flash_ops.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <assert.h>
  16. #include <string.h>
  17. #include <stdio.h>
  18. #include <sys/param.h> // For MIN/MAX(a, b)
  19. #include <freertos/FreeRTOS.h>
  20. #include <freertos/task.h>
  21. #include <freertos/semphr.h>
  22. #include <rom/spi_flash.h>
  23. #include <rom/cache.h>
  24. #include <soc/soc.h>
  25. #include <soc/dport_reg.h>
  26. #include "sdkconfig.h"
  27. #include "esp_ipc.h"
  28. #include "esp_attr.h"
  29. #include "esp_spi_flash.h"
  30. #include "esp_log.h"
  31. #include "esp_clk.h"
  32. #include "esp_flash_partitions.h"
  33. #include "esp_ota_ops.h"
  34. #include "cache_utils.h"
  35. #include "esp_timer.h"
  36. /* bytes erased by SPIEraseBlock() ROM function */
  37. #define BLOCK_ERASE_SIZE 65536
  38. /* Limit number of bytes written/read in a single SPI operation,
  39. as these operations disable all higher priority tasks from running.
  40. */
  41. #define MAX_WRITE_CHUNK 8192
  42. #define MAX_READ_CHUNK 16384
  43. static const char *TAG __attribute__((unused)) = "spi_flash";
  44. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  45. static spi_flash_counters_t s_flash_stats;
  46. #define COUNTER_START() uint32_t ts_begin = xthal_get_ccount()
  47. #define COUNTER_STOP(counter) \
  48. do{ \
  49. s_flash_stats.counter.count++; \
  50. s_flash_stats.counter.time += (xthal_get_ccount() - ts_begin) / (esp_clk_cpu_freq() / 1000000); \
  51. } while(0)
  52. #define COUNTER_ADD_BYTES(counter, size) \
  53. do { \
  54. s_flash_stats.counter.bytes += size; \
  55. } while (0)
  56. #else
  57. #define COUNTER_START()
  58. #define COUNTER_STOP(counter)
  59. #define COUNTER_ADD_BYTES(counter, size)
  60. #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
  61. static esp_err_t spi_flash_translate_rc(esp_rom_spiflash_result_t rc);
  62. static bool is_safe_write_address(size_t addr, size_t size);
  63. static void spi_flash_os_yield(void);
  64. const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = {
  65. .start = spi_flash_disable_interrupts_caches_and_other_cpu,
  66. .end = spi_flash_enable_interrupts_caches_and_other_cpu,
  67. .op_lock = spi_flash_op_lock,
  68. .op_unlock = spi_flash_op_unlock,
  69. #if !CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED
  70. .is_safe_write_address = is_safe_write_address,
  71. #endif
  72. .yield = spi_flash_os_yield,
  73. };
  74. const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = {
  75. .start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os,
  76. .end = spi_flash_enable_interrupts_caches_no_os,
  77. .op_lock = NULL,
  78. .op_unlock = NULL,
  79. #if !CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED
  80. .is_safe_write_address = NULL,
  81. #endif
  82. .yield = NULL,
  83. };
  84. static const spi_flash_guard_funcs_t *s_flash_guard_ops;
  85. #ifdef CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ABORTS
  86. #define UNSAFE_WRITE_ADDRESS abort()
  87. #else
  88. #define UNSAFE_WRITE_ADDRESS return false
  89. #endif
  90. /* CHECK_WRITE_ADDRESS macro to fail writes which land in the
  91. bootloader, partition table, or running application region.
