE_NORM = 0, /*!< Normal SPI mode */
  54. PSRAM_CLK_MODE_DCLK = 1, /*!< Two extra clock cycles after CS is set high level */
  55. } psram_clk_mode_t;
  56. #define PSRAM_ID_KGD_M 0xff
  57. #define PSRAM_ID_KGD_S 8
  58. #define PSRAM_ID_KGD 0x5d
  59. #define PSRAM_ID_EID_M 0xff
  60. #define PSRAM_ID_EID_S 16
  61. // Use the [7:5](bit7~bit5) of EID to distinguish the psram size:
  62. //
  63. // BIT7 | BIT6 | BIT5 | SIZE(MBIT)
  64. // -------------------------------------
  65. // 0 | 0 | 0 | 16
  66. // 0 | 0 | 1 | 32
  67. // 0 | 1 | 0 | 64
  68. #define PSRAM_EID_SIZE_M 0x07
  69. #define PSRAM_EID_SIZE_S 5
  70. typedef enum {
  71. PSRAM_EID_SIZE_16MBITS = 0,
  72. PSRAM_EID_SIZE_32MBITS = 1,
  73. PSRAM_EID_SIZE_64MBITS = 2,
  74. } psram_eid_size_t;
  75. #define PSRAM_KGD(id) (((id) >> PSRAM_ID_KGD_S) & PSRAM_ID_KGD_M)
  76. #define PSRAM_EID(id) (((id) >> PSRAM_ID_EID_S) & PSRAM_ID_EID_M)
  77. #define PSRAM_SIZE_ID(id) ((PSRAM_EID(id) >> PSRAM_EID_SIZE_S) & PSRAM_EID_SIZE_M)
  78. #define PSRAM_IS_VALID(id) (PSRAM_KGD(id) == PSRAM_ID_KGD)
  79. // For the old version 32Mbit psram, using the spicial driver */
  80. #define PSRAM_IS_32MBIT_VER0(id) (PSRAM_EID(id) == 0x20)
  81. #define PSRAM_IS_64MBIT_TRIAL(id) (PSRAM_EID(id) == 0x26)
  82. // IO-pins for PSRAM.
  83. // WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
  84. // hardcode the flash pins as well, making this code incompatible with either a setup
  85. // that has the flash on non-standard pins or ESP32s with built-in flash.
  86. #define PSRAM_SPIQ_SD0_IO 7
  87. #define PSRAM_SPID_SD1_IO 8
  88. #define PSRAM_SPIWP_SD3_IO 10
  89. #define PSRAM_SPIHD_SD2_IO 9
  90. #define FLASH_HSPI_CLK_IO 14
  91. #define FLASH_HSPI_CS_IO 15
  92. #define PSRAM_HSPI_SPIQ_SD0_IO 12
  93. #define PSRAM_HSPI_SPID_SD1_IO 13
  94. #define PSRAM_HSPI_SPIWP_SD3_IO 2
  95. #define PSRAM_HSPI_SPIHD_SD2_IO 4
  96. // PSRAM clock and cs IO should be configured based on hardware design.
  97. // For ESP32-WROVER or ESP32-WROVER-B module, the clock IO is IO17, the cs IO is IO16,
  98. // they are the default value for these two configs.
  99. #define D0WD_PSRAM_CLK_IO CONFIG_D0WD_PSRAM_CLK_IO // Default value is 17
  100. #define D0WD_PSRAM_CS_IO CONFIG_D0WD_PSRAM_CS_IO // Default value is 16
  101. #define D2WD_PSRAM_CLK_IO CONFIG_D2WD_PSRAM_CLK_IO // Default value is 9
  102. #define D2WD_PSRAM_CS_IO CONFIG_D2WD_PSRAM_CS_IO // Default value is 10
  103. // For ESP32-PICO chip, the psram share clock with flash. The flash clock pin is fixed, which is IO6.
