bt.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <stddef.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include "sdkconfig.h"
  18. #include "esp_heap_caps.h"
  19. #include "esp_heap_caps_init.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/task.h"
  22. #include "freertos/queue.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/portmacro.h"
  26. #include "xtensa/core-macros.h"
  27. #include "esp_types.h"
  28. #include "esp_system.h"
  29. #include "esp_task.h"
  30. #include "esp_intr.h"
  31. #include "esp_attr.h"
  32. #include "esp_phy_init.h"
  33. #include "esp_bt.h"
  34. #include "esp_err.h"
  35. #include "esp_log.h"
  36. #include "esp_pm.h"
  37. #include "esp_ipc.h"
  38. #include "driver/periph_ctrl.h"
  39. #include "soc/rtc.h"
  40. #include "soc/rtc_cntl_reg.h"
  41. #include "soc/soc_memory_layout.h"
  42. #include "esp_clk.h"
  43. #if CONFIG_BT_ENABLED
  44. /* Macro definition
  45. ************************************************************************
  46. */
  47. #define BTDM_LOG_TAG "BTDM_INIT"
  48. #define BTDM_INIT_PERIOD (5000) /* ms */
  49. /* Bluetooth system and controller config */
  50. #define BTDM_CFG_BT_DATA_RELEASE (1<<0)
  51. #define BTDM_CFG_HCI_UART (1<<1)
  52. #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
  53. #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
  54. #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
  55. #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
  56. /* Sleep mode */
  57. #define BTDM_MODEM_SLEEP_MODE_NONE (0)
  58. #define BTDM_MODEM_SLEEP_MODE_ORIG (1)
  59. #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
  60. /* Low Power Clock Selection */
  61. #define BTDM_LPCLK_SEL_XTAL (0)
  62. #define BTDM_LPCLK_SEL_XTAL32K (1)
  63. #define BTDM_LPCLK_SEL_RTC_SLOW (2)
  64. #define BTDM_LPCLK_SEL_8M (3)
  65. /* Sleep and wakeup interval control */
  66. #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
  67. #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
  68. #define BT_DEBUG(...)
  69. #define BT_API_CALL_CHECK(info, api_call, ret) \
  70. do{\
  71. esp_err_t __err = (api_call);\
  72. if ((ret) != __err) {\
  73. BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
  74. return __err;\
  75. }\
  76. } while(0)
  77. #define OSI_FUNCS_TIME_BLOCKING 0xffffffff
  78. #define OSI_VERSION 0x00010001
  79. #define OSI_MAGIC_VALUE 0xFADEBEAD
  80. /* SPIRAM Configuration */
  81. #if CONFIG_SPIRAM_USE_MALLOC
  82. #define BTDM_MAX_QUEUE_NUM (5)
  83. #endif
  84. /* Types definition
  85. ************************************************************************
  86. */
  87. /* VHCI function interface */
  88. typedef struct vhci_host_callback {
  89. void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
  90. int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
  91. } vhci_host_callback_t;
  92. /* Dram region */
  93. typedef struct {
  94. esp_bt_mode_t mode;
  95. intptr_t start;
  96. intptr_t end;
  97. } btdm_dram_available_region_t;
  98. /* PSRAM configuration */
  99. #if CONFIG_SPIRAM_USE_MALLOC
  100. typedef struct {
  101. QueueHandle_t handle;
  102. void *storage;
  103. void *buffer;
  104. } btdm_queue_item_t;
  105. #endif
  106. /* OSI function */
  107. struct osi_funcs_t {
  108. uint32_t _version;
  109. xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
  110. void (*_ints_on)(unsigned int mask);
  111. void (*_interrupt_disable)(void);
  112. void (*_interrupt_restore)(void);
  113. void (*_task_yield)(void);
  114. void (*_task_yield_from_isr)(void);
  115. void *(*_semphr_create)(uint32_t max, uint32_t init);
  116. void (*_semphr_delete)(void *semphr);
  117. int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
  118. int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
  119. int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
  120. int32_t (*_semphr_give)(void *semphr);
  121. void *(*_mutex_create)(void);
  122. void (*_mutex_delete)(void *mutex);
  123. int32_t (*_mutex_lock)(void *mutex);
  124. int32_t (*_mutex_unlock)(void *mutex);
  125. void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
  126. void (* _queue_delete)(void *queue);
  127. int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
  128. int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
  129. int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
  130. int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
  131. int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  132. void (* _task_delete)(void *task_handle);
  133. bool (* _is_in_isr)(void);
  134. int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
  135. void *(* _malloc)(uint32_t size);
  136. void *(* _malloc_internal)(uint32_t size);
  137. void (* _free)(void *p);
  138. int32_t (* _read_efuse_mac)(uint8_t mac[6]);
  139. void (* _srand)(unsigned int seed);
  140. int (* _rand)(void);
  141. uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
  142. uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
  143. bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
  144. void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
  145. void (* _btdm_sleep_enter_phase2)(void);
  146. void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
  147. void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
  148. void (* _btdm_sleep_exit_phase3)(void); /* called from task */
  149. uint32_t _magic;
  150. };
  151. /* External functions or values
  152. ************************************************************************
  153. */
  154. /* not for user call, so don't put to include file */