  92. */
  93. #if CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED
  94. #define CHECK_WRITE_ADDRESS(ADDR, SIZE)
  95. #else /* FAILS or ABORTS */
  96. #define CHECK_WRITE_ADDRESS(ADDR, SIZE) do { \
  97. if (s_flash_guard_ops && s_flash_guard_ops->is_safe_write_address && !s_flash_guard_ops->is_safe_write_address(ADDR, SIZE)) { \
  98. return ESP_ERR_INVALID_ARG; \
  99. } \
  100. } while(0)
  101. #endif // CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED
  102. static __attribute__((unused)) bool is_safe_write_address(size_t addr, size_t size)
  103. {
  104. bool result = true;
  105. if (addr <= ESP_PARTITION_TABLE_OFFSET + ESP_PARTITION_TABLE_MAX_LEN) {
  106. UNSAFE_WRITE_ADDRESS;
  107. }
  108. const esp_partition_t *p = esp_ota_get_running_partition();
  109. if (addr >= p->address && addr < p->address + p->size) {
  110. UNSAFE_WRITE_ADDRESS;
  111. }
  112. if (addr < p->address && addr + size > p->address) {
  113. UNSAFE_WRITE_ADDRESS;
  114. }
  115. return result;
  116. }
  117. void spi_flash_init()
  118. {
  119. spi_flash_init_lock();
  120. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  121. spi_flash_reset_counters();
  122. #endif
  123. }
  124. void IRAM_ATTR spi_flash_guard_set(const spi_flash_guard_funcs_t *funcs)
  125. {
  126. s_flash_guard_ops = funcs;
  127. }
  128. const spi_flash_guard_funcs_t *IRAM_ATTR spi_flash_guard_get()
  129. {
  130. return s_flash_guard_ops;
  131. }
  132. size_t IRAM_ATTR spi_flash_get_chip_size()
  133. {
  134. return g_rom_flashchip.chip_size;
  135. }
  136. static inline void IRAM_ATTR spi_flash_guard_start()
  137. {
  138. if (s_flash_guard_ops && s_flash_guard_ops->start) {
  139. s_flash_guard_ops->start();
  140. }
  141. }
  142. static inline void IRAM_ATTR spi_flash_guard_end()
  143. {
  144. if (s_flash_guard_ops && s_flash_guard_ops->end) {
  145. s_flash_guard_ops->end();
  146. }
  147. }
  148. static inline void IRAM_ATTR spi_flash_guard_op_lock()
  149. {
  150. if (s_flash_guard_ops && s_flash_guard_ops->op_lock) {
  151. s_flash_guard_ops->op_lock();
  152. }
  153. }
  154. static inline void IRAM_ATTR spi_flash_guard_op_unlock()
  155. {
  156. if (s_flash_guard_ops && s_flash_guard_ops->op_unlock) {
  157. s_flash_guard_ops->op_unlock();
  158. }
  159. }
  160. static void IRAM_ATTR spi_flash_os_yield(void)
  161. {
  162. #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
  163. vTaskDelay(CONFIG_SPI_FLASH_ERASE_YIELD_TICKS);
  164. #endif
  165. }
  166. static esp_rom_spiflash_result_t IRAM_ATTR spi_flash_unlock()
  167. {
  168. static bool unlocked = false;
  169. if (!unlocked) {
  170. spi_flash_guard_start();
  171. esp_rom_spiflash_result_t rc = esp_rom_spiflash_unlock();
  172. spi_flash_guard_end();
  173. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  174. return rc;
  175. }
  176. unlocked = true;
  177. }
  178. return ESP_ROM_SPIFLASH_RESULT_OK;
  179. }
  180. esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec)
  181. {
  182. CHECK_WRITE_ADDRESS(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
  183. return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
  184. }
  185. esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size)
  186. {
  187. CHECK_WRITE_ADDRESS(start_addr, size);
  188. if (start_addr % SPI_FLASH_SEC_SIZE != 0) {
  189. return ESP_ERR_INVALID_ARG;
  190. }
  191. if (size % SPI_FLASH_SEC_SIZE != 0) {
  192. return ESP_ERR_INVALID_SIZE;
  193. }
  194. if (size + start_addr > spi_flash_get_chip_size()) {
  195. return ESP_ERR_INVALID_SIZE;
  196. }
  197. size_t start = start_addr / SPI_FLASH_SEC_SIZE;
  198. size_t end = start + size / SPI_FLASH_SEC_SIZE;
  199. const size_t sectors_per_block = BLOCK_ERASE_SIZE / SPI_FLASH_SEC_SIZE;
  200. COUNTER_START();
  201. esp_rom_spiflash_result_t rc;
  202. rc = spi_flash_unlock();