  104. #define PICO_PSRAM_CLK_IO 6
  105. #define PICO_PSRAM_CS_IO CONFIG_PICO_PSRAM_CS_IO // Default value is 10
  106. typedef struct {
  107. uint8_t flash_clk_io;
  108. uint8_t flash_cs_io;
  109. uint8_t psram_clk_io;
  110. uint8_t psram_cs_io;
  111. uint8_t psram_spiq_sd0_io;
  112. uint8_t psram_spid_sd1_io;
  113. uint8_t psram_spiwp_sd3_io;
  114. uint8_t psram_spihd_sd2_io;
  115. } psram_io_t;
  116. #define PSRAM_INTERNAL_IO_28 28
  117. #define PSRAM_INTERNAL_IO_29 29
  118. #define PSRAM_IO_MATRIX_DUMMY_40M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_40M
  119. #define PSRAM_IO_MATRIX_DUMMY_80M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_80M
  120. #define _SPI_CACHE_PORT 0
  121. #define _SPI_FLASH_PORT 1
  122. #define _SPI_80M_CLK_DIV 1
  123. #define _SPI_40M_CLK_DIV 2
  124. //For 4MB PSRAM, we need one more SPI host, select which one to use by kconfig
  125. #ifdef CONFIG_SPIRAM_OCCUPY_HSPI_HOST
  126. #define PSRAM_SPI_MODULE PERIPH_HSPI_MODULE
  127. #define PSRAM_SPI_HOST HSPI_HOST
  128. #define PSRAM_CLK_SIGNAL HSPICLK_OUT_IDX
  129. #define PSRAM_SPI_NUM PSRAM_SPI_2
  130. #define PSRAM_SPICLKEN DPORT_SPI2_CLK_EN
  131. #elif defined CONFIG_SPIRAM_OCCUPY_VSPI_HOST
  132. #define PSRAM_SPI_MODULE PERIPH_VSPI_MODULE
  133. #define PSRAM_SPI_HOST VSPI_HOST
  134. #define PSRAM_CLK_SIGNAL VSPICLK_OUT_IDX
  135. #define PSRAM_SPI_NUM PSRAM_SPI_3
  136. #define PSRAM_SPICLKEN DPORT_SPI3_CLK_EN
  137. #else //set to SPI avoid HSPI and VSPI being used
  138. #define PSRAM_SPI_MODULE PERIPH_SPI_MODULE
  139. #define PSRAM_SPI_HOST SPI_HOST
  140. #define PSRAM_CLK_SIGNAL SPICLK_OUT_IDX
  141. #define PSRAM_SPI_NUM PSRAM_SPI_1
  142. #define PSRAM_SPICLKEN DPORT_SPI01_CLK_EN
  143. #endif
  144. static const char* TAG = "psram";
  145. typedef enum {
  146. PSRAM_SPI_1 = 0x1,
  147. PSRAM_SPI_2,
  148. PSRAM_SPI_3,
  149. PSRAM_SPI_MAX ,
  150. } psram_spi_num_t;
  151. static psram_cache_mode_t s_psram_mode = PSRAM_CACHE_MAX;
  152. static psram_clk_mode_t s_clk_mode = PSRAM_CLK_MODE_DCLK;
  153. static uint32_t s_psram_id = 0;
  154. /* dummy_len_plus values defined in ROM for SPI flash configuration */
  155. extern uint8_t g_rom_spiflash_dummy_len_plus[];
  156. static int extra_dummy = 0;
  157. typedef enum {
  158. PSRAM_CMD_QPI,
  159. PSRAM_CMD_SPI,
  160. } psram_cmd_mode_t;
  161. typedef struct {
  162. uint16_t cmd; /*!< Command value */
  163. uint16_t cmdBitLen; /*!< Command byte length*/
  164. uint32_t *addr; /*!< Point to address value*/
  165. uint16_t addrBitLen; /*!< Address byte length*/
  166. uint32_t *txData; /*!< Point to send data buffer*/
  167. uint16_t txDataBitLen; /*!< Send data byte length.*/
  168. uint32_t *rxData; /*!< Point to recevie data buffer*/
  169. uint16_t rxDataBitLen; /*!< Recevie Data byte length.*/
  170. uint32_t dummyBitLen;
  171. } psram_cmd_t;
  172. static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode);
  173. static void psram_clear_spi_fifo(psram_spi_num_t spi_num)
  174. {
  175. int i;
  176. for (i = 0; i < 16; i++) {
  177. WRITE_PERI_REG(SPI_W0_REG(spi_num)+i*4, 0);
  178. }
  179. }
  180. //set basic SPI write mode
  181. static void psram_set_basic_write_mode(psram_spi_num_t spi_num)
  182. {
  183. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
  184. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
  185. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
  186. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
  187. }
  188. //set QPI write mode
  189. static void psram_set_qio_write_mode(psram_spi_num_t spi_num)
  190. {
  191. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
  192. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
  193. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
  194. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
  195. }
  196. //set QPI read mode
  197. static void psram_set_qio_read_mode(psram_spi_num_t spi_num)
  198. {
  199. SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
  200. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
  201. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
  202. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
  203. }
  204. //set SPI read mode
  205. static void psram_set_basic_read_mode(psram_spi_num_t spi_num)
  206. {
  207. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
  208. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
  209. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
  210. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
  211. }
  212. //start sending cmd/addr and optionally, receiving data
