rmt.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <esp_types.h>
  14. #include <string.h>
  15. #include <stdlib.h>
  16. #include "freertos/FreeRTOS.h"
  17. #include "freertos/semphr.h"
  18. #include "freertos/xtensa_api.h"
  19. #include "freertos/ringbuf.h"
  20. #include "esp_intr.h"
  21. #include "esp_log.h"
  22. #include "esp_err.h"
  23. #include "esp_intr_alloc.h"
  24. #include "soc/gpio_sig_map.h"
  25. #include "soc/rmt_struct.h"
  26. #include "driver/periph_ctrl.h"
  27. #include "driver/rmt.h"
  28. #include <sys/lock.h>
  29. #define RMT_SOUCCE_CLK_APB (APB_CLK_FREQ) /*!< RMT source clock is APB_CLK */
  30. #define RMT_SOURCE_CLK_REF (1 * 1000000) /*!< not used yet */
  31. #define RMT_SOURCE_CLK(select) ((select == RMT_BASECLK_REF) ? (RMT_SOURCE_CLK_REF) : (RMT_SOUCCE_CLK_APB)) /*! RMT source clock frequency */
  32. #define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
  33. #define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
  34. #define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
  35. #define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
  36. #define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
  37. #define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
  38. #define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
  39. #define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
  40. #define RMT_MODE_ERROR_STR "RMT MODE ERROR"
  41. #define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
  42. #define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
  43. #define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
  44. #define RMT_PSRAM_BUFFER_WARN_STR "Using buffer allocated from psram"
  45. #define RMT_TRANSLATOR_NULL_STR "RMT translator is null"
  46. #define RMT_TRANSLATOR_UNINIT_STR "RMT translator not init"
  47. #define RMT_PARAM_ERR_STR "RMT param error"
  48. static const char* RMT_TAG = "rmt";
  49. static uint8_t s_rmt_driver_channels; // Bitmask (bits 0-7) of installed drivers' channels
  50. static rmt_isr_handle_t s_rmt_driver_intr_handle;
  51. #define RMT_CHECK(a, str, ret_val) \
  52. if (!(a)) { \
  53. ESP_LOGE(RMT_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  54. return (ret_val); \
  55. }
  56. // Spinlock for protecting concurrent register-level access only
  57. static portMUX_TYPE rmt_spinlock = portMUX_INITIALIZER_UNLOCKED;
  58. // Mutex lock for protecting concurrent register/unregister of RMT channels' ISR
  59. static _lock_t rmt_driver_isr_lock;
  60. typedef struct {
  61. size_t tx_offset;
  62. size_t tx_len_rem;
  63. size_t tx_sub_len;
  64. bool translator;
  65. bool wait_done; //Mark whether wait tx done.
  66. rmt_channel_t channel;
  67. const rmt_item32_t* tx_data;
  68. xSemaphoreHandle tx_sem;
  69. #if CONFIG_SPIRAM_USE_MALLOC
  70. int intr_alloc_flags;
  71. StaticSemaphore_t tx_sem_buffer;
  72. #endif
  73. rmt_item32_t* tx_buf;
  74. RingbufHandle_t rx_buf;
  75. sample_to_rmt_t sample_to_rmt;
  76. size_t sample_size_remain;
  77. const uint8_t *sample_cur;
  78. } rmt_obj_t;
  79. rmt_obj_t* p_rmt_obj[RMT_CHANNEL_MAX] = {0};
  80. // Event called when transmission is ended
  81. static rmt_tx_end_callback_t rmt_tx_end_callback;
  82. static void rmt_set_tx_wrap_en(bool en)
  83. {
  84. portENTER_CRITICAL(&rmt_spinlock);
  85. RMT.apb_conf.mem_tx_wrap_en = en;
  86. portEXIT_CRITICAL(&rmt_spinlock);
  87. }
  88. static void rmt_set_data_mode(rmt_data_mode_t data_mode)
  89. {
  90. portENTER_CRITICAL(&rmt_spinlock);
  91. RMT.apb_conf.fifo_mask = data_mode;
  92. portEXIT_CRITICAL(&rmt_spinlock);
  93. }
  94. esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
  95. {
  96. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  97. RMT.conf_ch[channel].conf0.div_cnt = div_cnt;
  98. return ESP_OK;
  99. }
  100. esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t* div_cnt)
  101. {
  102. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  103. RMT_CHECK(div_cnt != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  104. *div_cnt = RMT.conf_ch[channel].conf0.div_cnt;
  105. return ESP_OK;
  106. }
  107. esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
  108. {
  109. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  110. RMT.conf_ch[channel].conf0.idle_thres = thresh;
  111. return ESP_OK;
  112. }
  113. esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