  203. if (rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  204. for (size_t sector = start; sector != end && rc == ESP_ROM_SPIFLASH_RESULT_OK; ) {
  205. #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
  206. int64_t start_time_us = esp_timer_get_time();
  207. #endif
  208. spi_flash_guard_start();
  209. if (sector % sectors_per_block == 0 && end - sector >= sectors_per_block) {
  210. rc = esp_rom_spiflash_erase_block(sector / sectors_per_block);
  211. sector += sectors_per_block;
  212. COUNTER_ADD_BYTES(erase, sectors_per_block * SPI_FLASH_SEC_SIZE);
  213. } else {
  214. rc = esp_rom_spiflash_erase_sector(sector);
  215. ++sector;
  216. COUNTER_ADD_BYTES(erase, SPI_FLASH_SEC_SIZE);
  217. }
  218. spi_flash_guard_end();
  219. #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
  220. int dt_ms = (esp_timer_get_time() - start_time_us) / 1000;
  221. if (dt_ms >= CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS ||
  222. dt_ms * 2 >= CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS) {
  223. /* For example when dt_ms = 15 and CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS = 20.
  224. * In this case we need to call vTaskDelay because
  225. * the duration of this command + the next command probably will exceed more than 20.
  226. */
  227. if (s_flash_guard_ops && s_flash_guard_ops->yield) {
  228. s_flash_guard_ops->yield();
  229. }
  230. }
  231. #endif
  232. }
  233. }
  234. COUNTER_STOP(erase);
  235. spi_flash_guard_start();
  236. // Ensure WEL is 0 after the operation, even if the erase failed.
  237. esp_rom_spiflash_write_disable();
  238. spi_flash_check_and_flush_cache(start_addr, size);
  239. spi_flash_guard_end();
  240. return spi_flash_translate_rc(rc);
  241. }
  242. /* Wrapper around esp_rom_spiflash_write() that verifies data as written if CONFIG_SPI_FLASH_VERIFY_WRITE is set.
  243. If CONFIG_SPI_FLASH_VERIFY_WRITE is not set, this is esp_rom_spiflash_write().
  244. */
  245. static IRAM_ATTR esp_rom_spiflash_result_t spi_flash_write_inner(uint32_t target, const uint32_t *src_addr, int32_t len)
  246. {
  247. #ifndef CONFIG_SPI_FLASH_VERIFY_WRITE
  248. return esp_rom_spiflash_write(target, src_addr, len);
  249. #else // CONFIG_SPI_FLASH_VERIFY_WRITE
  250. esp_rom_spiflash_result_t res = ESP_ROM_SPIFLASH_RESULT_OK;
  251. assert(len % sizeof(uint32_t) == 0);
  252. uint32_t before_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)];
  253. uint32_t after_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)];
  254. int32_t remaining = len;
  255. for(int i = 0; i < len; i += sizeof(before_buf)) {
  256. int i_w = i / sizeof(uint32_t); // index in words (i is an index in bytes)
  257. int32_t read_len = MIN(sizeof(before_buf), remaining);
  258. // Read "before" contents from flash
  259. res = esp_rom_spiflash_read(target + i, before_buf, read_len);
  260. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  261. break;
  262. }
  263. #ifdef CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
  264. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  265. int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes)
  266. uint32_t write = src_addr[i_w + r_w];
  267. uint32_t before = before_buf[r_w];
  268. if ((before & write) != write) {
  269. spi_flash_guard_end();
  270. ESP_LOGW(TAG, "Write at offset 0x%x requests 0x%08x but will write 0x%08x -> 0x%08x",
  271. target + i + r, write, before, before & write);
  272. spi_flash_guard_start();
  273. }
  274. }
  275. #endif
  276. res = esp_rom_spiflash_write(target + i, &src_addr[i_w], read_len);
  277. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  278. break;
  279. }
  280. res = esp_rom_spiflash_read(target + i, after_buf, read_len);
  281. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  282. break;
  283. }
  284. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  285. int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes)