  155. /* OSI */
  156. extern int btdm_osi_funcs_register(void *osi_funcs);
  157. /* Initialise and De-initialise */
  158. extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
  159. extern void btdm_controller_deinit(void);
  160. extern int btdm_controller_enable(esp_bt_mode_t mode);
  161. extern void btdm_controller_disable(void);
  162. extern uint8_t btdm_controller_get_mode(void);
  163. extern const char *btdm_controller_get_compile_version(void);
  164. extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
  165. /* Sleep */
  166. extern void btdm_controller_enable_sleep(bool enable);
  167. extern void btdm_controller_set_sleep_mode(uint8_t mode);
  168. extern uint8_t btdm_controller_get_sleep_mode(void);
  169. extern bool btdm_power_state_active(void);
  170. extern void btdm_wakeup_request(void);
  171. /* Low Power Clock */
  172. extern bool btdm_lpclk_select_src(uint32_t sel);
  173. extern bool btdm_lpclk_set_div(uint32_t div);
  174. /* VHCI */
  175. extern bool API_vhci_host_check_send_available(void);
  176. extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
  177. extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
  178. /* TX power */
  179. extern int ble_txpwr_set(int power_type, int power_level);
  180. extern int ble_txpwr_get(int power_type);
  181. extern int bredr_txpwr_set(int min_power_level, int max_power_level);
  182. extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
  183. extern void bredr_sco_datapath_set(uint8_t data_path);
  184. extern void btdm_controller_scan_duplicate_list_clear(void);
  185. extern char _bss_start_btdm;
  186. extern char _bss_end_btdm;
  187. extern char _data_start_btdm;
  188. extern char _data_end_btdm;
  189. extern uint32_t _data_start_btdm_rom;
  190. extern uint32_t _data_end_btdm_rom;
  191. extern uint32_t _bt_bss_start;
  192. extern uint32_t _bt_bss_end;
  193. extern uint32_t _btdm_bss_start;
  194. extern uint32_t _btdm_bss_end;
  195. extern uint32_t _bt_data_start;
  196. extern uint32_t _bt_data_end;
  197. extern uint32_t _btdm_data_start;
  198. extern uint32_t _btdm_data_end;
  199. /* Local Function Declare
  200. *********************************************************************
  201. */
  202. #if CONFIG_SPIRAM_USE_MALLOC
  203. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue);
  204. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue);
  205. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  206. static void IRAM_ATTR interrupt_disable(void);
  207. static void IRAM_ATTR interrupt_restore(void);
  208. static void IRAM_ATTR task_yield_from_isr(void);
  209. static void *semphr_create_wrapper(uint32_t max, uint32_t init);
  210. static void semphr_delete_wrapper(void *semphr);
  211. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw);
  212. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw);
  213. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
  214. static int32_t semphr_give_wrapper(void *semphr);
  215. static void *mutex_create_wrapper(void);
  216. static void mutex_delete_wrapper(void *mutex);
  217. static int32_t mutex_lock_wrapper(void *mutex);
  218. static int32_t mutex_unlock_wrapper(void *mutex);
  219. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
  220. static void queue_delete_wrapper(void *queue);
  221. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
  222. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
  223. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
  224. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
  225. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  226. static void task_delete_wrapper(void *task_handle);
  227. static bool IRAM_ATTR is_in_isr_wrapper(void);
  228. static void IRAM_ATTR cause_sw_intr(void *arg);
  229. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
  230. static void *malloc_internal_wrapper(size_t size);
  231. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]);
  232. static void IRAM_ATTR srand_wrapper(unsigned int seed);
  233. static int IRAM_ATTR rand_wrapper(void);
  234. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles);
  235. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us);
  236. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt);
  237. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
  238. static void btdm_sleep_enter_phase2_wrapper(void);
  239. static void IRAM_ATTR btdm_sleep_exit_phase1_wrapper(void);
  240. static void btdm_sleep_exit_phase3_wrapper(void);
  241. /* Local variable definition
  242. ***************************************************************************
  243. */
  244. /* OSI funcs */
  245. static const struct osi_funcs_t osi_funcs_ro = {
  246. ._version = OSI_VERSION,
  247. ._set_isr = xt_set_interrupt_handler,
  248. ._ints_on = xt_ints_on,
  249. ._interrupt_disable = interrupt_disable,
  250. ._interrupt_restore = interrupt_restore,
  251. ._task_yield = vPortYield,
  252. ._task_yield_from_isr = task_yield_from_isr,
  253. ._semphr_create = semphr_create_wrapper,
  254. ._semphr_delete = semphr_delete_wrapper,
  255. ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
  256. ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
  257. ._semphr_take = semphr_take_wrapper,
  258. ._semphr_give = semphr_give_wrapper,
  259. ._mutex_create = mutex_create_wrapper,
  260. ._mutex_delete = mutex_delete_wrapper,
  261. ._mutex_lock = mutex_lock_wrapper,
  262. ._mutex_unlock = mutex_unlock_wrapper,
  263. ._queue_create = queue_create_wrapper,
  264. ._queue_delete = queue_delete_wrapper,
  265. ._queue_send = queue_send_wrapper,