  114. {
  115. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  116. RMT_CHECK(thresh != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  117. *thresh = RMT.conf_ch[channel].conf0.idle_thres;
  118. return ESP_OK;
  119. }
  120. esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
  121. {
  122. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  123. RMT_CHECK(rmt_mem_num <= RMT_CHANNEL_MAX - channel, RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  124. RMT.conf_ch[channel].conf0.mem_size = rmt_mem_num;
  125. return ESP_OK;
  126. }
  127. esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t* rmt_mem_num)
  128. {
  129. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  130. RMT_CHECK(rmt_mem_num != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  131. *rmt_mem_num = RMT.conf_ch[channel].conf0.mem_size;
  132. return ESP_OK;
  133. }
  134. esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
  135. rmt_carrier_level_t carrier_level)
  136. {
  137. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  138. RMT_CHECK(carrier_level < RMT_CARRIER_LEVEL_MAX, RMT_CARRIER_ERROR_STR, ESP_ERR_INVALID_ARG);
  139. RMT.carrier_duty_ch[channel].high = high_level;
  140. RMT.carrier_duty_ch[channel].low = low_level;
  141. RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
  142. RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
  143. return ESP_OK;
  144. }
  145. esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
  146. {
  147. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  148. RMT.conf_ch[channel].conf0.mem_pd = pd_en;
  149. return ESP_OK;
  150. }
  151. esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool* pd_en)
  152. {
  153. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  154. *pd_en = (bool) RMT.conf_ch[channel].conf0.mem_pd;
  155. return ESP_OK;
  156. }
  157. esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
  158. {
  159. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  160. portENTER_CRITICAL(&rmt_spinlock);
  161. if(tx_idx_rst) {
  162. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  163. }
  164. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  165. RMT.conf_ch[channel].conf1.tx_start = 1;
  166. portEXIT_CRITICAL(&rmt_spinlock);
  167. return ESP_OK;
  168. }
  169. esp_err_t rmt_tx_stop(rmt_channel_t channel)
  170. {
  171. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  172. portENTER_CRITICAL(&rmt_spinlock);
  173. RMTMEM.chan[channel].data32[0].val = 0;
  174. RMT.conf_ch[channel].conf1.tx_start = 0;
  175. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  176. RMT.conf_ch[channel].conf1.mem_rd_rst = 0;
  177. portEXIT_CRITICAL(&rmt_spinlock);
  178. return ESP_OK;
  179. }
  180. esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
  181. {
  182. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  183. portENTER_CRITICAL(&rmt_spinlock);
  184. if(rx_idx_rst) {
  185. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  186. }
  187. RMT.conf_ch[channel].conf1.rx_en = 0;
  188. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  189. RMT.conf_ch[channel].conf1.rx_en = 1;
  190. portEXIT_CRITICAL(&rmt_spinlock);
  191. return ESP_OK;
  192. }
  193. esp_err_t rmt_rx_stop(rmt_channel_t channel)
  194. {
  195. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  196. portENTER_CRITICAL(&rmt_spinlock);
  197. RMT.conf_ch[channel].conf1.rx_en = 0;
  198. portEXIT_CRITICAL(&rmt_spinlock);
  199. return ESP_OK;
  200. }
  201. esp_err_t rmt_memory_rw_rst(rmt_channel_t channel)
  202. {
  203. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  204. portENTER_CRITICAL(&rmt_spinlock);
  205. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  206. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  207. portEXIT_CRITICAL(&rmt_spinlock);
  208. return ESP_OK;
  209. }
  210. esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
  211. {
  212. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  213. RMT_CHECK(owner < RMT_MEM_OWNER_MAX, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  214. portENTER_CRITICAL(&rmt_spinlock);
  215. RMT.conf_ch[channel].conf1.mem_owner = owner;
  216. portEXIT_CRITICAL(&rmt_spinlock);
  217. return ESP_OK;
  218. }
  219. esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t* owner)
  220. {
  221. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  222. RMT_CHECK(owner != NULL, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  223. *owner = (rmt_mem_owner_t) RMT.conf_ch[channel].conf1.mem_owner;
  224. return ESP_OK;
  225. }
  226. esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
  227. {
  228. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  229. portENTER_CRITICAL(&rmt_spinlock);
  230. RMT.conf_ch[channel].conf1.tx_conti_mode = loop_en;
  231. portEXIT_CRITICAL(&rmt_spinlock);
  232. return ESP_OK;
  233. }
  234. esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool* loop_en)
  235. {
  236. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  237. *loop_en = (bool) RMT.conf_ch[channel].conf1.tx_conti_mode;
  238. return ESP_OK;
  239. }
  240. esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
  241. {
  242. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  243. portENTER_CRITICAL(&rmt_spinlock);
  244. RMT.conf_ch[channel].conf1.rx_filter_en = rx_filter_en;
  245. RMT.conf_ch[channel].conf1.rx_filter_thres = thresh;
  246. portEXIT_CRITICAL(&rmt_spinlock);
  247. return ESP_OK;
  248. }
  249. esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
  250. {
  251. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  252. RMT_CHECK(base_clk < RMT_BASECLK_MAX, RMT_BASECLK_ERROR_STR, ESP_ERR_INVALID_ARG);
  253. portENTER_CRITICAL(&rmt_spinlock);
  254. RMT.conf_ch[channel].conf1.ref_always_on = base_clk;
  255. portEXIT_CRITICAL(&rmt_spinlock);
  256. return ESP_OK;
  257. }
  258. esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t* src_clk)
  259. {
  260. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  261. *src_clk = (rmt_source_clk_t) (RMT.conf_ch[channel].conf1.ref_always_on);
  262. return ESP_OK;
  263. }
  264. esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
  265. {
  266. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  267. RMT_CHECK(level < RMT_IDLE_LEVEL_MAX, "RMT IDLE LEVEL ERR", ESP_ERR_INVALID_ARG);
  268. portENTER_CRITICAL(&rmt_spinlock);
  269. RMT.conf_ch[channel].conf1.idle_out_en = idle_out_en;
  270. RMT.conf_ch[channel].conf1.idle_out_lv = level;
  271. portEXIT_CRITICAL(&rmt_spinlock);
  272. return ESP_OK;
  273. }
  274. esp_err_t rmt_get_idle_level(rmt_channel_t channel, bool* idle_out_en, rmt_idle_level_t* level)
  275. {
  276. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  277. *idle_out_en = (bool) (RMT.conf_ch[channel].conf1.idle_out_en);
  278. *level = (rmt_idle_level_t) (RMT.conf_ch[channel].conf1.idle_out_lv);
  279. return ESP_OK;
  280. }
  281. esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t* status)
  282. {
  283. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  284. *status = RMT.status_ch[channel];
  285. return ESP_OK;
  286. }
  287. rmt_data_mode_t rmt_get_data_mode()
  288. {
  289. return (rmt_data_mode_t) (RMT.apb_conf.fifo_mask);
  290. }
  291. void rmt_set_intr_enable_mask(uint32_t mask)
  292. {
  293. portENTER_CRITICAL(&rmt_spinlock);
  294. RMT.int_ena.val |= mask;
  295. portEXIT_CRITICAL(&rmt_spinlock);
  296. }
  297. void rmt_clr_intr_enable_mask(uint32_t mask)
  298. {
  299. portENTER_CRITICAL(&rmt_spinlock);
  300. RMT.int_ena.val &= (~mask);
  301. portEXIT_CRITICAL(&rmt_spinlock);
  302. }
  303. esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
  304. {
  305. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  306. if(en) {
  307. rmt_set_intr_enable_mask(BIT(channel * 3 + 1));
  308. } else {
  309. rmt_clr_intr_enable_mask(BIT(channel * 3 + 1));
  310. }
  311. return ESP_OK;
  312. }
  313. esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
  314. {
  315. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  316. if(en) {
  317. rmt_set_intr_enable_mask(BIT(channel * 3 + 2));
  318. } else {
  319. rmt_clr_intr_enable_mask(BIT(channel * 3 + 2));
  320. }
  321. return ESP_OK;
  322. }
  323. esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
  324. {
  325. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  326. if(en) {
  327. rmt_set_intr_enable_mask(BIT(channel * 3));
  328. } else {
  329. rmt_clr_intr_enable_mask(BIT(channel * 3));
  330. }
  331. return ESP_OK;
  332. }
  333. esp_err_t rmt_set_tx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  334. {
  335. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  336. if(en) {
  337. RMT_CHECK(evt_thresh <= 256, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
  338. portENTER_CRITICAL(&rmt_spinlock);
  339. RMT.tx_lim_ch[channel].limit = evt_thresh;
  340. portEXIT_CRITICAL(&rmt_spinlock);
  341. rmt_set_tx_wrap_en(true);
  342. rmt_set_intr_enable_mask(BIT(channel + 24));
  343. } else {
  344. rmt_clr_intr_enable_mask(BIT(channel + 24));
  345. }
  346. return ESP_OK;
  347. }
  348. esp_err_t rmt_set_pin(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num)
  349. {
  350. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  351. RMT_CHECK(mode < RMT_MODE_MAX, RMT_MODE_ERROR_STR, ESP_ERR_INVALID_ARG);
  352. RMT_CHECK(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) || (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))),
  353. RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
  354. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], 2);
  355. if(mode == RMT_MODE_TX) {
  356. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  357. gpio_matrix_out(gpio_num, RMT_SIG_OUT0_IDX + channel, 0, 0);
  358. } else {
  359. gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
  360. gpio_matrix_in(gpio_num, RMT_SIG_IN0_IDX + channel, 0);
  361. }
  362. return ESP_OK;
  363. }
  364. esp_err_t rmt_config(const rmt_config_t* rmt_param)
  365. {
  366. uint8_t mode = rmt_param->rmt_mode;
  367. uint8_t channel = rmt_param->channel;
  368. uint8_t gpio_num = rmt_param->gpio_num;
  369. uint8_t mem_cnt = rmt_param->mem_block_num;
  370. int clk_div = rmt_param->clk_div;
  371. uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
  372. bool carrier_en = rmt_param->tx_config.carrier_en;
  373. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  374. RMT_CHECK(GPIO_IS_VALID_GPIO(gpio_num), RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
  375. RMT_CHECK((mem_cnt + channel <= 8 && mem_cnt > 0), RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  376. RMT_CHECK((clk_div > 0), RMT_CLK_DIV_ERROR_STR, ESP_ERR_INVALID_ARG);
  377. if (mode == RMT_MODE_TX) {
  378. RMT_CHECK((!carrier_en || carrier_freq_hz > 0), "RMT carrier frequency can't be zero", ESP_ERR_INVALID_ARG);
  379. }
  380. static bool rmt_enable = false;
  381. if (rmt_enable == false) {
  382. periph_module_reset(PERIPH_RMT_MODULE);
  383. rmt_enable = true;
  384. }
  385. periph_module_enable(PERIPH_RMT_MODULE);
  386. RMT.conf_ch[channel].conf0.div_cnt = clk_div;
  387. /*Visit data use memory not FIFO*/
  388. rmt_set_data_mode(RMT_DATA_MODE_MEM);
  389. /*Reset tx/rx memory index */
  390. portENTER_CRITICAL(&rmt_spinlock);
  391. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  392. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  393. portEXIT_CRITICAL(&rmt_spinlock);
  394. if(mode == RMT_MODE_TX) {
  395. uint32_t rmt_source_clk_hz = 0;
  396. uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
  397. uint8_t carrier_level = rmt_param->tx_config.carrier_level;
  398. uint8_t idle_level = rmt_param->tx_config.idle_level;
  399. portENTER_CRITICAL(&rmt_spinlock);
  400. RMT.conf_ch[channel].conf1.tx_conti_mode = rmt_param->tx_config.loop_en;
  401. /*Memory set block number*/
  402. RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
  403. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  404. /*We use APB clock in this version, which is 80Mhz, later we will release system reference clock*/
  405. RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
  406. rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
  407. /*Set idle level */
  408. RMT.conf_ch[channel].conf1.idle_out_en = rmt_param->tx_config.idle_output_en;
  409. RMT.conf_ch[channel].conf1.idle_out_lv = idle_level;
  410. /*Set carrier*/
  411. RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
  412. if (carrier_en) {
  413. uint32_t duty_div, duty_h, duty_l;
  414. duty_div = rmt_source_clk_hz / carrier_freq_hz;
  415. duty_h = duty_div * carrier_duty_percent / 100;
  416. duty_l = duty_div - duty_h;
  417. RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
  418. RMT.carrier_duty_ch[channel].high = duty_h;
  419. RMT.carrier_duty_ch[channel].low = duty_l;
  420. } else {
  421. RMT.conf_ch[channel].conf0.carrier_out_lv = 0;
  422. RMT.carrier_duty_ch[channel].high = 0;
  423. RMT.carrier_duty_ch[channel].low = 0;
  424. }
  425. portEXIT_CRITICAL(&rmt_spinlock);
  426. ESP_LOGD(RMT_TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Carrier_Hz %u|Duty %u",
  427. channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
  428. }
  429. else if(RMT_MODE_RX == mode) {
  430. uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
  431. uint16_t threshold = rmt_param->rx_config.idle_threshold;
  432. portENTER_CRITICAL(&rmt_spinlock);
  433. /*clock init*/
  434. RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
  435. uint32_t rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
  436. /*memory set block number and owner*/
  437. RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
  438. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  439. /*Set idle threshold*/
  440. RMT.conf_ch[channel].conf0.idle_thres = threshold;
  441. /* Set RX filter */
  442. RMT.conf_ch[channel].conf1.rx_filter_thres = filter_cnt;
  443. RMT.conf_ch[channel].conf1.rx_filter_en = rmt_param->rx_config.filter_en;
  444. portEXIT_CRITICAL(&rmt_spinlock);
  445. ESP_LOGD(RMT_TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Thresold %u|Filter %u",
  446. channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
  447. }
  448. rmt_set_pin(channel, mode, gpio_num);
  449. return ESP_OK;
  450. }
  451. static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, const rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
  452. {
  453. portENTER_CRITICAL_SAFE(&rmt_spinlock);
  454. RMT.apb_conf.fifo_mask = RMT_DATA_MODE_MEM;
  455. portEXIT_CRITICAL_SAFE(&rmt_spinlock);
  456. int i;
  457. for(i = 0; i < item_num; i++) {
  458. RMTMEM.chan[channel].data32[i + mem_offset].val = item[i].val;
  459. }
  460. }
  461. esp_err_t rmt_fill_tx_items(rmt_channel_t channel, const rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
  462. {
  463. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, (0));
  464. RMT_CHECK((item != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  465. RMT_CHECK((item_num > 0), RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  466. /*Each block has 64 x 32 bits of data*/
  467. uint8_t mem_cnt = RMT.conf_ch[channel].conf0.mem_size;
  468. RMT_CHECK((mem_cnt * RMT_MEM_ITEM_NUM >= item_num), RMT_WR_MEM_OVF_ERROR_STR, ESP_ERR_INVALID_ARG);
  469. rmt_fill_memory(channel, item, item_num, mem_offset);
  470. return ESP_OK;
  471. }
  472. esp_err_t rmt_isr_register(void (*fn)(void*), void * arg, int intr_alloc_flags, rmt_isr_handle_t *handle)
  473. {
  474. RMT_CHECK((fn != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  475. RMT_CHECK(s_rmt_driver_channels == 0, "RMT driver installed, can not install generic ISR handler", ESP_FAIL);
  476. return esp_intr_alloc(ETS_RMT_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  477. }
  478. esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)
  479. {
  480. return esp_intr_free(handle);
  481. }
  482. static int IRAM_ATTR rmt_get_mem_len(rmt_channel_t channel)
  483. {
  484. int block_num = RMT.conf_ch[channel].conf0.mem_size;
  485. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  486. volatile rmt_item32_t* data = RMTMEM.chan[channel].data32;
  487. int idx;
  488. for(idx = 0; idx < item_block_len; idx++) {
  489. if(data[idx].duration0 == 0) {
  490. return idx;
  491. } else if(data[idx].duration1 == 0) {
  492. return idx + 1;
  493. }
  494. }
  495. return idx;
  496. }
  497. static void IRAM_ATTR rmt_driver_isr_default(void* arg)
  498. {
  499. uint32_t intr_st = RMT.int_st.val;
  500. uint32_t i = 0;
  501. uint8_t channel;
  502. portBASE_TYPE HPTaskAwoken = 0;
  503. for(i = 0; i < 32; i++) {
  504. if(i < 24) {
  505. if(intr_st & BIT(i)) {
  506. channel = i / 3;
  507. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  508. if(NULL == p_rmt) {
  509. RMT.int_clr.val = BIT(i);
  510. continue;
  511. }
  512. switch(i % 3) {
  513. //TX END
  514. case 0:
  515. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  516. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  517. RMT.conf_ch[channel].conf1.mem_rd_rst = 0;
  518. p_rmt->tx_data = NULL;
  519. p_rmt->tx_len_rem = 0;
  520. p_rmt->tx_offset = 0;
  521. p_rmt->tx_sub_len = 0;
  522. p_rmt->sample_cur = NULL;
  523. p_rmt->translator = false;
  524. if(rmt_tx_end_callback.function != NULL) {
  525. rmt_tx_end_callback.function(channel, rmt_tx_end_callback.arg);
  526. }
  527. break;
  528. //RX_END
  529. case 1:
  530. RMT.conf_ch[channel].conf1.rx_en = 0;
  531. int item_len = rmt_get_mem_len(channel);
  532. //change memory owner to protect data.
  533. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  534. if(p_rmt->rx_buf) {
  535. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void*) RMTMEM.chan[channel].data32, item_len * 4, &HPTaskAwoken);
  536. if(res == pdFALSE) {
  537. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER FULL");
  538. } else {
  539. }
  540. } else {
  541. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER ERROR\n");
  542. }
  543. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  544. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  545. RMT.conf_ch[channel].conf1.rx_en = 1;
  546. break;
  547. //ERR
  548. case 2:
  549. ESP_EARLY_LOGE(RMT_TAG, "RMT[%d] ERR", channel);
  550. ESP_EARLY_LOGE(RMT_TAG, "status: 0x%08x", RMT.status_ch[channel]);
  551. RMT.int_ena.val &= (~(BIT(i)));
  552. break;
  553. default:
  554. break;
  555. }
  556. RMT.int_clr.val = BIT(i);
  557. }
  558. } else {
  559. if(intr_st & (BIT(i))) {
  560. channel = i - 24;
  561. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  562. RMT.int_clr.val = BIT(i);
  563. if(p_rmt->tx_data == NULL) {
  564. //skip
  565. } else {
  566. if(p_rmt->translator) {
  567. if(p_rmt->sample_size_remain > 0) {
  568. size_t translated_size = 0;
  569. p_rmt->sample_to_rmt((void *) p_rmt->sample_cur,
  570. p_rmt->tx_buf,
  571. p_rmt->sample_size_remain,
  572. p_rmt->tx_sub_len,
  573. &translated_size,
  574. &p_rmt->tx_len_rem
  575. );
  576. p_rmt->sample_size_remain -= translated_size;
  577. p_rmt->sample_cur += translated_size;
  578. p_rmt->tx_data = p_rmt->tx_buf;
  579. } else {
  580. p_rmt->sample_cur = NULL;
  581. p_rmt->translator = false;
  582. }
  583. }
  584. const rmt_item32_t* pdata = p_rmt->tx_data;
  585. int len_rem = p_rmt->tx_len_rem;
  586. if(len_rem >= p_rmt->tx_sub_len) {
  587. rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
  588. p_rmt->tx_data += p_rmt->tx_sub_len;
  589. p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
  590. } else if(len_rem == 0) {
  591. RMTMEM.chan[channel].data32[p_rmt->tx_offset].val = 0;
  592. } else {
  593. rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
  594. RMTMEM.chan[channel].data32[p_rmt->tx_offset + len_rem].val = 0;
  595. p_rmt->tx_data += len_rem;
  596. p_rmt->tx_len_rem -= len_rem;
  597. }
  598. if(p_rmt->tx_offset == 0) {
  599. p_rmt->tx_offset = p_rmt->tx_sub_len;
  600. } else {
  601. p_rmt->tx_offset = 0;
  602. }
  603. }
  604. }
  605. }
  606. }
  607. if(HPTaskAwoken == pdTRUE) {
  608. portYIELD_FROM_ISR();
  609. }
  610. }
  611. esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
  612. {
  613. esp_err_t err = ESP_OK;
  614. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  615. RMT_CHECK((s_rmt_driver_channels & BIT(channel)) != 0, "No RMT driver for this channel", ESP_ERR_INVALID_STATE);
  616. if(p_rmt_obj[channel] == NULL) {
  617. return ESP_OK;
  618. }
  619. //Avoid blocking here(when the interrupt is disabled and do not wait tx done).
  620. if(p_rmt_obj[channel]->wait_done) {
  621. xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
  622. }
  623. rmt_set_rx_intr_en(channel, 0);
  624. rmt_set_err_intr_en(channel, 0);
  625. rmt_set_tx_intr_en(channel, 0);
  626. rmt_set_tx_thr_intr_en(channel, 0, 0xffff);
  627. _lock_acquire_recursive(&rmt_driver_isr_lock);
  628. s_rmt_driver_channels &= ~BIT(channel);
  629. if (s_rmt_driver_channels == 0) { // all channels have driver disabled
  630. err = rmt_isr_deregister(s_rmt_driver_intr_handle);
  631. s_rmt_driver_intr_handle = NULL;
  632. }
  633. _lock_release_recursive(&rmt_driver_isr_lock);
  634. if (err != ESP_OK) {
  635. return err;
  636. }
  637. if(p_rmt_obj[channel]->tx_sem) {
  638. vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
  639. p_rmt_obj[channel]->tx_sem = NULL;
  640. }
  641. if(p_rmt_obj[channel]->rx_buf) {
  642. vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
  643. p_rmt_obj[channel]->rx_buf = NULL;
  644. }
  645. if(p_rmt_obj[channel]->tx_buf) {
  646. free(p_rmt_obj[channel]->tx_buf);
  647. p_rmt_obj[channel]->tx_buf = NULL;
  648. }
  649. if(p_rmt_obj[channel]->sample_to_rmt) {
  650. p_rmt_obj[channel]->sample_to_rmt = NULL;
  651. }
  652. free(p_rmt_obj[channel]);
  653. p_rmt_obj[channel] = NULL;
  654. return ESP_OK;
  655. }
  656. esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags)
  657. {
  658. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  659. RMT_CHECK((s_rmt_driver_channels & BIT(channel)) == 0, "RMT driver already installed for channel", ESP_ERR_INVALID_STATE);
  660. esp_err_t err = ESP_OK;
  661. if(p_rmt_obj[channel] != NULL) {
  662. ESP_LOGD(RMT_TAG, "RMT driver already installed");
  663. return ESP_ERR_INVALID_STATE;
  664. }
  665. #if !CONFIG_SPIRAM_USE_MALLOC
  666. p_rmt_obj[channel] = (rmt_obj_t*) malloc(sizeof(rmt_obj_t));
  667. #else
  668. if( !(intr_alloc_flags & ESP_INTR_FLAG_IRAM) ) {
  669. p_rmt_obj[channel] = (rmt_obj_t*) malloc(sizeof(rmt_obj_t));
  670. } else {
  671. p_rmt_obj[channel] = (rmt_obj_t*) heap_caps_calloc(1, sizeof(rmt_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  672. }
  673. #endif
  674. if(p_rmt_obj[channel] == NULL) {
  675. ESP_LOGE(RMT_TAG, "RMT driver malloc error");
  676. return ESP_ERR_NO_MEM;
  677. }
  678. memset(p_rmt_obj[channel], 0, sizeof(rmt_obj_t));
  679. p_rmt_obj[channel]->tx_len_rem = 0;
  680. p_rmt_obj[channel]->tx_data = NULL;
  681. p_rmt_obj[channel]->channel = channel;
  682. p_rmt_obj[channel]->tx_offset = 0;
  683. p_rmt_obj[channel]->tx_sub_len = 0;
  684. p_rmt_obj[channel]->wait_done = false;
  685. p_rmt_obj[channel]->translator = false;
  686. p_rmt_obj[channel]->sample_to_rmt = NULL;
  687. if(p_rmt_obj[channel]->tx_sem == NULL) {
  688. #if !CONFIG_SPIRAM_USE_MALLOC
  689. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  690. #else
  691. p_rmt_obj[channel]->intr_alloc_flags = intr_alloc_flags;
  692. if( !(intr_alloc_flags & ESP_INTR_FLAG_IRAM) ) {
  693. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  694. } else {
  695. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinaryStatic(&p_rmt_obj[channel]->tx_sem_buffer);
  696. }
  697. #endif
  698. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  699. }
  700. if(p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
  701. p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
  702. rmt_set_rx_intr_en(channel, 1);
  703. rmt_set_err_intr_en(channel, 1);
  704. }
  705. _lock_acquire_recursive(&rmt_driver_isr_lock);
  706. if(s_rmt_driver_channels == 0) { // first RMT channel using driver
  707. err = rmt_isr_register(rmt_driver_isr_default, NULL, intr_alloc_flags, &s_rmt_driver_intr_handle);
  708. }
  709. if (err == ESP_OK) {
  710. s_rmt_driver_channels |= BIT(channel);
  711. rmt_set_tx_intr_en(channel, 1);
  712. }
  713. _lock_release_recursive(&rmt_driver_isr_lock);
  714. return err;
  715. }
  716. esp_err_t rmt_write_items(rmt_channel_t channel, const rmt_item32_t* rmt_item, int item_num, bool wait_tx_done)
  717. {
  718. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  719. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  720. RMT_CHECK(rmt_item != NULL, RMT_ADDR_ERROR_STR, ESP_FAIL);
  721. RMT_CHECK(item_num > 0, RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  722. #if CONFIG_SPIRAM_USE_MALLOC
  723. if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
  724. if( !esp_ptr_internal(rmt_item) ) {
  725. ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
  726. return ESP_ERR_INVALID_ARG;
  727. }
  728. }
  729. #endif
  730. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  731. int block_num = RMT.conf_ch[channel].conf0.mem_size;
  732. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  733. int item_sub_len = block_num * RMT_MEM_ITEM_NUM / 2;
  734. int len_rem = item_num;
  735. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  736. // fill the memory block first
  737. if(item_num >= item_block_len) {
  738. rmt_fill_memory(channel, rmt_item, item_block_len, 0);
  739. len_rem -= item_block_len;
  740. rmt_set_tx_loop_mode(channel, false);
  741. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  742. p_rmt->tx_data = rmt_item + item_block_len;
  743. p_rmt->tx_len_rem = len_rem;
  744. p_rmt->tx_offset = 0;
  745. p_rmt->tx_sub_len = item_sub_len;
  746. } else {
  747. rmt_fill_memory(channel, rmt_item, len_rem, 0);
  748. RMTMEM.chan[channel].data32[len_rem].val = 0;
  749. p_rmt->tx_len_rem = 0;
  750. }
  751. rmt_tx_start(channel, true);
  752. p_rmt->wait_done = wait_tx_done;
  753. if(wait_tx_done) {
  754. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  755. xSemaphoreGive(p_rmt->tx_sem);
  756. }
  757. return ESP_OK;
  758. }
  759. esp_err_t rmt_wait_tx_done(rmt_channel_t channel, TickType_t wait_time)
  760. {
  761. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  762. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  763. if(xSemaphoreTake(p_rmt_obj[channel]->tx_sem, wait_time) == pdTRUE) {
  764. p_rmt_obj[channel]->wait_done = false;
  765. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  766. return ESP_OK;
  767. }
  768. else {
  769. if (wait_time != 0) { // Don't emit error message if just polling.
  770. ESP_LOGE(RMT_TAG, "Timeout on wait_tx_done");
  771. }
  772. return ESP_ERR_TIMEOUT;
  773. }
  774. }
  775. esp_err_t rmt_get_ringbuf_handle(rmt_channel_t channel, RingbufHandle_t* buf_handle)
  776. {
  777. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  778. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  779. RMT_CHECK(buf_handle != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  780. *buf_handle = p_rmt_obj[channel]->rx_buf;
  781. return ESP_OK;
  782. }
  783. rmt_tx_end_callback_t rmt_register_tx_end_callback(rmt_tx_end_fn_t function, void *arg)
  784. {
  785. rmt_tx_end_callback_t previous = rmt_tx_end_callback;
  786. rmt_tx_end_callback.function = function;
  787. rmt_tx_end_callback.arg = arg;
  788. return previous;
  789. }
  790. esp_err_t rmt_translator_init(rmt_channel_t channel, sample_to_rmt_t fn)
  791. {
  792. RMT_CHECK(fn != NULL, RMT_TRANSLATOR_NULL_STR, ESP_ERR_INVALID_ARG);
  793. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  794. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  795. const uint32_t block_size = RMT.conf_ch[channel].conf0.mem_size * RMT_MEM_ITEM_NUM * sizeof(rmt_item32_t);
  796. if (p_rmt_obj[channel]->tx_buf == NULL) {
  797. #if !CONFIG_SPIRAM_USE_MALLOC
  798. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  799. #else
  800. if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
  801. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  802. } else {
  803. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)heap_caps_calloc(1, block_size, MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  804. }
  805. #endif
  806. if(p_rmt_obj[channel]->tx_buf == NULL) {
  807. ESP_LOGE(RMT_TAG, "RMT translator buffer create fail");
  808. return ESP_FAIL;
  809. }
  810. }
  811. p_rmt_obj[channel]->sample_to_rmt = fn;
  812. p_rmt_obj[channel]->sample_size_remain = 0;
  813. p_rmt_obj[channel]->sample_cur = NULL;
  814. ESP_LOGD(RMT_TAG, "RMT translator init done");
  815. return ESP_OK;
  816. }
  817. esp_err_t rmt_write_sample(rmt_channel_t channel, const uint8_t *src, size_t src_size, bool wait_tx_done)
  818. {
  819. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  820. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  821. RMT_CHECK(p_rmt_obj[channel]->sample_to_rmt != NULL,RMT_TRANSLATOR_UNINIT_STR, ESP_FAIL);
  822. #if CONFIG_SPIRAM_USE_MALLOC
  823. if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
  824. if( !esp_ptr_internal(src) ) {
  825. ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
  826. return ESP_ERR_INVALID_ARG;
  827. }
  828. }
  829. #endif
  830. size_t item_num = 0;
  831. size_t translated_size = 0;
  832. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  833. const uint32_t item_block_len = RMT.conf_ch[channel].conf0.mem_size * RMT_MEM_ITEM_NUM;
  834. const uint32_t item_sub_len = item_block_len / 2;
  835. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  836. p_rmt->sample_to_rmt((void *)src, p_rmt->tx_buf, src_size, item_block_len, &translated_size, &item_num);
  837. p_rmt->sample_size_remain = src_size - translated_size;
  838. p_rmt->sample_cur = src + translated_size;
  839. rmt_fill_memory(channel, p_rmt->tx_buf, item_num, 0);
  840. if (item_num == item_block_len) {
  841. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  842. p_rmt->tx_data = p_rmt->tx_buf;
  843. p_rmt->tx_offset = 0;
  844. p_rmt->tx_sub_len = item_sub_len;
  845. p_rmt->translator = true;
  846. } else {
  847. RMTMEM.chan[channel].data32[item_num].val = 0;
  848. p_rmt->tx_len_rem = 0;
  849. p_rmt->sample_cur = NULL;
  850. p_rmt->translator = false;
  851. }
  852. rmt_tx_start(channel, true);
  853. p_rmt->wait_done = wait_tx_done;
  854. if (wait_tx_done) {
  855. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  856. xSemaphoreGive(p_rmt->tx_sem);
  857. }
  858. return ESP_OK;
  859. }
  860. esp_err_t rmt_get_channel_status(rmt_channel_status_result_t *channel_status)
  861. {
  862. RMT_CHECK(channel_status != NULL, RMT_PARAM_ERR_STR, ESP_ERR_INVALID_ARG);
  863. for(int i = 0; i < RMT_CHANNEL_MAX; i++) {
  864. channel_status->status[i]= RMT_CHANNEL_UNINIT;
  865. if( p_rmt_obj[i] != NULL ) {
  866. if( p_rmt_obj[i]->tx_sem != NULL ) {
  867. if( xSemaphoreTake(p_rmt_obj[i]->tx_sem, (TickType_t)0) == pdTRUE ) {
  868. channel_status->status[i] = RMT_CHANNEL_IDLE;
  869. xSemaphoreGive(p_rmt_obj[i]->tx_sem);
  870. } else {
  871. channel_status->status[i] = RMT_CHANNEL_BUSY;
  872. }
  873. }
  874. }
  875. }
  876. return ESP_OK;
  877. }