  286. uint32_t expected = src_addr[i_w + r_w] & before_buf[r_w];
  287. uint32_t actual = after_buf[r_w];
  288. if (expected != actual) {
  289. #ifdef CONFIG_SPI_FLASH_LOG_FAILED_WRITE
  290. spi_flash_guard_end();
  291. ESP_LOGE(TAG, "Bad write at offset 0x%x expected 0x%08x readback 0x%08x", target + i + r, expected, actual);
  292. spi_flash_guard_start();
  293. #endif
  294. res = ESP_ROM_SPIFLASH_RESULT_ERR;
  295. }
  296. }
  297. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  298. break;
  299. }
  300. remaining -= read_len;
  301. }
  302. return res;
  303. #endif // CONFIG_SPI_FLASH_VERIFY_WRITE
  304. }
  305. esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
  306. {
  307. CHECK_WRITE_ADDRESS(dst, size);
  308. // Out of bound writes are checked in ROM code, but we can give better
  309. // error code here
  310. if (dst + size > g_rom_flashchip.chip_size) {
  311. return ESP_ERR_INVALID_SIZE;
  312. }
  313. if (size == 0) {
  314. return ESP_OK;
  315. }
  316. esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
  317. COUNTER_START();
  318. const uint8_t *srcc = (const uint8_t *) srcv;
  319. /*
  320. * Large operations are split into (up to) 3 parts:
  321. * - Left padding: 4 bytes up to the first 4-byte aligned destination offset.
  322. * - Middle part
  323. * - Right padding: 4 bytes from the last 4-byte aligned offset covered.
  324. */
  325. size_t left_off = dst & ~3U;
  326. size_t left_size = MIN(((dst + 3) & ~3U) - dst, size);
  327. size_t mid_off = left_size;
  328. size_t mid_size = (size - left_size) & ~3U;
  329. size_t right_off = left_size + mid_size;
  330. size_t right_size = size - mid_size - left_size;
  331. rc = spi_flash_unlock();
  332. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  333. goto out;
  334. }
  335. if (left_size > 0) {
  336. uint32_t t = 0xffffffff;
  337. memcpy(((uint8_t *) &t) + (dst - left_off), srcc, left_size);
  338. spi_flash_guard_start();
  339. rc = spi_flash_write_inner(left_off, &t, 4);
  340. spi_flash_guard_end();
  341. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  342. goto out;
  343. }
  344. COUNTER_ADD_BYTES(write, 4);
  345. }
  346. if (mid_size > 0) {
  347. /* If src buffer is 4-byte aligned as well and is not in a region that requires cache access to be enabled, we
  348. * can write directly without buffering in RAM. */
  349. #ifdef ESP_PLATFORM
  350. bool direct_write = esp_ptr_internal(srcc)
  351. && esp_ptr_byte_accessible(srcc)
  352. && ((uintptr_t) srcc + mid_off) % 4 == 0;
  353. #else
  354. bool direct_write = true;
  355. #endif
  356. while(mid_size > 0 && rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  357. uint32_t write_buf[8];
  358. uint32_t write_size = MIN(mid_size, MAX_WRITE_CHUNK);
  359. const uint8_t *write_src = srcc + mid_off;
  360. if (!direct_write) {
  361. write_size = MIN(write_size, sizeof(write_buf));
  362. memcpy(write_buf, write_src, write_size);
  363. write_src = (const uint8_t *)write_buf;
  364. }
  365. spi_flash_guard_start();
  366. rc = spi_flash_write_inner(dst + mid_off, (const uint32_t *) write_src, write_size);
  367. spi_flash_guard_end();
  368. COUNTER_ADD_BYTES(write, write_size);
  369. mid_size -= write_size;
  370. mid_off += write_size;
  371. }
  372. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  373. goto out;
  374. }
  375. }
  376. if (right_size > 0) {
  377. uint32_t t = 0xffffffff;
  378. memcpy(&t, srcc + right_off, right_size);
  379. spi_flash_guard_start();
  380. rc = spi_flash_write_inner(dst + right_off, &t, 4);
  381. spi_flash_guard_end();
  382. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  383. goto out;
  384. }
  385. COUNTER_ADD_BYTES(write, 4);
  386. }
  387. out:
  388. COUNTER_STOP(write);
  389. spi_flash_guard_start();
  390. // Ensure WEL is 0 after the operation, even if the write failed.