  213. static void IRAM_ATTR psram_cmd_recv_start(psram_spi_num_t spi_num, uint32_t* pRxData, uint16_t rxByteLen,
  214. psram_cmd_mode_t cmd_mode)
  215. {
  216. //get cs1
  217. CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
  218. SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
  219. uint32_t mode_backup = (READ_PERI_REG(SPI_USER_REG(spi_num)) >> SPI_FWRITE_DUAL_S) & 0xf;
  220. uint32_t rd_mode_backup = READ_PERI_REG(SPI_CTRL_REG(spi_num)) & (SPI_FREAD_DIO_M | SPI_FREAD_DUAL_M | SPI_FREAD_QUAD_M | SPI_FREAD_QIO_M);
  221. if (cmd_mode == PSRAM_CMD_SPI) {
  222. psram_set_basic_write_mode(spi_num);
  223. psram_set_basic_read_mode(spi_num);
  224. } else if (cmd_mode == PSRAM_CMD_QPI) {
  225. psram_set_qio_write_mode(spi_num);
  226. psram_set_qio_read_mode(spi_num);
  227. }
  228. //Wait for SPI0 to idle
  229. while ( READ_PERI_REG(SPI_EXT2_REG(0)) != 0);
  230. DPORT_SET_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
  231. // Start send data
  232. SET_PERI_REG_MASK(SPI_CMD_REG(spi_num), SPI_USR);
  233. while ((READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR));
  234. DPORT_CLEAR_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
  235. //recover spi mode
  236. SET_PERI_REG_BITS(SPI_USER_REG(spi_num), (pRxData?SPI_FWRITE_DUAL_M:0xf), mode_backup, SPI_FWRITE_DUAL_S);
  237. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), (SPI_FREAD_DIO_M|SPI_FREAD_DUAL_M|SPI_FREAD_QUAD_M|SPI_FREAD_QIO_M));
  238. SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), rd_mode_backup);
  239. //return cs to cs0
  240. SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
  241. CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
  242. if (pRxData) {
  243. int idx = 0;
  244. // Read data out
  245. do {
  246. *pRxData++ = READ_PERI_REG(SPI_W0_REG(spi_num) + (idx << 2));
  247. } while (++idx < ((rxByteLen / 4) + ((rxByteLen % 4) ? 1 : 0)));
  248. }
  249. }
  250. static uint32_t backup_usr[3];
  251. static uint32_t backup_usr1[3];
  252. static uint32_t backup_usr2[3];
  253. //setup spi command/addr/data/dummy in user mode
  254. static int psram_cmd_config(psram_spi_num_t spi_num, psram_cmd_t* pInData)
  255. {
  256. while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
  257. backup_usr[spi_num]=READ_PERI_REG(SPI_USER_REG(spi_num));
  258. backup_usr1[spi_num]=READ_PERI_REG(SPI_USER1_REG(spi_num));
  259. backup_usr2[spi_num]=READ_PERI_REG(SPI_USER2_REG(spi_num));
  260. // Set command by user.
  261. if (pInData->cmdBitLen != 0) {
  262. // Max command length 16 bits.
  263. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, pInData->cmdBitLen - 1,
  264. SPI_USR_COMMAND_BITLEN_S);
  265. // Enable command
  266. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
  267. // Load command,bit15-0 is cmd value.
  268. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_VALUE, pInData->cmd, SPI_USR_COMMAND_VALUE_S);
  269. } else {
  270. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
  271. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, 0, SPI_USR_COMMAND_BITLEN_S);
  272. }
  273. // Set Address by user.
  274. if (pInData->addrBitLen != 0) {
  275. SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, (pInData->addrBitLen - 1), SPI_USR_ADDR_BITLEN_S);
  276. // Enable address
  277. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
  278. // Set address
  279. WRITE_PERI_REG(SPI_ADDR_REG(spi_num), *pInData->addr);
  280. } else {
  281. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
  282. SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, 0, SPI_USR_ADDR_BITLEN_S);
  283. }
  284. // Set data by user.
  285. uint32_t* p_tx_val = pInData->txData;
  286. if (pInData->txDataBitLen != 0) {
  287. // Enable MOSI
  288. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
  289. // Load send buffer
  290. int len = (pInData->txDataBitLen + 31) / 32;
  291. if (p_tx_val != NULL) {
  292. memcpy((void*)SPI_W0_REG(spi_num), p_tx_val, len * 4);
  293. }
  294. // Set data send buffer length.Max data length 64 bytes.
  295. SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, (pInData->txDataBitLen - 1),
  296. SPI_USR_MOSI_DBITLEN_S);
  297. } else {
  298. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
  299. SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, 0, SPI_USR_MOSI_DBITLEN_S);
  300. }
  301. // Set rx data by user.
  302. if (pInData->rxDataBitLen != 0) {
  303. // Enable MOSI
  304. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
  305. // Set data send buffer length.Max data length 64 bytes.
  306. SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, (pInData->rxDataBitLen - 1),
  307. SPI_USR_MISO_DBITLEN_S);
  308. } else {
  309. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
  310. SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, 0, SPI_USR_MISO_DBITLEN_S);
  311. }
  312. if (pInData->dummyBitLen != 0) {
  313. SET_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
  314. SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, pInData->dummyBitLen - 1,
  315. SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  316. } else {
  317. CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
  318. SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, 0, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  319. }
  320. return 0;
  321. }
  322. static void psram_cmd_end(int spi_num) {
  323. while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
  324. WRITE_PERI_REG(SPI_USER_REG(spi_num), backup_usr[spi_num]);
  325. WRITE_PERI_REG(SPI_USER1_REG(spi_num), backup_usr1[spi_num]);
  326. WRITE_PERI_REG(SPI_USER2_REG(spi_num), backup_usr2[spi_num]);
  327. }
  328. //exit QPI mode(set back to SPI mode)
  329. static void psram_disable_qio_mode(psram_spi_num_t spi_num)
  330. {
  331. psram_cmd_t ps_cmd;
  332. uint32_t cmd_exit_qpi;
  333. cmd_exit_qpi = PSRAM_EXIT_QMODE;
  334. ps_cmd.txDataBitLen = 8;
  335. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  336. switch (s_psram_mode) {
  337. case PSRAM_CACHE_F80M_S80M:
  338. break;
  339. case PSRAM_CACHE_F80M_S40M:
  340. case PSRAM_CACHE_F40M_S40M:
  341. default:
  342. cmd_exit_qpi = PSRAM_EXIT_QMODE << 8;
  343. ps_cmd.txDataBitLen = 16;
  344. break;
  345. }
  346. }
  347. ps_cmd.txData = &cmd_exit_qpi;
  348. ps_cmd.cmd = 0;
  349. ps_cmd.cmdBitLen = 0;
  350. ps_cmd.addr = 0;
  351. ps_cmd.addrBitLen = 0;
  352. ps_cmd.rxData = NULL;
  353. ps_cmd.rxDataBitLen = 0;
  354. ps_cmd.dummyBitLen = 0;
  355. psram_cmd_config(spi_num, &ps_cmd);
  356. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_QPI);
  357. psram_cmd_end(spi_num);
  358. }
  359. //read psram id
  360. static void psram_read_id(uint32_t* dev_id)
  361. {
  362. psram_spi_num_t spi_num = PSRAM_SPI_1;
  363. psram_disable_qio_mode(spi_num);
  364. uint32_t dummy_bits = 0 + extra_dummy;
  365. psram_cmd_t ps_cmd;
  366. uint32_t addr = 0;
  367. ps_cmd.addrBitLen = 3 * 8;
  368. ps_cmd.cmd = PSRAM_DEVICE_ID;
  369. ps_cmd.cmdBitLen = 8;
  370. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  371. switch (s_psram_mode) {
  372. case PSRAM_CACHE_F80M_S80M:
  373. break;
  374. case PSRAM_CACHE_F80M_S40M:
  375. case PSRAM_CACHE_F40M_S40M:
  376. default:
  377. ps_cmd.cmdBitLen = 2; //this two bits is used to delay 2 clock cycle
  378. ps_cmd.cmd = 0;
  379. addr = (PSRAM_DEVICE_ID << 24) | 0;
  380. ps_cmd.addrBitLen = 4 * 8;
  381. break;
  382. }
  383. }
  384. ps_cmd.addr = &addr;
  385. ps_cmd.txDataBitLen = 0;
  386. ps_cmd.txData = NULL;
  387. ps_cmd.rxDataBitLen = 4 * 8;
  388. ps_cmd.rxData = dev_id;
  389. ps_cmd.dummyBitLen = dummy_bits;
  390. psram_cmd_config(spi_num, &ps_cmd);
  391. psram_clear_spi_fifo(spi_num);
  392. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_SPI);
  393. psram_cmd_end(spi_num);
  394. }
  395. //enter QPI mode
  396. static esp_err_t IRAM_ATTR psram_enable_qio_mode(psram_spi_num_t spi_num)
  397. {
  398. psram_cmd_t ps_cmd;
  399. uint32_t addr = (PSRAM_ENTER_QMODE << 24) | 0;
  400. ps_cmd.cmdBitLen = 0;
  401. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  402. switch (s_psram_mode) {
  403. case PSRAM_CACHE_F80M_S80M:
  404. break;
  405. case PSRAM_CACHE_F80M_S40M:
  406. case PSRAM_CACHE_F40M_S40M:
  407. default:
  408. ps_cmd.cmdBitLen = 2;
  409. break;
  410. }
  411. }
  412. ps_cmd.cmd = 0;
  413. ps_cmd.addr = &addr;
  414. ps_cmd.addrBitLen = 8;
  415. ps_cmd.txData = NULL;
  416. ps_cmd.txDataBitLen = 0;
  417. ps_cmd.rxData = NULL;
  418. ps_cmd.rxDataBitLen = 0;
  419. ps_cmd.dummyBitLen = 0;
  420. psram_cmd_config(spi_num, &ps_cmd);
  421. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  422. psram_cmd_end(spi_num);
  423. return ESP_OK;
  424. }
  425. void psram_set_cs_timing(psram_spi_num_t spi_num, psram_clk_mode_t clk_mode)
  426. {
  427. if (clk_mode == PSRAM_CLK_MODE_NORM) {
  428. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
  429. // Set cs time.
  430. SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_HOLD_TIME_V, 1, SPI_HOLD_TIME_S);
  431. SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_SETUP_TIME_V, 0, SPI_SETUP_TIME_S);
  432. } else {
  433. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
  434. }
  435. }
  436. //spi param init for psram
  437. void IRAM_ATTR psram_spi_init(psram_spi_num_t spi_num, psram_cache_mode_t mode)
  438. {
  439. CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_TRANS_DONE << 5);
  440. // SPI_CPOL & SPI_CPHA
  441. CLEAR_PERI_REG_MASK(SPI_PIN_REG(spi_num), SPI_CK_IDLE_EDGE);
  442. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CK_OUT_EDGE);
  443. // SPI bit order
  444. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_WR_BIT_ORDER);
  445. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_RD_BIT_ORDER);
  446. // SPI bit order
  447. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_DOUTDIN);
  448. // May be not must to do.
  449. WRITE_PERI_REG(SPI_USER1_REG(spi_num), 0);
  450. // SPI mode type
  451. CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_SLAVE_MODE);
  452. memset((void*)SPI_W0_REG(spi_num), 0, 16 * 4);
  453. psram_set_cs_timing(spi_num, s_clk_mode);
  454. }
  455. //psram gpio init , different working frequency we have different solutions
  456. static void IRAM_ATTR psram_gpio_config(psram_io_t *psram_io, psram_cache_mode_t mode)
  457. {
  458. int spi_cache_dummy = 0;
  459. uint32_t rd_mode_reg = READ_PERI_REG(SPI_CTRL_REG(0));
  460. if (rd_mode_reg & SPI_FREAD_QIO_M) {
  461. spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN;
  462. } else if (rd_mode_reg & SPI_FREAD_DIO_M) {
  463. spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN;
  464. SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_ADDR_BITLEN_V, SPI0_R_DIO_ADDR_BITSLEN, SPI_USR_ADDR_BITLEN_S);
  465. } else if (rd_mode_reg & (SPI_FREAD_QUAD_M | SPI_FREAD_DUAL_M)) {
  466. spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
  467. } else {
  468. spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
  469. }
  470. switch (mode) {
  471. case PSRAM_CACHE_F80M_S40M:
  472. extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
  473. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  474. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  475. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  476. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
  477. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
  478. //set drive ability for clock
  479. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
  480. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
  481. break;
  482. case PSRAM_CACHE_F80M_S80M:
  483. extra_dummy = PSRAM_IO_MATRIX_DUMMY_80M;
  484. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  485. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  486. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  487. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
  488. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_FLASH_PORT);
  489. //set drive ability for clock
  490. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
  491. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 3, FUN_DRV_S);
  492. break;
  493. case PSRAM_CACHE_F40M_S40M:
  494. extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
  495. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  496. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  497. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_40M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  498. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_CACHE_PORT);
  499. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
  500. //set drive ability for clock
  501. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 2, FUN_DRV_S);
  502. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
  503. break;
  504. default:
  505. break;
  506. }
  507. SET_PERI_REG_MASK(SPI_USER_REG(0), SPI_USR_DUMMY); // dummy enable
  508. // In bootloader, all the signals are already configured,
  509. // We keep the following code in case the bootloader is some older version.
  510. gpio_matrix_out(psram_io->flash_cs_io, SPICS0_OUT_IDX, 0, 0);
  511. gpio_matrix_out(psram_io->psram_cs_io, SPICS1_OUT_IDX, 0, 0);
  512. gpio_matrix_out(psram_io->psram_spiq_sd0_io, SPIQ_OUT_IDX, 0, 0);
  513. gpio_matrix_in(psram_io->psram_spiq_sd0_io, SPIQ_IN_IDX, 0);
  514. gpio_matrix_out(psram_io->psram_spid_sd1_io, SPID_OUT_IDX, 0, 0);
  515. gpio_matrix_in(psram_io->psram_spid_sd1_io, SPID_IN_IDX, 0);
  516. gpio_matrix_out(psram_io->psram_spiwp_sd3_io, SPIWP_OUT_IDX, 0, 0);
  517. gpio_matrix_in(psram_io->psram_spiwp_sd3_io, SPIWP_IN_IDX, 0);
  518. gpio_matrix_out(psram_io->psram_spihd_sd2_io, SPIHD_OUT_IDX, 0, 0);
  519. gpio_matrix_in(psram_io->psram_spihd_sd2_io, SPIHD_IN_IDX, 0);
  520. //select pin function gpio
  521. if ((psram_io->flash_clk_io == SPI_IOMUX_PIN_NUM_CLK) && (psram_io->flash_clk_io != psram_io->psram_clk_io)) {
  522. //flash clock signal should come from IO MUX.
  523. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUNC_SD_CLK_SPICLK);
  524. } else {
  525. //flash clock signal should come from GPIO matrix.
  526. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], PIN_FUNC_GPIO);
  527. }
  528. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], PIN_FUNC_GPIO);
  529. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], PIN_FUNC_GPIO);
  530. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], PIN_FUNC_GPIO);
  531. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], PIN_FUNC_GPIO);
  532. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], PIN_FUNC_GPIO);
  533. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], PIN_FUNC_GPIO);
  534. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], PIN_FUNC_GPIO);
  535. uint32_t flash_id = g_rom_flashchip.device_id;
  536. if (flash_id == FLASH_ID_GD25LQ32C) {
  537. // Set drive ability for 1.8v flash in 80Mhz.
  538. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
  539. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
  540. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
  541. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
  542. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], FUN_DRV_V, 3, FUN_DRV_S);
  543. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], FUN_DRV_V, 3, FUN_DRV_S);
  544. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], FUN_DRV_V, 3, FUN_DRV_S);
  545. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], FUN_DRV_V, 3, FUN_DRV_S);
  546. }
  547. }
  548. psram_size_t psram_get_size()
  549. {
  550. if ((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id)) {
  551. return PSRAM_SIZE_64MBITS;
  552. } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_32MBITS) {
  553. return PSRAM_SIZE_32MBITS;
  554. } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_16MBITS) {
  555. return PSRAM_SIZE_16MBITS;
  556. } else {
  557. return PSRAM_SIZE_MAX;
  558. }
  559. }
  560. //used in UT only
  561. bool psram_is_32mbit_ver0(void)
  562. {
  563. return PSRAM_IS_32MBIT_VER0(s_psram_id);
  564. }
  565. /*
  566. * Psram mode init will overwrite original flash speed mode, so that it is possible to change psram and flash speed after OTA.
  567. * Flash read mode(QIO/QOUT/DIO/DOUT) will not be changed in app bin. It is decided by bootloader, OTA can not change this mode.
  568. */
  569. esp_err_t IRAM_ATTR psram_enable(psram_cache_mode_t mode, psram_vaddr_mode_t vaddrmode) //psram init
  570. {
  571. psram_io_t psram_io={0};
  572. uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
  573. uint32_t pkg_ver = chip_ver & 0x7;
  574. if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
  575. ESP_EARLY_LOGI(TAG, "This chip is ESP32-D2WD");
  576. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  577. if (cfg.tieh != RTC_VDDSDIO_TIEH_1_8V) {
  578. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 1.8V");
  579. return ESP_FAIL;
  580. }
  581. psram_io.psram_clk_io = D2WD_PSRAM_CLK_IO;
  582. psram_io.psram_cs_io = D2WD_PSRAM_CS_IO;
  583. } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4)) {
  584. ESP_EARLY_LOGI(TAG, "This chip is ESP32-PICO");
  585. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  586. if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
  587. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
  588. return ESP_FAIL;
  589. }
  590. s_clk_mode = PSRAM_CLK_MODE_NORM;
  591. psram_io.psram_clk_io = PICO_PSRAM_CLK_IO;
  592. psram_io.psram_cs_io = PICO_PSRAM_CS_IO;
  593. } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5)){
  594. ESP_EARLY_LOGI(TAG, "This chip is ESP32-D0WD");
  595. psram_io.psram_clk_io = D0WD_PSRAM_CLK_IO;
  596. psram_io.psram_cs_io = D0WD_PSRAM_CS_IO;
  597. } else {
  598. ESP_EARLY_LOGE(TAG, "Not a valid or known package id: %d", pkg_ver);
  599. abort();
  600. }
  601. const uint32_t spiconfig = ets_efuse_get_spiconfig();
  602. if (spiconfig == EFUSE_SPICONFIG_SPI_DEFAULTS) {
  603. psram_io.flash_clk_io = SPI_IOMUX_PIN_NUM_CLK;
  604. psram_io.flash_cs_io = SPI_IOMUX_PIN_NUM_CS;
  605. psram_io.psram_spiq_sd0_io = PSRAM_SPIQ_SD0_IO;
  606. psram_io.psram_spid_sd1_io = PSRAM_SPID_SD1_IO;
  607. psram_io.psram_spiwp_sd3_io = PSRAM_SPIWP_SD3_IO;
  608. psram_io.psram_spihd_sd2_io = PSRAM_SPIHD_SD2_IO;
  609. } else if (spiconfig == EFUSE_SPICONFIG_HSPI_DEFAULTS) {
  610. psram_io.flash_clk_io = FLASH_HSPI_CLK_IO;
  611. psram_io.flash_cs_io = FLASH_HSPI_CS_IO;
  612. psram_io.psram_spiq_sd0_io = PSRAM_HSPI_SPIQ_SD0_IO;
  613. psram_io.psram_spid_sd1_io = PSRAM_HSPI_SPID_SD1_IO;
  614. psram_io.psram_spiwp_sd3_io = PSRAM_HSPI_SPIWP_SD3_IO;
  615. psram_io.psram_spihd_sd2_io = PSRAM_HSPI_SPIHD_SD2_IO;
  616. } else {
  617. psram_io.flash_clk_io = EFUSE_SPICONFIG_RET_SPICLK(spiconfig);
  618. psram_io.flash_cs_io = EFUSE_SPICONFIG_RET_SPICS0(spiconfig);
  619. psram_io.psram_spiq_sd0_io = EFUSE_SPICONFIG_RET_SPIQ(spiconfig);
  620. psram_io.psram_spid_sd1_io = EFUSE_SPICONFIG_RET_SPID(spiconfig);
  621. psram_io.psram_spihd_sd2_io = EFUSE_SPICONFIG_RET_SPIHD(spiconfig);
  622. // If flash mode is set to QIO or QOUT, the WP pin is equal the value configured in bootloader.
  623. // If flash mode is set to DIO or DOUT, the WP pin should config it via menuconfig.
  624. #if CONFIG_ESPTOOLPY_FLASHMODE_QIO || CONFIG_FLASHMODE_QOUT
  625. psram_io.psram_spiwp_sd3_io = CONFIG_BOOTLOADER_SPI_WP_PIN;
  626. #else
  627. psram_io.psram_spiwp_sd3_io = CONFIG_SPIRAM_SPIWP_SD3_PIN;
  628. #endif
  629. }
  630. assert(mode < PSRAM_CACHE_MAX && "we don't support any other mode for now.");
  631. s_psram_mode = mode;
  632. WRITE_PERI_REG(SPI_EXT3_REG(0), 0x1);
  633. CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_PREP_HOLD_M);
  634. psram_spi_init(PSRAM_SPI_1, mode);
  635. switch (mode) {
  636. case PSRAM_CACHE_F80M_S80M:
  637. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  638. break;
  639. case PSRAM_CACHE_F80M_S40M:
  640. case PSRAM_CACHE_F40M_S40M:
  641. default:
  642. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  643. /* We need to delay CLK to the PSRAM with respect to the clock signal as output by the SPI peripheral.
  644. We do this by routing it signal to signal 224/225, which are used as a loopback; the extra run through
  645. the GPIO matrix causes the delay. We use GPIO20 (which is not in any package but has pad logic in
  646. silicon) as a temporary pad for this. So the signal path is:
  647. SPI CLK --> GPIO28 --> signal224(in then out) --> internal GPIO29 --> signal225(in then out) --> GPIO17(PSRAM CLK)
  648. */
  649. gpio_matrix_out(PSRAM_INTERNAL_IO_28, SPICLK_OUT_IDX, 0, 0);
  650. gpio_matrix_in(PSRAM_INTERNAL_IO_28, SIG_IN_FUNC224_IDX, 0);
  651. gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC224_IDX, 0, 0);
  652. gpio_matrix_in(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC225_IDX, 0);
  653. gpio_matrix_out(psram_io.psram_clk_io, SIG_IN_FUNC225_IDX, 0, 0);
  654. } else {
  655. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  656. }
  657. break;
  658. }
  659. // Rise VDDSIO for 1.8V psram.
  660. bootloader_common_vddsdio_configure();
  661. // GPIO related settings
  662. psram_gpio_config(&psram_io, mode);
  663. psram_read_id(&s_psram_id);
  664. if (!PSRAM_IS_VALID(s_psram_id)) {
  665. return ESP_FAIL;
  666. }
  667. if (psram_is_32mbit_ver0()) {
  668. s_clk_mode = PSRAM_CLK_MODE_DCLK;
  669. if (mode == PSRAM_CACHE_F80M_S80M) {
  670. #ifdef CONFIG_SPIRAM_OCCUPY_NO_HOST
  671. ESP_EARLY_LOGE(TAG, "This version of PSRAM needs to claim an extra SPI peripheral at 80MHz. Please either: choose lower frequency by SPIRAM_SPEED_, or select one SPI peripheral it by SPIRAM_OCCUPY_*SPI_HOST in the menuconfig.");
  672. abort();
  673. #else
  674. /* note: If the third mode(80Mhz+80Mhz) is enabled for 32MBit 1V8 psram, one of HSPI/VSPI port will be
  675. occupied by the system (according to kconfig).
  676. Application code should never touch HSPI/VSPI hardware in this case. We try to stop applications
  677. from doing this using the drivers by claiming the port for ourselves */
  678. periph_module_enable(PSRAM_SPI_MODULE);
  679. bool r=spicommon_periph_claim(PSRAM_SPI_HOST, "psram");
  680. if (!r) {
  681. return ESP_ERR_INVALID_STATE;
  682. }
  683. gpio_matrix_out(psram_io.psram_clk_io, PSRAM_CLK_SIGNAL, 0, 0);
  684. //use spi3 clock,but use spi1 data/cs wires
  685. //We get a solid 80MHz clock from SPI3 by setting it up, starting a transaction, waiting until it
  686. //is in progress, then cutting the clock (but not the reset!) to that peripheral.
  687. WRITE_PERI_REG(SPI_ADDR_REG(PSRAM_SPI_NUM), 32 << 24);
  688. SET_PERI_REG_MASK(SPI_CMD_REG(PSRAM_SPI_NUM), SPI_FLASH_READ_M);
  689. uint32_t spi_status;
  690. while (1) {
  691. spi_status = READ_PERI_REG(SPI_EXT2_REG(PSRAM_SPI_NUM));
  692. if (spi_status != 0 && spi_status != 1) {
  693. DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, PSRAM_SPICLKEN);
  694. break;
  695. }
  696. }
  697. #endif
  698. }
  699. } else {
  700. // For other psram, we don't need any extra clock cycles after cs get back to high level
  701. s_clk_mode = PSRAM_CLK_MODE_NORM;
  702. gpio_matrix_out(PSRAM_INTERNAL_IO_28, SIG_GPIO_OUT_IDX, 0, 0);
  703. gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_GPIO_OUT_IDX, 0, 0);
  704. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  705. }
  706. // Update cs timing according to psram driving method.
  707. psram_set_cs_timing(PSRAM_SPI_1, s_clk_mode);
  708. psram_set_cs_timing(_SPI_CACHE_PORT, s_clk_mode);
  709. psram_enable_qio_mode(PSRAM_SPI_1);
  710. psram_cache_init(mode, vaddrmode);
  711. return ESP_OK;
  712. }
  713. //register initialization for sram cache params and r/w commands
  714. static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode)
  715. {
  716. switch (psram_cache_mode) {
  717. case PSRAM_CACHE_F80M_S80M:
  718. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk,80+40;
  719. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0. FLASH DIV 2+SRAM DIV4
  720. break;
  721. case PSRAM_CACHE_F80M_S40M:
  722. CLEAR_PERI_REG_MASK(SPI_CLOCK_REG(0), SPI_CLK_EQU_SYSCLK_M);
  723. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKDIV_PRE_V, 0, SPI_CLKDIV_PRE_S);
  724. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_N, 1, SPI_CLKCNT_N_S);
  725. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_H, 0, SPI_CLKCNT_H_S);
  726. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_L, 1, SPI_CLKCNT_L_S);
  727. SET_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
  728. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0.
  729. break;
  730. case PSRAM_CACHE_F40M_S40M:
  731. default:
  732. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
  733. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div
  734. break;
  735. }
  736. CLEAR_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_DIO_M); //disable dio mode for cache command
  737. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_QIO_M); //enable qio mode for cache command
  738. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_RCMD_M); //enable cache read command
  739. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_WCMD_M); //enable cache write command
  740. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_ADDR_BITLEN_V, 23, SPI_SRAM_ADDR_BITLEN_S); //write address for cache command.
  741. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_RD_SRAM_DUMMY_M); //enable cache read dummy
  742. //config sram cache r/w command
  743. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 7,
  744. SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S);
  745. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, PSRAM_FAST_READ_QUAD,
  746. SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB
  747. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 7,
  748. SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S);
  749. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, PSRAM_QUAD_WRITE,
  750. SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38
  751. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
  752. SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
  753. switch (psram_cache_mode) {
  754. case PSRAM_CACHE_F80M_S80M: //in this mode , no delay is needed
  755. break;
  756. case PSRAM_CACHE_F80M_S40M: //if sram is @40M, need 2 cycles of delay
  757. case PSRAM_CACHE_F40M_S40M:
  758. default:
  759. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  760. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 15,
  761. SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S); //read command length, 2 bytes(1byte for delay),sending in qio mode in cache
  762. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, ((PSRAM_FAST_READ_QUAD) << 8),
  763. SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB, read command value,(0x00 for delay,0xeb for cmd)
  764. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 15,
  765. SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S); //write command length,2 bytes(1byte for delay,send in qio mode in cache)
  766. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, ((PSRAM_QUAD_WRITE) << 8),
  767. SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38, write command value,(0x00 for delay)
  768. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
  769. SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
  770. }
  771. break;
  772. }
  773. DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL|DPORT_PRO_DRAM_SPLIT);
  774. DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL|DPORT_APP_DRAM_SPLIT);
  775. if (vaddrmode == PSRAM_VADDR_MODE_LOWHIGH) {
  776. DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL);
  777. DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL);
  778. } else if (vaddrmode == PSRAM_VADDR_MODE_EVENODD) {
  779. DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_SPLIT);
  780. DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_SPLIT);
  781. }
  782. DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DRAM1|DPORT_PRO_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
  783. //cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
  784. DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CMMU_SRAM_PAGE_MODE, 0, DPORT_PRO_CMMU_SRAM_PAGE_MODE_S);
  785. DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DRAM1|DPORT_APP_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
  786. //cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
  787. DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CMMU_SRAM_PAGE_MODE, 0, DPORT_APP_CMMU_SRAM_PAGE_MODE_S);
  788. CLEAR_PERI_REG_MASK(SPI_PIN_REG(0), SPI_CS1_DIS_M); //ENABLE SPI0 CS1 TO PSRAM(CS0--FLASH; CS1--SRAM)
  789. }
  790. #endif // CONFIG_ESP32_SPIRAM_SUPPORT