  266. ._queue_send_from_isr = queue_send_from_isr_wrapper,
  267. ._queue_recv = queue_recv_wrapper,
  268. ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
  269. ._task_create = task_create_wrapper,
  270. ._task_delete = task_delete_wrapper,
  271. ._is_in_isr = is_in_isr_wrapper,
  272. ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
  273. ._malloc = malloc,
  274. ._malloc_internal = malloc_internal_wrapper,
  275. ._free = free,
  276. ._read_efuse_mac = read_mac_wrapper,
  277. ._srand = srand_wrapper,
  278. ._rand = rand_wrapper,
  279. ._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
  280. ._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
  281. ._btdm_sleep_check_duration = btdm_sleep_check_duration,
  282. ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
  283. ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
  284. ._btdm_sleep_exit_phase1 = btdm_sleep_exit_phase1_wrapper,
  285. ._btdm_sleep_exit_phase2 = NULL,
  286. ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
  287. ._magic = OSI_MAGIC_VALUE,
  288. };
  289. /* the mode column will be modified by release function to indicate the available region */
  290. static btdm_dram_available_region_t btdm_dram_available_region[] = {
  291. //following is .data
  292. {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
  293. //following is memory which HW will use
  294. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
  295. {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
  296. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
  297. {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
  298. //following is .bss
  299. {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
  300. {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
  301. };
  302. /* Reserve the full memory region used by Bluetooth Controller,
  303. * some may be released later at runtime. */
  304. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
  305. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
  306. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
  307. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
  308. static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
  309. #if CONFIG_SPIRAM_USE_MALLOC
  310. static DRAM_ATTR btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM];
  311. static DRAM_ATTR SemaphoreHandle_t btdm_queue_table_mux = NULL;
  312. #endif /* #if CONFIG_SPIRAM_USE_MALLOC */
  313. /* Static variable declare */
  314. // timestamp when PHY/RF was switched on
  315. static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
  316. static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  317. static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
  318. // measured average low power clock period in micro seconds
  319. static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
  320. static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
  321. #ifdef CONFIG_PM_ENABLE
  322. static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
  323. static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
  324. static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock; // pm_lock to prevent light sleep due to incompatibility currently
  325. static DRAM_ATTR QueueHandle_t s_pm_lock_sem = NULL;
  326. static void btdm_slp_tmr_callback(void *arg);
  327. #endif
  328. static inline void btdm_check_and_init_bb(void)
  329. {
  330. /* init BT-BB if PHY/RF has been switched off since last BT-BB init */
  331. int64_t latest_ts = esp_phy_rf_get_on_ts();
  332. if (latest_ts != s_time_phy_rf_just_enabled ||
  333. s_time_phy_rf_just_enabled == 0) {
  334. btdm_rf_bb_init_phase2();
  335. s_time_phy_rf_just_enabled = latest_ts;
  336. }
  337. }
  338. #if CONFIG_SPIRAM_USE_MALLOC
  339. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue)
  340. {
  341. if (!btdm_queue_table_mux || !queue) {
  342. return NULL;
  343. }
  344. bool ret = false;
  345. btdm_queue_item_t *item;
  346. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  347. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  348. item = &btdm_queue_table[i];
  349. if (item->handle == NULL) {
  350. memcpy(item, queue, sizeof(btdm_queue_item_t));
  351. ret = true;
  352. break;
  353. }
  354. }
  355. xSemaphoreGive(btdm_queue_table_mux);
  356. return ret;
  357. }
  358. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue)
  359. {
  360. if (!btdm_queue_table_mux || !queue) {
  361. return false;
  362. }
  363. bool ret = false;
  364. btdm_queue_item_t *item;
  365. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  366. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  367. item = &btdm_queue_table[i];
  368. if (item->handle == queue->handle) {
  369. memcpy(queue, item, sizeof(btdm_queue_item_t));
  370. memset(item, 0, sizeof(btdm_queue_item_t));
  371. ret = true;
  372. break;
  373. }
  374. }
  375. xSemaphoreGive(btdm_queue_table_mux);
  376. return ret;
  377. }
  378. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  379. static void IRAM_ATTR interrupt_disable(void)
  380. {
  381. if (xPortInIsrContext()) {
  382. portENTER_CRITICAL_ISR(&global_int_mux);
  383. } else {
  384. portENTER_CRITICAL(&global_int_mux);
  385. }
  386. }
  387. static void IRAM_ATTR interrupt_restore(void)
  388. {
  389. if (xPortInIsrContext()) {
  390. portEXIT_CRITICAL_ISR(&global_int_mux);
  391. } else {
  392. portEXIT_CRITICAL(&global_int_mux);
  393. }
  394. }
  395. static void IRAM_ATTR task_yield_from_isr(void)
  396. {
  397. portYIELD_FROM_ISR();
  398. }
  399. static void *semphr_create_wrapper(uint32_t max, uint32_t init)
  400. {
  401. #if !CONFIG_SPIRAM_USE_MALLOC
  402. return (void *)xSemaphoreCreateCounting(max, init);
  403. #else
  404. StaticQueue_t *queue_buffer = NULL;
  405. QueueHandle_t handle = NULL;
  406. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  407. if (!queue_buffer) {
  408. goto error;
  409. }
  410. handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer);
  411. if (!handle) {
  412. goto error;
  413. }
  414. btdm_queue_item_t item = {
  415. .handle = handle,
  416. .storage = NULL,
  417. .buffer = queue_buffer,
  418. };
  419. if (!btdm_queue_generic_register(&item)) {
  420. goto error;
  421. }
  422. return handle;
  423. error:
  424. if (handle) {
  425. vSemaphoreDelete(handle);
  426. }
  427. if (queue_buffer) {
  428. free(queue_buffer);
  429. }
  430. return NULL;
  431. #endif
  432. }
  433. static void semphr_delete_wrapper(void *semphr)
  434. {
  435. #if !CONFIG_SPIRAM_USE_MALLOC
  436. vSemaphoreDelete(semphr);
  437. #else
  438. btdm_queue_item_t item = {
  439. .handle = semphr,
  440. .storage = NULL,
  441. .buffer = NULL,
  442. };
  443. if (btdm_queue_generic_deregister(&item)) {
  444. vSemaphoreDelete(item.handle);
  445. free(item.buffer);
  446. }
  447. return;
  448. #endif
  449. }
  450. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
  451. {
  452. return (int32_t)xSemaphoreTakeFromISR(semphr, hptw);
  453. }
  454. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
  455. {
  456. return (int32_t)xSemaphoreGiveFromISR(semphr, hptw);
  457. }
  458. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
  459. {
  460. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  461. return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY);
  462. } else {
  463. return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
  464. }
  465. }
  466. static int32_t semphr_give_wrapper(void *semphr)
  467. {
  468. return (int32_t)xSemaphoreGive(semphr);
  469. }
  470. static void *mutex_create_wrapper(void)
  471. {
  472. #if CONFIG_SPIRAM_USE_MALLOC
  473. StaticQueue_t *queue_buffer = NULL;
  474. QueueHandle_t handle = NULL;
  475. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  476. if (!queue_buffer) {
  477. goto error;
  478. }
  479. handle = xSemaphoreCreateMutexStatic(queue_buffer);
  480. if (!handle) {
  481. goto error;
  482. }
  483. btdm_queue_item_t item = {
  484. .handle = handle,
  485. .storage = NULL,
  486. .buffer = queue_buffer,
  487. };
  488. if (!btdm_queue_generic_register(&item)) {
  489. goto error;
  490. }
  491. return handle;
  492. error:
  493. if (handle) {
  494. vSemaphoreDelete(handle);
  495. }
  496. if (queue_buffer) {
  497. free(queue_buffer);
  498. }
  499. return NULL;
  500. #else
  501. return (void *)xSemaphoreCreateMutex();
  502. #endif
  503. }
  504. static void mutex_delete_wrapper(void *mutex)
  505. {
  506. #if !CONFIG_SPIRAM_USE_MALLOC
  507. vSemaphoreDelete(mutex);
  508. #else
  509. btdm_queue_item_t item = {
  510. .handle = mutex,
  511. .storage = NULL,
  512. .buffer = NULL,
  513. };
  514. if (btdm_queue_generic_deregister(&item)) {
  515. vSemaphoreDelete(item.handle);
  516. free(item.buffer);
  517. }
  518. return;
  519. #endif
  520. }
  521. static int32_t mutex_lock_wrapper(void *mutex)
  522. {
  523. return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
  524. }
  525. static int32_t mutex_unlock_wrapper(void *mutex)
  526. {
  527. return (int32_t)xSemaphoreGive(mutex);
  528. }
  529. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
  530. {
  531. #if CONFIG_SPIRAM_USE_MALLOC
  532. StaticQueue_t *queue_buffer = NULL;
  533. uint8_t *queue_storage = NULL;
  534. QueueHandle_t handle = NULL;
  535. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  536. if (!queue_buffer) {
  537. goto error;
  538. }
  539. queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  540. if (!queue_storage ) {
  541. goto error;
  542. }
  543. handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer);
  544. if (!handle) {
  545. goto error;
  546. }
  547. btdm_queue_item_t item = {
  548. .handle = handle,
  549. .storage = queue_storage,
  550. .buffer = queue_buffer,
  551. };
  552. if (!btdm_queue_generic_register(&item)) {
  553. goto error;
  554. }
  555. return handle;
  556. error:
  557. if (handle) {
  558. vQueueDelete(handle);
  559. }
  560. if (queue_storage) {
  561. free(queue_storage);
  562. }
  563. if (queue_buffer) {
  564. free(queue_buffer);
  565. }
  566. return NULL;
  567. #else
  568. return (void *)xQueueCreate(queue_len, item_size);
  569. #endif
  570. }
  571. static void queue_delete_wrapper(void *queue)
  572. {
  573. #if !CONFIG_SPIRAM_USE_MALLOC
  574. vQueueDelete(queue);
  575. #else
  576. btdm_queue_item_t item = {
  577. .handle = queue,
  578. .storage = NULL,
  579. .buffer = NULL,
  580. };
  581. if (btdm_queue_generic_deregister(&item)) {
  582. vQueueDelete(item.handle);
  583. free(item.storage);
  584. free(item.buffer);
  585. }
  586. return;
  587. #endif
  588. }
  589. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
  590. {
  591. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  592. return (int32_t)xQueueSend(queue, item, portMAX_DELAY);
  593. } else {
  594. return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
  595. }
  596. }
  597. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
  598. {
  599. return (int32_t)xQueueSendFromISR(queue, item, hptw);
  600. }
  601. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
  602. {
  603. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  604. return (int32_t)xQueueReceive(queue, item, portMAX_DELAY);
  605. } else {
  606. return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
  607. }
  608. }
  609. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
  610. {
  611. return (int32_t)xQueueReceiveFromISR(queue, item, hptw);
  612. }
  613. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
  614. {
  615. return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
  616. }
  617. static void task_delete_wrapper(void *task_handle)
  618. {
  619. vTaskDelete(task_handle);
  620. }
  621. static bool IRAM_ATTR is_in_isr_wrapper(void)
  622. {
  623. return (bool)xPortInIsrContext();
  624. }
  625. static void IRAM_ATTR cause_sw_intr(void *arg)
  626. {
  627. /* just convert void * to int, because the width is the same */
  628. uint32_t intr_no = (uint32_t)arg;
  629. XTHAL_SET_INTSET((1<<intr_no));
  630. }
  631. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
  632. {
  633. esp_err_t err = ESP_OK;
  634. if (xPortGetCoreID() == core_id) {
  635. cause_sw_intr((void *)intr_no);
  636. } else {
  637. err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
  638. }
  639. return err;
  640. }
  641. static void *malloc_internal_wrapper(size_t size)
  642. {
  643. return heap_caps_malloc(size, MALLOC_CAP_DEFAULT|MALLOC_CAP_INTERNAL);
  644. }
  645. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
  646. {
  647. return esp_read_mac(mac, ESP_MAC_BT);
  648. }
  649. static void IRAM_ATTR srand_wrapper(unsigned int seed)
  650. {
  651. /* empty function */
  652. }
  653. static int IRAM_ATTR rand_wrapper(void)
  654. {
  655. return (int)esp_random();
  656. }
  657. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
  658. {
  659. // The number of lp cycles should not lead to overflow. Thrs: 100s
  660. // clock measurement is conducted
  661. uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
  662. us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
  663. return (uint32_t)us;
  664. }
  665. /*
  666. * @brief Converts a duration in slots into a number of low power clock cycles.
  667. */
  668. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
  669. {
  670. // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
  671. // Compute the sleep duration in us to low power clock cycles, with calibration result applied
  672. // clock measurement is conducted
  673. uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
  674. return (uint32_t)cycles;
  675. }
  676. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
  677. {
  678. if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
  679. return false;
  680. }
  681. /* wake up in advance considering the delay in enabling PHY/RF */
  682. *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
  683. return true;
  684. }
  685. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
  686. {
  687. #ifdef CONFIG_PM_ENABLE
  688. // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
  689. uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
  690. #define BTDM_MIN_TIMER_UNCERTAINTY_US (1800)
  691. assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
  692. // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
  693. // and set the timer in advance
  694. uint32_t uncertainty = (us_to_sleep >> 11);
  695. if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
  696. uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
  697. }
  698. if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
  699. ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
  700. }
  701. #endif
  702. }
  703. static void btdm_sleep_enter_phase2_wrapper(void)
  704. {
  705. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  706. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  707. esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE);
  708. #ifdef CONFIG_PM_ENABLE
  709. esp_pm_lock_release(s_pm_lock);
  710. semphr_give_wrapper(s_pm_lock_sem);
  711. #endif
  712. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  713. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  714. // pause bluetooth baseband
  715. periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
  716. }
  717. }
  718. static void IRAM_ATTR btdm_sleep_exit_phase1_wrapper(void)
  719. {
  720. #ifdef CONFIG_PM_ENABLE
  721. if (semphr_take_from_isr_wrapper(s_pm_lock_sem, NULL) == pdTRUE) {
  722. esp_pm_lock_acquire(s_pm_lock);
  723. }
  724. #endif
  725. }
  726. static void btdm_sleep_exit_phase3_wrapper(void)
  727. {
  728. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  729. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  730. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  731. btdm_check_and_init_bb();
  732. #ifdef CONFIG_PM_ENABLE
  733. esp_timer_stop(s_btdm_slp_tmr);
  734. #endif
  735. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  736. // resume bluetooth baseband
  737. periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
  738. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  739. }
  740. }
  741. #ifdef CONFIG_PM_ENABLE
  742. static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
  743. {
  744. if (semphr_take_wrapper(s_pm_lock_sem, 0) == pdTRUE) {
  745. esp_pm_lock_acquire(s_pm_lock);
  746. }
  747. }
  748. #endif
  749. bool esp_vhci_host_check_send_available(void)
  750. {
  751. return API_vhci_host_check_send_available();
  752. }
  753. void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
  754. {
  755. if (!btdm_power_state_active()) {
  756. #if CONFIG_PM_ENABLE
  757. if (semphr_take_wrapper(s_pm_lock_sem, 0)) {
  758. esp_pm_lock_acquire(s_pm_lock);
  759. }
  760. esp_timer_stop(s_btdm_slp_tmr);
  761. #endif
  762. btdm_wakeup_request();
  763. }
  764. API_vhci_host_send_packet(data, len);
  765. }
  766. esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
  767. {
  768. return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
  769. }
  770. static uint32_t btdm_config_mask_load(void)
  771. {
  772. uint32_t mask = 0x0;
  773. #if CONFIG_BTDM_CONTROLLER_HCI_MODE_UART_H4
  774. mask |= BTDM_CFG_HCI_UART;
  775. #endif
  776. #if CONFIG_BTDM_CONTROLLER_PINNED_TO_CORE == 1
  777. mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
  778. #endif
  779. #if CONFIG_BTDM_CONTROLLER_FULL_SCAN_SUPPORTED
  780. mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
  781. #endif /* CONFIG_BTDM_CONTROLLER_FULL_SCAN_SUPPORTED */
  782. mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
  783. mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
  784. return mask;
  785. }
  786. static void btdm_controller_mem_init(void)
  787. {
  788. /* initialise .data section */
  789. memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
  790. ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
  791. //initial em, .bss section
  792. for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  793. if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
  794. memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
  795. ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
  796. }
  797. }
  798. }
  799. static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
  800. {
  801. int ret = heap_caps_add_region(start, end);
  802. /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
  803. * is too small to fit a heap. This cannot be termed as a fatal error and hence
  804. * we replace it by ESP_OK
  805. */
  806. if (ret == ESP_ERR_INVALID_SIZE) {
  807. return ESP_OK;
  808. }
  809. return ret;
  810. }
  811. esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
  812. {
  813. bool update = true;
  814. intptr_t mem_start, mem_end;
  815. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  816. return ESP_ERR_INVALID_STATE;
  817. }
  818. //already released
  819. if (!(mode & btdm_dram_available_region[0].mode)) {
  820. return ESP_ERR_INVALID_STATE;
  821. }
  822. for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  823. //skip the share mode, idle mode and other mode
  824. if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
  825. || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
  826. //clear the bit of the mode which will be released
  827. btdm_dram_available_region[i].mode &= ~mode;
  828. continue;
  829. } else {
  830. //clear the bit of the mode which will be released
  831. btdm_dram_available_region[i].mode &= ~mode;
  832. }
  833. if (update) {
  834. mem_start = btdm_dram_available_region[i].start;
  835. mem_end = btdm_dram_available_region[i].end;
  836. update = false;
  837. }
  838. if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
  839. mem_end = btdm_dram_available_region[i].end;
  840. if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
  841. && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
  842. && mem_end == btdm_dram_available_region[i+1].start) {
  843. continue;
  844. } else {
  845. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  846. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  847. update = true;
  848. }
  849. } else {
  850. mem_end = btdm_dram_available_region[i].end;
  851. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  852. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  853. update = true;
  854. }
  855. }
  856. if (mode == ESP_BT_MODE_BTDM) {
  857. mem_start = (intptr_t)&_btdm_bss_start;
  858. mem_end = (intptr_t)&_btdm_bss_end;
  859. if (mem_start != mem_end) {
  860. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  861. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  862. }
  863. mem_start = (intptr_t)&_btdm_data_start;
  864. mem_end = (intptr_t)&_btdm_data_end;
  865. if (mem_start != mem_end) {
  866. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  867. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  868. }
  869. }
  870. return ESP_OK;
  871. }
  872. esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
  873. {
  874. int ret;
  875. intptr_t mem_start, mem_end;
  876. ret = esp_bt_controller_mem_release(mode);
  877. if (ret != ESP_OK) {
  878. return ret;
  879. }
  880. if (mode == ESP_BT_MODE_BTDM) {
  881. mem_start = (intptr_t)&_bt_bss_start;
  882. mem_end = (intptr_t)&_bt_bss_end;
  883. if (mem_start != mem_end) {
  884. ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  885. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  886. }
  887. mem_start = (intptr_t)&_bt_data_start;
  888. mem_end = (intptr_t)&_bt_data_end;
  889. if (mem_start != mem_end) {
  890. ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  891. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  892. }
  893. }
  894. return ESP_OK;
  895. }
  896. esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
  897. {
  898. esp_err_t err;
  899. uint32_t btdm_cfg_mask = 0;
  900. osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
  901. if (osi_funcs_p == NULL) {
  902. return ESP_ERR_NO_MEM;
  903. }
  904. memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
  905. if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
  906. return ESP_ERR_INVALID_ARG;
  907. }
  908. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  909. return ESP_ERR_INVALID_STATE;
  910. }
  911. //if all the bt available memory was already released, cannot initialize bluetooth controller
  912. if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
  913. return ESP_ERR_INVALID_STATE;
  914. }
  915. if (cfg == NULL) {
  916. return ESP_ERR_INVALID_ARG;
  917. }
  918. if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
  919. || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
  920. return ESP_ERR_INVALID_ARG;
  921. }
  922. //overwrite some parameters
  923. cfg->bt_max_sync_conn = CONFIG_BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_EFF;
  924. cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
  925. if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
  926. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
  927. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
  928. return ESP_ERR_INVALID_ARG;
  929. }
  930. ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
  931. #if CONFIG_SPIRAM_USE_MALLOC
  932. btdm_queue_table_mux = xSemaphoreCreateMutex();
  933. if (btdm_queue_table_mux == NULL) {
  934. return ESP_ERR_NO_MEM;
  935. }
  936. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  937. #endif
  938. #ifdef CONFIG_PM_ENABLE
  939. if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
  940. goto error;
  941. }
  942. if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
  943. goto error;
  944. }
  945. esp_timer_create_args_t create_args = {
  946. .callback = btdm_slp_tmr_callback,
  947. .arg = NULL,
  948. .name = "btSlp"
  949. };
  950. if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
  951. goto error;
  952. }
  953. s_pm_lock_sem = semphr_create_wrapper(1, 0);
  954. if (s_pm_lock_sem == NULL) {
  955. err = ESP_ERR_NO_MEM;
  956. goto error;
  957. }
  958. #endif
  959. btdm_controller_mem_init();
  960. periph_module_enable(PERIPH_BT_MODULE);
  961. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  962. btdm_lpcycle_us = 32 << btdm_lpcycle_us_frac;
  963. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  964. bool select_src_ret = false;
  965. bool set_div_ret = false;
  966. #if CONFIG_BTDM_LPCLK_SEL_MAIN_XTAL
  967. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
  968. set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2 - 1);
  969. assert(select_src_ret && set_div_ret);
  970. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  971. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  972. #elif CONFIG_BTDM_LPCLK_SEL_EXT_32K_XTAL
  973. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
  974. set_div_ret = btdm_lpclk_set_div(0);
  975. assert(select_src_ret && set_div_ret);
  976. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  977. btdm_lpcycle_us = esp_clk_slowclk_cal_get();
  978. assert(btdm_lpcycle_us != 0);
  979. #endif // CONFIG_BTDM_LPCLK_SEL_XX
  980. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
  981. #elif CONFIG_BTDM_MODEM_SLEEP_MODE_EVED
  982. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
  983. #else
  984. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  985. #endif
  986. btdm_cfg_mask = btdm_config_mask_load();
  987. if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
  988. err = ESP_ERR_NO_MEM;
  989. goto error;
  990. }
  991. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  992. return ESP_OK;
  993. error:
  994. #ifdef CONFIG_PM_ENABLE
  995. if (s_light_sleep_pm_lock != NULL) {
  996. esp_pm_lock_delete(s_light_sleep_pm_lock);
  997. s_light_sleep_pm_lock = NULL;
  998. }
  999. if (s_pm_lock != NULL) {
  1000. esp_pm_lock_delete(s_pm_lock);
  1001. s_pm_lock = NULL;
  1002. }
  1003. if (s_btdm_slp_tmr != NULL) {
  1004. esp_timer_delete(s_btdm_slp_tmr);
  1005. s_btdm_slp_tmr = NULL;
  1006. }
  1007. if (s_pm_lock_sem) {
  1008. semphr_delete_wrapper(s_pm_lock_sem);
  1009. s_pm_lock_sem = NULL;
  1010. }
  1011. #endif
  1012. return err;
  1013. }
  1014. esp_err_t esp_bt_controller_deinit(void)
  1015. {
  1016. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1017. return ESP_ERR_INVALID_STATE;
  1018. }
  1019. btdm_controller_deinit();
  1020. periph_module_disable(PERIPH_BT_MODULE);
  1021. #ifdef CONFIG_PM_ENABLE
  1022. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1023. s_light_sleep_pm_lock = NULL;
  1024. esp_pm_lock_delete(s_pm_lock);
  1025. s_pm_lock = NULL;
  1026. esp_timer_stop(s_btdm_slp_tmr);
  1027. esp_timer_delete(s_btdm_slp_tmr);
  1028. s_btdm_slp_tmr = NULL;
  1029. semphr_delete_wrapper(s_pm_lock_sem);
  1030. s_pm_lock_sem = NULL;
  1031. #endif
  1032. #if CONFIG_SPIRAM_USE_MALLOC
  1033. vSemaphoreDelete(btdm_queue_table_mux);
  1034. btdm_queue_table_mux = NULL;
  1035. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1036. #endif
  1037. free(osi_funcs_p);
  1038. osi_funcs_p = NULL;
  1039. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  1040. btdm_lpcycle_us = 0;
  1041. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1042. return ESP_OK;
  1043. }
  1044. esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
  1045. {
  1046. int ret;
  1047. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1048. return ESP_ERR_INVALID_STATE;
  1049. }
  1050. //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
  1051. if (mode != btdm_controller_get_mode()) {
  1052. return ESP_ERR_INVALID_ARG;
  1053. }
  1054. #ifdef CONFIG_PM_ENABLE
  1055. esp_pm_lock_acquire(s_light_sleep_pm_lock);
  1056. esp_pm_lock_acquire(s_pm_lock);
  1057. #endif
  1058. esp_phy_load_cal_and_init(PHY_BT_MODULE);
  1059. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) {
  1060. //Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter.
  1061. //Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF.
  1062. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1063. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1064. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  1065. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  1066. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1067. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1068. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1069. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1070. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1071. }
  1072. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1073. btdm_controller_enable_sleep(true);
  1074. }
  1075. // inititalize bluetooth baseband
  1076. btdm_check_and_init_bb();
  1077. ret = btdm_controller_enable(mode);
  1078. if (ret) {
  1079. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1080. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1081. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1082. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1083. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1084. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1085. }
  1086. esp_phy_rf_deinit(PHY_BT_MODULE);
  1087. #ifdef CONFIG_PM_ENABLE
  1088. esp_pm_lock_release(s_light_sleep_pm_lock);
  1089. esp_pm_lock_release(s_pm_lock);
  1090. #endif
  1091. return ESP_ERR_INVALID_STATE;
  1092. }
  1093. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
  1094. return ESP_OK;
  1095. }
  1096. esp_err_t esp_bt_controller_disable(void)
  1097. {
  1098. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1099. return ESP_ERR_INVALID_STATE;
  1100. }
  1101. // disable modem sleep and wake up from sleep mode
  1102. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1103. btdm_controller_enable_sleep(false);
  1104. if (!btdm_power_state_active()) {
  1105. btdm_wakeup_request();
  1106. }
  1107. while (!btdm_power_state_active()) {
  1108. ets_delay_us(1000);
  1109. }
  1110. }
  1111. btdm_controller_disable();
  1112. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1113. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1114. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1115. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1116. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1117. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1118. }
  1119. esp_phy_rf_deinit(PHY_BT_MODULE);
  1120. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1121. #ifdef CONFIG_PM_ENABLE
  1122. esp_pm_lock_release(s_light_sleep_pm_lock);
  1123. esp_pm_lock_release(s_pm_lock);
  1124. #endif
  1125. return ESP_OK;
  1126. }
  1127. esp_bt_controller_status_t esp_bt_controller_get_status(void)
  1128. {
  1129. return btdm_controller_status;
  1130. }
  1131. /* extra functions */
  1132. esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
  1133. {
  1134. if (ble_txpwr_set(power_type, power_level) != 0) {
  1135. return ESP_ERR_INVALID_ARG;
  1136. }
  1137. return ESP_OK;
  1138. }
  1139. esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
  1140. {
  1141. return (esp_power_level_t)ble_txpwr_get(power_type);
  1142. }
  1143. esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
  1144. {
  1145. esp_err_t err;
  1146. int ret;
  1147. ret = bredr_txpwr_set(min_power_level, max_power_level);
  1148. if (ret == 0) {
  1149. err = ESP_OK;
  1150. } else if (ret == -1) {
  1151. err = ESP_ERR_INVALID_ARG;
  1152. } else {
  1153. err = ESP_ERR_INVALID_STATE;
  1154. }
  1155. return err;
  1156. }
  1157. esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
  1158. {
  1159. if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
  1160. return ESP_ERR_INVALID_ARG;
  1161. }
  1162. return ESP_OK;
  1163. }
  1164. esp_err_t esp_bt_sleep_enable (void)
  1165. {
  1166. esp_err_t status;
  1167. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1168. return ESP_ERR_INVALID_STATE;
  1169. }
  1170. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1171. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1172. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1173. btdm_controller_enable_sleep (true);
  1174. status = ESP_OK;
  1175. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1176. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1177. btdm_controller_enable_sleep (true);
  1178. status = ESP_OK;
  1179. } else {
  1180. status = ESP_ERR_NOT_SUPPORTED;
  1181. }
  1182. return status;
  1183. }
  1184. esp_err_t esp_bt_sleep_disable (void)
  1185. {
  1186. esp_err_t status;
  1187. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1188. return ESP_ERR_INVALID_STATE;
  1189. }
  1190. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1191. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1192. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1193. btdm_controller_enable_sleep (false);
  1194. status = ESP_OK;
  1195. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1196. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1197. btdm_controller_enable_sleep (false);
  1198. status = ESP_OK;
  1199. } else {
  1200. status = ESP_ERR_NOT_SUPPORTED;
  1201. }
  1202. return status;
  1203. }
  1204. bool esp_bt_controller_is_sleeping(void)
  1205. {
  1206. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
  1207. btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
  1208. return false;
  1209. }
  1210. return !btdm_power_state_active();
  1211. }
  1212. void esp_bt_controller_wakeup_request(void)
  1213. {
  1214. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
  1215. btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
  1216. return;
  1217. }
  1218. btdm_wakeup_request();
  1219. }
  1220. esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
  1221. {
  1222. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1223. return ESP_ERR_INVALID_STATE;
  1224. }
  1225. bredr_sco_datapath_set(data_path);
  1226. return ESP_OK;
  1227. }
  1228. esp_err_t esp_ble_scan_dupilcate_list_flush(void)
  1229. {
  1230. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1231. return ESP_ERR_INVALID_STATE;
  1232. }
  1233. btdm_controller_scan_duplicate_list_clear();
  1234. return ESP_OK;
  1235. }
  1236. #endif /* CONFIG_BT_ENABLED */