  391. esp_rom_spiflash_write_disable();
  392. spi_flash_check_and_flush_cache(dst, size);
  393. spi_flash_guard_end();
  394. return spi_flash_translate_rc(rc);
  395. }
  396. esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size)
  397. {
  398. CHECK_WRITE_ADDRESS(dest_addr, size);
  399. const uint8_t *ssrc = (const uint8_t *)src;
  400. if ((dest_addr % 16) != 0) {
  401. return ESP_ERR_INVALID_ARG;
  402. }
  403. if ((size % 16) != 0) {
  404. return ESP_ERR_INVALID_SIZE;
  405. }
  406. COUNTER_START();
  407. esp_rom_spiflash_result_t rc;
  408. rc = spi_flash_unlock();
  409. if (rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  410. /* esp_rom_spiflash_write_encrypted encrypts data in RAM as it writes,
  411. so copy to a temporary buffer - 32 bytes at a time.
  412. Each call to esp_rom_spiflash_write_encrypted takes a 32 byte "row" of
  413. data to encrypt, and each row is two 16 byte AES blocks
  414. that share a key (as derived from flash address).
  415. */
  416. uint8_t encrypt_buf[32] __attribute__((aligned(4)));
  417. uint32_t row_size;
  418. for (size_t i = 0; i < size; i += row_size) {
  419. uint32_t row_addr = dest_addr + i;
  420. if (i == 0 && (row_addr % 32) != 0) {
  421. /* writing to second block of a 32 byte row */
  422. row_size = 16;
  423. row_addr -= 16;
  424. /* copy to second block in buffer */
  425. memcpy(encrypt_buf + 16, ssrc + i, 16);
  426. /* decrypt the first block from flash, will reencrypt to same bytes */
  427. spi_flash_read_encrypted(row_addr, encrypt_buf, 16);
  428. } else if (size - i == 16) {
  429. /* 16 bytes left, is first block of a 32 byte row */
  430. row_size = 16;
  431. /* copy to first block in buffer */
  432. memcpy(encrypt_buf, ssrc + i, 16);
  433. /* decrypt the second block from flash, will reencrypt to same bytes */
  434. spi_flash_read_encrypted(row_addr + 16, encrypt_buf + 16, 16);
  435. } else {
  436. /* Writing a full 32 byte row (2 blocks) */
  437. row_size = 32;
  438. memcpy(encrypt_buf, ssrc + i, 32);
  439. }
  440. spi_flash_guard_start();
  441. rc = esp_rom_spiflash_write_encrypted(row_addr, (uint32_t *)encrypt_buf, 32);
  442. spi_flash_guard_end();
  443. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  444. break;
  445. }
  446. }
  447. bzero(encrypt_buf, sizeof(encrypt_buf));
  448. }
  449. COUNTER_ADD_BYTES(write, size);
  450. COUNTER_STOP(write);
  451. spi_flash_guard_start();
  452. esp_rom_spiflash_write_disable();
  453. spi_flash_check_and_flush_cache(dest_addr, size);
  454. spi_flash_guard_end();
  455. return spi_flash_translate_rc(rc);
  456. }
  457. esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
  458. {
  459. // Out of bound reads are checked in ROM code, but we can give better
  460. // error code here
  461. if (src + size > g_rom_flashchip.chip_size) {
  462. return ESP_ERR_INVALID_SIZE;
  463. }
  464. if (size == 0) {
  465. return ESP_OK;
  466. }
  467. esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
  468. COUNTER_START();
  469. spi_flash_guard_start();
  470. /* To simplify boundary checks below, we handle small reads separately. */
  471. if (size < 16) {
  472. uint32_t t[6]; /* Enough for 16 bytes + 4 on either side for padding. */
  473. uint32_t read_src = src & ~3U;
  474. uint32_t left_off = src & 3U;
  475. uint32_t read_size = (left_off + size + 3) & ~3U;
  476. rc = esp_rom_spiflash_read(read_src, t, read_size);
  477. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  478. goto out;
  479. }
  480. COUNTER_ADD_BYTES(read, read_size);
  481. #ifdef ESP_PLATFORM
  482. if (esp_ptr_external_ram(dstv)) {
  483. spi_flash_guard_end();
  484. memcpy(dstv, ((uint8_t *) t) + left_off, size);
  485. spi_flash_guard_start();
  486. } else {
  487. memcpy(dstv, ((uint8_t *) t) + left_off, size);
  488. }
  489. #else
  490. memcpy(dstv, ((uint8_t *) t) + left_off, size);
  491. #endif
  492. goto out;
  493. }
  494. uint8_t *dstc = (uint8_t *) dstv;
  495. intptr_t dsti = (intptr_t) dstc;
  496. /*
  497. * Large operations are split into (up to) 3 parts:
  498. * - The middle part: from the first 4-aligned position in src to the first
  499. * 4-aligned position in dst.
  500. */
  501. size_t src_mid_off = (src % 4 == 0 ? 0 : 4 - (src % 4));
  502. size_t dst_mid_off = (dsti % 4 == 0 ? 0 : 4 - (dsti % 4));
  503. size_t mid_size = (size - MAX(src_mid_off, dst_mid_off)) & ~3U;
  504. /*
  505. * - Once the middle part is in place, src_mid_off bytes from the preceding
  506. * 4-aligned source location are added on the left.
  507. */
  508. size_t pad_left_src = src & ~3U;
  509. size_t pad_left_size = src_mid_off;
  510. /*
  511. * - Finally, the right part is added: from the end of the middle part to
  512. * the end. Depending on the alignment of source and destination, this may
  513. * be a 4 or 8 byte read from pad_right_src.
  514. */
  515. size_t pad_right_src = (src + pad_left_size + mid_size) & ~3U;
  516. size_t pad_right_off = (pad_right_src - src);
  517. size_t pad_right_size = (size - pad_right_off);
  518. #ifdef ESP_PLATFORM
  519. bool direct_read = esp_ptr_internal(dstc)
  520. && esp_ptr_byte_accessible(dstc)
  521. && ((uintptr_t) dstc + dst_mid_off) % 4 == 0;
  522. #else
  523. bool direct_read = true;
  524. #endif
  525. if (mid_size > 0) {
  526. uint32_t mid_remaining = mid_size;
  527. uint32_t mid_read = 0;
  528. while (mid_remaining > 0) {
  529. uint32_t read_size = MIN(mid_remaining, MAX_READ_CHUNK);
  530. uint32_t read_buf[8];
  531. uint8_t *read_dst_final = dstc + dst_mid_off + mid_read;
  532. uint8_t *read_dst = read_dst_final;
  533. if (!direct_read) {
  534. read_size = MIN(read_size, sizeof(read_buf));
  535. read_dst = (uint8_t *) read_buf;
  536. }
  537. rc = esp_rom_spiflash_read(src + src_mid_off + mid_read,
  538. (uint32_t *) read_dst, read_size);
  539. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  540. goto out;
  541. }
  542. mid_remaining -= read_size;
  543. mid_read += read_size;
  544. if (!direct_read) {
  545. spi_flash_guard_end();
  546. memcpy(read_dst_final, read_buf, read_size);
  547. spi_flash_guard_start();
  548. } else if (mid_remaining > 0) {
  549. /* Drop guard momentarily, allows other tasks to preempt */
  550. spi_flash_guard_end();
  551. spi_flash_guard_start();
  552. }
  553. }
  554. COUNTER_ADD_BYTES(read, mid_size);
  555. /*
  556. * If offsets in src and dst are different, perform an in-place shift
  557. * to put destination data into its final position.
  558. * Note that the shift can be left (src_mid_off < dst_mid_off) or right.
  559. */
  560. if (src_mid_off != dst_mid_off) {
  561. if (!direct_read) {
  562. spi_flash_guard_end();
  563. }
  564. memmove(dstc + src_mid_off, dstc + dst_mid_off, mid_size);
  565. if (!direct_read) {
  566. spi_flash_guard_start();
  567. }
  568. }
  569. }
  570. if (pad_left_size > 0) {
  571. uint32_t t;
  572. rc = esp_rom_spiflash_read(pad_left_src, &t, 4);
  573. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  574. goto out;
  575. }
  576. COUNTER_ADD_BYTES(read, 4);
  577. if (!direct_read) {
  578. spi_flash_guard_end();
  579. }
  580. memcpy(dstc, ((uint8_t *) &t) + (4 - pad_left_size), pad_left_size);
  581. if (!direct_read) {
  582. spi_flash_guard_start();
  583. }
  584. }
  585. if (pad_right_size > 0) {
  586. uint32_t t[2];
  587. int32_t read_size = (pad_right_size <= 4 ? 4 : 8);
  588. rc = esp_rom_spiflash_read(pad_right_src, t, read_size);
  589. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  590. goto out;
  591. }
  592. COUNTER_ADD_BYTES(read, read_size);
  593. if (!direct_read) {
  594. spi_flash_guard_end();
  595. }
  596. memcpy(dstc + pad_right_off, t, pad_right_size);
  597. if (!direct_read) {
  598. spi_flash_guard_start();
  599. }
  600. }
  601. out:
  602. spi_flash_guard_end();
  603. COUNTER_STOP(read);
  604. return spi_flash_translate_rc(rc);
  605. }
  606. esp_err_t IRAM_ATTR spi_flash_read_encrypted(size_t src, void *dstv, size_t size)
  607. {
  608. if (src + size > g_rom_flashchip.chip_size) {
  609. return ESP_ERR_INVALID_SIZE;
  610. }
  611. if (size == 0) {
  612. return ESP_OK;
  613. }
  614. esp_err_t err;
  615. const uint8_t *map;
  616. spi_flash_mmap_handle_t map_handle;
  617. size_t map_src = src & ~(SPI_FLASH_MMU_PAGE_SIZE - 1);
  618. size_t map_size = size + (src - map_src);
  619. err = spi_flash_mmap(map_src, map_size, SPI_FLASH_MMAP_DATA, (const void **)&map, &map_handle);
  620. if (err != ESP_OK) {
  621. return err;
  622. }
  623. memcpy(dstv, map + (src - map_src), size);
  624. spi_flash_munmap(map_handle);
  625. return err;
  626. }
  627. static esp_err_t IRAM_ATTR spi_flash_translate_rc(esp_rom_spiflash_result_t rc)
  628. {
  629. switch (rc) {
  630. case ESP_ROM_SPIFLASH_RESULT_OK:
  631. return ESP_OK;
  632. case ESP_ROM_SPIFLASH_RESULT_TIMEOUT:
  633. return ESP_ERR_FLASH_OP_TIMEOUT;
  634. case ESP_ROM_SPIFLASH_RESULT_ERR:
  635. default:
  636. return ESP_ERR_FLASH_OP_FAIL;
  637. }
  638. }
  639. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  640. static inline void dump_counter(spi_flash_counter_t *counter, const char *name)
  641. {
  642. ESP_LOGI(TAG, "%s count=%8d time=%8dus bytes=%8d\n", name,
  643. counter->count, counter->time, counter->bytes);
  644. }
  645. const spi_flash_counters_t *spi_flash_get_counters()
  646. {
  647. return &s_flash_stats;
  648. }
  649. void spi_flash_reset_counters()
  650. {
  651. memset(&s_flash_stats, 0, sizeof(s_flash_stats));
  652. }
  653. void spi_flash_dump_counters()
  654. {
  655. dump_counter(&s_flash_stats.read, "read ");
  656. dump_counter(&s_flash_stats.write, "write");
  657. dump_counter(&s_flash_stats.erase, "erase");
  658. }
  659. #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS