| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385 |
- // Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- /*
- Architecture:
- We can initialize a SPI driver, but we don't talk to the SPI driver itself, we address a device. A device essentially
- is a combination of SPI port and CS pin, plus some information about the specifics of communication to the device
- (timing, command/address length etc). The arbitration between tasks is also in conception of devices.
- A device can work in interrupt mode and polling mode, and a third but
- complicated mode which combines the two modes above:
- 1. Work in the ISR with a set of queues; one per device.
- The idea is that to send something to a SPI device, you allocate a
- transaction descriptor. It contains some information about the transfer
- like the lenghth, address, command etc, plus pointers to transmit and
- receive buffer. The address of this block gets pushed into the transmit
- queue. The SPI driver does its magic, and sends and retrieves the data
- eventually. The data gets written to the receive buffers, if needed the
- transaction descriptor is modified to indicate returned parameters and
- the entire thing goes into the return queue, where whatever software
- initiated the transaction can retrieve it.
- The entire thing is run from the SPI interrupt handler. If SPI is done
- transmitting/receiving but nothing is in the queue, it will not clear the
- SPI interrupt but just disable it by esp_intr_disable. This way, when a
- new thing is sent, pushing the packet into the send queue and re-enabling
- the interrupt (by esp_intr_enable) will trigger the interrupt again, which
- can then take care of the sending.
- 2. Work in the polling mode in the task.
- In this mode we get rid of the ISR, FreeRTOS queue and task switching, the
- task is no longer blocked during a transaction. This increase the cpu
- load, but decrease the interval of SPI transactions. Each time only one
- device (in one task) can send polling transactions, transactions to
- other devices are blocked until the polling transaction of current device
- is done.
- In the polling mode, the queue is not used, all the operations are done
- in the task. The task calls ``spi_device_polling_start`` to setup and start
- a new transaction, then call ``spi_device_polling_end`` to handle the
- return value of the transaction.
- To handle the arbitration among devices, the device "temporarily" acquire
- a bus by the ``device_acquire_bus_internal`` function, which writes
- acquire_cs by CAS operation. Other devices which wants to send polling
- transactions but don't own the bus will block and wait until given the
- semaphore which indicates the ownership of bus.
- In case of the ISR is still sending transactions to other devices, the ISR
- should maintain an ``isr_free`` flag indicating that it's not doing
- transactions. When the bus is acquired, the ISR can only send new
- transactions to the acquiring device. The ISR will automatically disable
- itself and send semaphore to the device if the ISR is free. If the device
- sees the isr_free flag, it can directly start its polling transaction.
- Otherwise it should block and wait for the semaphore from the ISR.
- After the polling transaction, the driver will release the bus. During the
- release of the bus, the driver search all other devices to see whether
- there is any device waiting to acquire the bus, if so, acquire for it and
- send it a semaphore if the device queue is empty, or invoke the ISR for
- it. If all other devices don't need to acquire the bus, but there are
- still transactions in the queues, the ISR will also be invoked.
- To get better polling efficiency, user can call ``spi_device_acquire_bus``
- function, which also calls the ``device_acquire_bus_internal`` function,
- before a series of polling transactions to a device. The bus acquiring and
- task switching before and after the polling transaction will be escaped.
- 3. Mixed mode
- The driver is written under the assumption that polling and interrupt
- transactions are not happening simultaneously. When sending polling
- transactions, it will check whether the ISR is active, which includes the
- case the ISR is sending the interrupt transactions of the acquiring
- device. If the ISR is still working, the routine sending a polling
- transaction will get blocked and wait until the semaphore from the ISR
- which indicates the ISR is free now.
- A fatal case is, a polling transaction is in flight, but the ISR received
- an interrupt transaction. The behavior of the driver is unpredictable,
- which should be strictly forbidden.
- We have two bits to control the interrupt:
- 1. The slave->trans_done bit, which is automatically asserted when a transaction is done.
- This bit is cleared during an interrupt transaction, so that the interrupt
- will be triggered when the transaction is done, or the SW can check the
- bit to see if the transaction is done for polling transactions.
- When no transaction is in-flight, the bit is kept active, so that the SW
- can easily invoke the ISR by enable the interrupt.
- 2. The system interrupt enable/disable, controlled by esp_intr_enable and esp_intr_disable.
- The interrupt is disabled (by the ISR itself) when no interrupt transaction
- is queued. When the bus is not occupied, any task, which queues a
- transaction into the queue, will enable the interrupt to invoke the ISR.
- When the bus is occupied by a device, other device will put off the
- invoking of ISR to the moment when the bus is released. The device
- acquiring the bus can still send interrupt transactions by enable the
- interrupt.
- */
- #include <string.h>
- #include "driver/spi_common.h"
- #include "driver/spi_master.h"
- #include "soc/dport_reg.h"
- #include "soc/spi_periph.h"
- #include "rom/ets_sys.h"
- #include "esp_types.h"
- #include "esp_attr.h"
- #include "esp_intr.h"
- #include "esp_intr_alloc.h"
- #include "esp_log.h"
- #include "esp_err.h"
- #include "esp_pm.h"
- #include "freertos/FreeRTOS.h"
- #include "freertos/semphr.h"
- #include "freertos/xtensa_api.h"
- #include "freertos/task.h"
- #include "soc/soc.h"
- #include "soc/soc_memory_layout.h"
- #include "soc/dport_reg.h"
- #include "rom/lldesc.h"
- #include "driver/gpio.h"
- #include "driver/periph_ctrl.h"
- #include "esp_heap_caps.h"
- #include "stdatomic.h"
- typedef struct spi_device_t spi_device_t;
- typedef typeof(SPI1.clock) spi_clock_reg_t;
- #define NO_CS 3 //Number of CS pins per SPI host
- #ifdef CONFIG_SPI_MASTER_ISR_IN_IRAM
- #define SPI_MASTER_ISR_ATTR IRAM_ATTR
- #else
- #define SPI_MASTER_ISR_ATTR
- #endif
- #ifdef CONFIG_SPI_MASTER_IN_IRAM
- #define SPI_MASTER_ATTR IRAM_ATTR
- #else
- #define SPI_MASTER_ATTR
- #endif
- /// struct to hold private transaction data (like tx and rx buffer for DMA).
- typedef struct {
- spi_transaction_t *trans;
- const uint32_t *buffer_to_send; //equals to tx_data, if SPI_TRANS_USE_RXDATA is applied; otherwise if original buffer wasn't in DMA-capable memory, this gets the address of a temporary buffer that is;
- //otherwise sets to the original buffer or NULL if no buffer is assigned.
- uint32_t *buffer_to_rcv; // similar to buffer_to_send
- } spi_trans_priv_t;
- typedef struct {
- _Atomic(spi_device_t*) device[NO_CS];
- intr_handle_t intr;
- spi_dev_t *hw;
- spi_trans_priv_t cur_trans_buf;
- int cur_cs; //current device doing transaction
- int prev_cs; //last device doing transaction, used to avoid re-configure registers if the device not changed
- atomic_int acquire_cs; //the device acquiring the bus, NO_CS if no one is doing so.
- bool polling; //in process of a polling, avoid of queue new transactions into ISR
- bool isr_free; //the isr is not sending transactions
- bool bus_locked;//the bus is controlled by a device
- lldesc_t *dmadesc_tx;
- lldesc_t *dmadesc_rx;
- uint32_t flags;
- int dma_chan;
- int max_transfer_sz;
- spi_bus_config_t bus_cfg;
- #ifdef CONFIG_PM_ENABLE
- esp_pm_lock_handle_t pm_lock;
- #endif
- } spi_host_t;
- typedef struct {
- spi_clock_reg_t reg;
- int eff_clk;
- int dummy_num;
- int miso_delay;
- } clock_config_t;
- struct spi_device_t {
- int id;
- QueueHandle_t trans_queue;
- QueueHandle_t ret_queue;
- spi_device_interface_config_t cfg;
- clock_config_t clk_cfg;
- spi_host_t *host;
- SemaphoreHandle_t semphr_polling; //semaphore to notify the device it claimed the bus
- bool waiting; //the device is waiting for the exclusive control of the bus
- };
- static spi_host_t *spihost[3];
- static const char *SPI_TAG = "spi_master";
- #define SPI_CHECK(a, str, ret_val, ...) \
- if (!(a)) { \
- ESP_LOGE(SPI_TAG,"%s(%d): "str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
- return (ret_val); \
- }
- static void spi_intr(void *arg);
- esp_err_t spi_bus_initialize(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan)
- {
- bool spi_chan_claimed, dma_chan_claimed;
- esp_err_t ret = ESP_OK;
- esp_err_t err;
- /* ToDo: remove this when we have flash operations cooperating with this */
- SPI_CHECK(host!=SPI_HOST, "SPI1 is not supported", ESP_ERR_NOT_SUPPORTED);
- SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
- SPI_CHECK( dma_chan >= 0 && dma_chan <= 2, "invalid dma channel", ESP_ERR_INVALID_ARG );
- SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH|ESP_INTR_FLAG_EDGE|ESP_INTR_FLAG_INTRDISABLED))==0, "intr flag not allowed", ESP_ERR_INVALID_ARG);
- #ifndef CONFIG_SPI_MASTER_ISR_IN_IRAM
- SPI_CHECK((bus_config->intr_flags & ESP_INTR_FLAG_IRAM)==0, "ESP_INTR_FLAG_IRAM should be disabled when CONFIG_SPI_MASTER_ISR_IN_IRAM is not set.", ESP_ERR_INVALID_ARG);
- #endif
- spi_chan_claimed=spicommon_periph_claim(host, "spi master");
- SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE);
- if ( dma_chan != 0 ) {
- dma_chan_claimed=spicommon_dma_chan_claim(dma_chan);
- if ( !dma_chan_claimed ) {
- spicommon_periph_free( host );
- SPI_CHECK(false, "dma channel already in use", ESP_ERR_INVALID_STATE);
- }
- }
- spihost[host]=malloc(sizeof(spi_host_t));
- if (spihost[host]==NULL) {
- ret = ESP_ERR_NO_MEM;
- goto cleanup;
- }
- memset(spihost[host], 0, sizeof(spi_host_t));
- memcpy( &spihost[host]->bus_cfg, bus_config, sizeof(spi_bus_config_t));
- #ifdef CONFIG_PM_ENABLE
- err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master",
- &spihost[host]->pm_lock);
- if (err != ESP_OK) {
- ret = err;
- goto cleanup;
- }
- #endif //CONFIG_PM_ENABLE
- err = spicommon_bus_initialize_io(host, bus_config, dma_chan, SPICOMMON_BUSFLAG_MASTER|bus_config->flags, &spihost[host]->flags);
- if (err != ESP_OK) {
- ret = err;
- goto cleanup;
- }
- spihost[host]->dma_chan=dma_chan;
- if (dma_chan == 0) {
- spihost[host]->max_transfer_sz = 64;
- } else {
- //See how many dma descriptors we need and allocate them
- int dma_desc_ct=(bus_config->max_transfer_sz+SPI_MAX_DMA_LEN-1)/SPI_MAX_DMA_LEN;
- if (dma_desc_ct==0) dma_desc_ct = 1; //default to 4k when max is not given
- spihost[host]->max_transfer_sz = dma_desc_ct*SPI_MAX_DMA_LEN;
- spihost[host]->dmadesc_tx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
- spihost[host]->dmadesc_rx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
- if (!spihost[host]->dmadesc_tx || !spihost[host]->dmadesc_rx) {
- ret = ESP_ERR_NO_MEM;
- goto cleanup;
- }
- }
- int flags = bus_config->intr_flags | ESP_INTR_FLAG_INTRDISABLED;
- err = esp_intr_alloc(spicommon_irqsource_for_host(host), flags, spi_intr, (void*)spihost[host], &spihost[host]->intr);
- if (err != ESP_OK) {
- ret = err;
- goto cleanup;
- }
- spihost[host]->hw=spicommon_hw_for_host(host);
- spihost[host]->cur_cs = NO_CS;
- spihost[host]->prev_cs = NO_CS;
- atomic_store(&spihost[host]->acquire_cs, NO_CS);
- spihost[host]->polling = false;
- spihost[host]->isr_free = true;
- spihost[host]->bus_locked = false;
- //Reset DMA
- spihost[host]->hw->dma_conf.val|=SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
- spihost[host]->hw->dma_out_link.start=0;
- spihost[host]->hw->dma_in_link.start=0;
- spihost[host]->hw->dma_conf.val&=~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
- //Reset timing
- spihost[host]->hw->ctrl2.val=0;
- //master use all 64 bytes of the buffer
- spihost[host]->hw->user.usr_miso_highpart=0;
- spihost[host]->hw->user.usr_mosi_highpart=0;
- //Disable unneeded ints
- spihost[host]->hw->slave.rd_buf_done=0;
- spihost[host]->hw->slave.wr_buf_done=0;
- spihost[host]->hw->slave.rd_sta_done=0;
- spihost[host]->hw->slave.wr_sta_done=0;
- spihost[host]->hw->slave.rd_buf_inten=0;
- spihost[host]->hw->slave.wr_buf_inten=0;
- spihost[host]->hw->slave.rd_sta_inten=0;
- spihost[host]->hw->slave.wr_sta_inten=0;
- //Force a transaction done interrupt. This interrupt won't fire yet because we initialized the SPI interrupt as
- //disabled. This way, we can just enable the SPI interrupt and the interrupt handler will kick in, handling
- //any transactions that are queued.
- spihost[host]->hw->slave.trans_inten=1;
- spihost[host]->hw->slave.trans_done=1;
- return ESP_OK;
- cleanup:
- if (spihost[host]) {
- free(spihost[host]->dmadesc_tx);
- free(spihost[host]->dmadesc_rx);
- #ifdef CONFIG_PM_ENABLE
- if (spihost[host]->pm_lock) {
- esp_pm_lock_delete(spihost[host]->pm_lock);
- }
- #endif
- }
- free(spihost[host]);
- spihost[host] = NULL;
- spicommon_periph_free(host);
- spicommon_dma_chan_free(dma_chan);
- return ret;
- }
- esp_err_t spi_bus_free(spi_host_device_t host)
- {
- int x;
- SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
- SPI_CHECK(spihost[host]!=NULL, "host not in use", ESP_ERR_INVALID_STATE);
- for (x=0; x<NO_CS; x++) {
- SPI_CHECK(atomic_load(&spihost[host]->device[x])==NULL, "not all CSses freed", ESP_ERR_INVALID_STATE);
- }
- spicommon_bus_free_io_cfg(&spihost[host]->bus_cfg);
- if ( spihost[host]->dma_chan > 0 ) {
- spicommon_dma_chan_free ( spihost[host]->dma_chan );
- }
- #ifdef CONFIG_PM_ENABLE
- esp_pm_lock_delete(spihost[host]->pm_lock);
- #endif
- spihost[host]->hw->slave.trans_inten=0;
- spihost[host]->hw->slave.trans_done=0;
- esp_intr_free(spihost[host]->intr);
- spicommon_periph_free(host);
- free(spihost[host]->dmadesc_tx);
- free(spihost[host]->dmadesc_rx);
- free(spihost[host]);
- spihost[host]=NULL;
- return ESP_OK;
- }
- void spi_get_timing(bool gpio_is_used, int input_delay_ns, int eff_clk, int* dummy_o, int* cycles_remain_o)
- {
- const int apbclk_kHz = APB_CLK_FREQ/1000;
- const int apbclk_n = APB_CLK_FREQ/eff_clk;
- const int gpio_delay_ns = gpio_is_used ? 25 : 0;
- //calculate how many apb clocks a period has, the 1 is to compensate in case ``input_delay_ns`` is rounded off.
- int apb_period_n = (1 + input_delay_ns + gpio_delay_ns)*apbclk_kHz/1000/1000;
- int dummy_required = apb_period_n/apbclk_n;
- int miso_delay = 0;
- if (dummy_required > 0) {
- //due to the clock delay between master and slave, there's a range in which data is random
- //give MISO a delay if needed to make sure we sample at the time MISO is stable
- miso_delay = (dummy_required+1)*apbclk_n-apb_period_n-1;
- } else {
- //if the dummy is not required, maybe we should also delay half a SPI clock if the data comes too early
- if (apb_period_n*4 <= apbclk_n) miso_delay = -1;
- }
- if (dummy_o!=NULL) *dummy_o = dummy_required;
- if (cycles_remain_o!=NULL) *cycles_remain_o = miso_delay;
- ESP_LOGD(SPI_TAG,"eff: %d, limit: %dk(/%d), %d dummy, %d delay", eff_clk/1000, apbclk_kHz/(apb_period_n+1), apb_period_n, dummy_required, miso_delay);
- }
- int spi_get_freq_limit(bool gpio_is_used, int input_delay_ns)
- {
- const int apbclk_kHz = APB_CLK_FREQ/1000;
- const int gpio_delay_ns = gpio_is_used ? 25 : 0;
- //calculate how many apb clocks a period has, the 1 is to compensate in case ``input_delay_ns`` is rounded off.
- int apb_period_n = (1 + input_delay_ns + gpio_delay_ns)*apbclk_kHz/1000/1000;
- return APB_CLK_FREQ/(apb_period_n+1);
- }
- /*
- Add a device. This allocates a CS line for the device, allocates memory for the device structure and hooks
- up the CS pin to whatever is specified.
- */
- esp_err_t spi_bus_add_device(spi_host_device_t host, const spi_device_interface_config_t *dev_config, spi_device_handle_t *handle)
- {
- int freecs;
- int apbclk=APB_CLK_FREQ;
- int eff_clk;
- int duty_cycle;
- int dummy_required;
- int miso_delay;
- spi_clock_reg_t clk_reg;
- SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
- SPI_CHECK(spihost[host]!=NULL, "host not initialized", ESP_ERR_INVALID_STATE);
- SPI_CHECK(dev_config->spics_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(dev_config->spics_io_num), "spics pin invalid", ESP_ERR_INVALID_ARG);
- SPI_CHECK(dev_config->clock_speed_hz > 0, "invalid sclk speed", ESP_ERR_INVALID_ARG);
- for (freecs=0; freecs<NO_CS; freecs++) {
- //See if this slot is free; reserve if it is by putting a dummy pointer in the slot. We use an atomic compare&swap to make this thread-safe.
- void* null=NULL;
- if (atomic_compare_exchange_strong(&spihost[host]->device[freecs], &null, (spi_device_t *)1)) break;
- }
- SPI_CHECK(freecs!=NO_CS, "no free cs pins for host", ESP_ERR_NOT_FOUND);
- //The hardware looks like it would support this, but actually setting cs_ena_pretrans when transferring in full
- //duplex mode does absolutely nothing on the ESP32.
- SPI_CHECK( dev_config->cs_ena_pretrans <= 1 || (dev_config->address_bits == 0 && dev_config->command_bits == 0) ||
- (dev_config->flags & SPI_DEVICE_HALFDUPLEX), "In full-duplex mode, only support cs pretrans delay = 1 and without address_bits and command_bits", ESP_ERR_INVALID_ARG);
- duty_cycle = (dev_config->duty_cycle_pos==0) ? 128 : dev_config->duty_cycle_pos;
- eff_clk = spi_cal_clock(apbclk, dev_config->clock_speed_hz, duty_cycle, (uint32_t*)&clk_reg);
- int freq_limit = spi_get_freq_limit(!(spihost[host]->flags&SPICOMMON_BUSFLAG_NATIVE_PINS), dev_config->input_delay_ns);
- //Speed >=40MHz over GPIO matrix needs a dummy cycle, but these don't work for full-duplex connections.
- spi_get_timing(!(spihost[host]->flags&SPICOMMON_BUSFLAG_NATIVE_PINS), dev_config->input_delay_ns, eff_clk, &dummy_required, &miso_delay);
- SPI_CHECK( dev_config->flags & SPI_DEVICE_HALFDUPLEX || dummy_required == 0 ||
- dev_config->flags & SPI_DEVICE_NO_DUMMY,
- "When work in full-duplex mode at frequency > %.1fMHz, device cannot read correct data.\n\
- Try to use IOMUX pins to increase the frequency limit, or use the half duplex mode.\n\
- Please note the SPI master can only work at divisors of 80MHz, and the driver always tries to find the closest frequency to your configuration.\n\
- Specify ``SPI_DEVICE_NO_DUMMY`` to ignore this checking. Then you can output data at higher speed, or read data at your own risk.",
- ESP_ERR_INVALID_ARG, freq_limit/1000./1000 );
- //Allocate memory for device
- spi_device_t *dev=malloc(sizeof(spi_device_t));
- if (dev==NULL) goto nomem;
- memset(dev, 0, sizeof(spi_device_t));
- atomic_store(&spihost[host]->device[freecs], dev);
- dev->id = freecs;
- dev->waiting = false;
- //Allocate queues, set defaults
- dev->trans_queue = xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv_t));
- dev->ret_queue = xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv_t));
- dev->semphr_polling = xSemaphoreCreateBinary();
- if (!dev->trans_queue || !dev->ret_queue || !dev->semphr_polling) {
- goto nomem;
- }
- dev->host=spihost[host];
- //We want to save a copy of the dev config in the dev struct.
- memcpy(&dev->cfg, dev_config, sizeof(spi_device_interface_config_t));
- dev->cfg.duty_cycle_pos = duty_cycle;
- // TODO: if we have to change the apb clock among transactions, re-calculate this each time the apb clock lock is acquired.
- dev->clk_cfg= (clock_config_t) {
- .eff_clk = eff_clk,
- .dummy_num = dummy_required,
- .reg = clk_reg,
- .miso_delay = miso_delay,
- };
- //Set CS pin, CS options
- if (dev_config->spics_io_num >= 0) {
- spicommon_cs_initialize(host, dev_config->spics_io_num, freecs, !(spihost[host]->flags&SPICOMMON_BUSFLAG_NATIVE_PINS));
- }
- if (dev_config->flags&SPI_DEVICE_CLK_AS_CS) {
- spihost[host]->hw->pin.master_ck_sel |= (1<<freecs);
- } else {
- spihost[host]->hw->pin.master_ck_sel &= (1<<freecs);
- }
- if (dev_config->flags&SPI_DEVICE_POSITIVE_CS) {
- spihost[host]->hw->pin.master_cs_pol |= (1<<freecs);
- } else {
- spihost[host]->hw->pin.master_cs_pol &= (1<<freecs);
- }
- spihost[host]->hw->ctrl2.mosi_delay_mode = 0;
- spihost[host]->hw->ctrl2.mosi_delay_num = 0;
- *handle=dev;
- ESP_LOGD(SPI_TAG, "SPI%d: New device added to CS%d, effective clock: %dkHz", host+1, freecs, dev->clk_cfg.eff_clk/1000);
- return ESP_OK;
- nomem:
- if (dev) {
- if (dev->trans_queue) vQueueDelete(dev->trans_queue);
- if (dev->ret_queue) vQueueDelete(dev->ret_queue);
- if (dev->semphr_polling) vSemaphoreDelete(dev->semphr_polling);
- }
- free(dev);
- return ESP_ERR_NO_MEM;
- }
- esp_err_t spi_bus_remove_device(spi_device_handle_t handle)
- {
- int x;
- SPI_CHECK(handle!=NULL, "invalid handle", ESP_ERR_INVALID_ARG);
- //These checks aren't exhaustive; another thread could sneak in a transaction inbetween. These are only here to
- //catch design errors and aren't meant to be triggered during normal operation.
- SPI_CHECK(uxQueueMessagesWaiting(handle->trans_queue)==0, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
- SPI_CHECK(handle->host->cur_cs == NO_CS || atomic_load(&handle->host->device[handle->host->cur_cs])!=handle, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
- SPI_CHECK(uxQueueMessagesWaiting(handle->ret_queue)==0, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
- //return
- int spics_io_num = handle->cfg.spics_io_num;
- if (spics_io_num >= 0) spicommon_cs_free_io(spics_io_num);
- //Kill queues
- vQueueDelete(handle->trans_queue);
- vQueueDelete(handle->ret_queue);
- vSemaphoreDelete(handle->semphr_polling);
- //Remove device from list of csses and free memory
- for (x=0; x<NO_CS; x++) {
- if (atomic_load(&handle->host->device[x]) == handle){
- atomic_store(&handle->host->device[x], NULL);
- if (x == handle->host->prev_cs) handle->host->prev_cs = NO_CS;
- }
- }
- free(handle);
- return ESP_OK;
- }
- static int spi_freq_for_pre_n(int fapb, int pre, int n)
- {
- return (fapb / (pre * n));
- }
- int spi_cal_clock(int fapb, int hz, int duty_cycle, uint32_t *reg_o)
- {
- spi_clock_reg_t reg;
- int eff_clk;
- //In hw, n, h and l are 1-64, pre is 1-8K. Value written to register is one lower than used value.
- if (hz>((fapb/4)*3)) {
- //Using Fapb directly will give us the best result here.
- reg.clkcnt_l=0;
- reg.clkcnt_h=0;
- reg.clkcnt_n=0;
- reg.clkdiv_pre=0;
- reg.clk_equ_sysclk=1;
- eff_clk=fapb;
- } else {
- //For best duty cycle resolution, we want n to be as close to 32 as possible, but
- //we also need a pre/n combo that gets us as close as possible to the intended freq.
- //To do this, we bruteforce n and calculate the best pre to go along with that.
- //If there's a choice between pre/n combos that give the same result, use the one
- //with the higher n.
- int pre, n, h, l;
- int bestn=-1;
- int bestpre=-1;
- int besterr=0;
- int errval;
- for (n=2; n<=64; n++) { //Start at 2: we need to be able to set h/l so we have at least one high and one low pulse.
- //Effectively, this does pre=round((fapb/n)/hz).
- pre=((fapb/n)+(hz/2))/hz;
- if (pre<=0) pre=1;
- if (pre>8192) pre=8192;
- errval=abs(spi_freq_for_pre_n(fapb, pre, n)-hz);
- if (bestn==-1 || errval<=besterr) {
- besterr=errval;
- bestn=n;
- bestpre=pre;
- }
- }
- n=bestn;
- pre=bestpre;
- l=n;
- //This effectively does round((duty_cycle*n)/256)
- h=(duty_cycle*n+127)/256;
- if (h<=0) h=1;
- reg.clk_equ_sysclk=0;
- reg.clkcnt_n=n-1;
- reg.clkdiv_pre=pre-1;
- reg.clkcnt_h=h-1;
- reg.clkcnt_l=l-1;
- eff_clk=spi_freq_for_pre_n(fapb, pre, n);
- }
- if (reg_o != NULL) *reg_o = reg.val;
- return eff_clk;
- }
- /*
- * Set the spi clock according to pre-calculated register value.
- */
- static inline void SPI_MASTER_ISR_ATTR spi_set_clock(spi_dev_t *hw, spi_clock_reg_t reg)
- {
- hw->clock.val = reg.val;
- }
- // Setup the device-specified configuration registers. Called every time a new
- // transaction is to be sent, but only apply new configurations when the device
- // changes.
- static void SPI_MASTER_ISR_ATTR spi_setup_device(spi_host_t *host, int dev_id )
- {
- //if the configuration is already applied, skip the following.
- if (dev_id == host->prev_cs) {
- return;
- }
- ESP_EARLY_LOGD(SPI_TAG, "SPI device changed from %d to %d", host->prev_cs, dev_id);
- spi_device_t *dev = atomic_load(&host->device[dev_id]);
- //Configure clock settings
- spi_set_clock(host->hw, dev->clk_cfg.reg);
- //Configure bit order
- host->hw->ctrl.rd_bit_order=(dev->cfg.flags & SPI_DEVICE_RXBIT_LSBFIRST) ? 1 : 0;
- host->hw->ctrl.wr_bit_order=(dev->cfg.flags & SPI_DEVICE_TXBIT_LSBFIRST) ? 1 : 0;
- //Configure polarity
- if (dev->cfg.mode==0) {
- host->hw->pin.ck_idle_edge=0;
- host->hw->user.ck_out_edge=0;
- } else if (dev->cfg.mode==1) {
- host->hw->pin.ck_idle_edge=0;
- host->hw->user.ck_out_edge=1;
- } else if (dev->cfg.mode==2) {
- host->hw->pin.ck_idle_edge=1;
- host->hw->user.ck_out_edge=1;
- } else if (dev->cfg.mode==3) {
- host->hw->pin.ck_idle_edge=1;
- host->hw->user.ck_out_edge=0;
- }
- //Configure misc stuff
- host->hw->user.doutdin=(dev->cfg.flags & SPI_DEVICE_HALFDUPLEX) ? 0 : 1;
- host->hw->user.sio=(dev->cfg.flags & SPI_DEVICE_3WIRE) ? 1 : 0;
- //Configure CS pin and timing
- host->hw->ctrl2.setup_time=dev->cfg.cs_ena_pretrans-1;
- host->hw->user.cs_setup=dev->cfg.cs_ena_pretrans ? 1 : 0;
- //set hold_time to 0 will not actually append delay to CS
- //set it to 1 since we do need at least one clock of hold time in most cases
- host->hw->ctrl2.hold_time=dev->cfg.cs_ena_posttrans;
- if (host->hw->ctrl2.hold_time == 0) host->hw->ctrl2.hold_time = 1;
- host->hw->user.cs_hold=1;
- host->hw->pin.cs0_dis = (dev_id == 0) ? 0 : 1;
- host->hw->pin.cs1_dis = (dev_id == 1) ? 0 : 1;
- host->hw->pin.cs2_dis = (dev_id == 2) ? 0 : 1;
- //Record the device just configured to save time for next time
- host->prev_cs = dev_id;
- }
- /*-----------------------------------------------------------------------------
- Arbitration Functions
- -----------------------------------------------------------------------------*/
- static inline void spi_isr_invoke(spi_device_t *dev)
- {
- int acquire_cs = atomic_load(&dev->host->acquire_cs);
- if (acquire_cs == dev->id || acquire_cs == NO_CS) {
- esp_intr_enable(dev->host->intr);
- }
- //otherwise wait for bus release to invoke
- }
- /* This function try to race for the arbitration between devices.
- * Even if this returns successfully, the ISR may be still running.
- * Call device_wait_for_isr_idle to make sure the ISR is done.
- */
- static SPI_MASTER_ISR_ATTR esp_err_t device_acquire_bus_internal(spi_device_t *handle, TickType_t wait)
- {
- spi_host_t *host = handle->host;
- SPI_CHECK(wait==portMAX_DELAY, "acquire finite time not supported now.", ESP_ERR_INVALID_ARG);
- if (atomic_load(&host->acquire_cs) == handle->id) {
- // Quickly skip if the bus is already acquired.
- // Usually this is only when the bus is locked.
- assert(host->bus_locked);
- return ESP_OK;
- } else {
- // Declare we are waiting for the bus so that if we get blocked later, other device or the ISR will yield to us after their using.
- handle->waiting = true;
- // Clear the semaphore before checking
- xSemaphoreTake(handle->semphr_polling, 0);
- int no_cs = NO_CS;
- atomic_compare_exchange_weak(&host->acquire_cs, &no_cs, handle->id);
- if (atomic_load(&host->acquire_cs) != handle->id) {
- //block until the bus is acquired (help by other task)
- BaseType_t ret = xSemaphoreTake(handle->semphr_polling, wait);
- //TODO: add timeout handling here.
- if (ret == pdFALSE) return ESP_ERR_TIMEOUT;
- }
- handle->waiting = false;
- }
- return ESP_OK;
- }
- /* This function check for whether the ISR is done, if not, block until semaphore given.
- */
- static inline SPI_MASTER_ISR_ATTR esp_err_t device_wait_for_isr_idle(spi_device_t *handle, TickType_t wait)
- {
- //quickly skip if the isr is already free
- if (!handle->host->isr_free) {
- // Clear the semaphore before checking
- xSemaphoreTake(handle->semphr_polling, 0);
- if (!handle->host->isr_free) {
- //block until the the isr is free and give us the semaphore
- BaseType_t ret = xSemaphoreTake(handle->semphr_polling, wait);
- //TODO: add timeout handling here.
- if (ret == pdFALSE) return ESP_ERR_TIMEOUT;
- }
- }
- return ESP_OK;
- }
- /* This function release the bus acquired by device_acquire_internal.
- And it also tries to help other device to acquire the bus.
- If the bus acquring is not needed, it goes through all device queues to see whether to invoke the ISR
- */
- static SPI_MASTER_ISR_ATTR void device_release_bus_internal(spi_host_t *host)
- {
- //release the bus
- atomic_store(&host->acquire_cs, NO_CS);
- //first try to restore the acquiring device
- for (int i = 0; i < NO_CS; i++) {
- //search for all registered devices
- spi_device_t* dev = atomic_load(&host->device[i]);
- if (dev && dev->waiting) {
- int no_cs = NO_CS;
- atomic_compare_exchange_weak(&host->acquire_cs, &no_cs, i);
- if (atomic_load(&host->acquire_cs) == i) {
- // Success to acquire for new device
- BaseType_t ret = uxQueueMessagesWaiting(dev->trans_queue);
- if (ret > 0) {
- // If there are transactions in the queue, the ISR should be invoked first
- // Resume the interrupt to send the task a signal
- spi_isr_invoke(dev);
- } else {
- // Otherwise resume the task directly.
- xSemaphoreGive(dev->semphr_polling);
- }
- }
- return;
- }
- }
- //if no devices waiting, searching in device queues to see whether to recover the ISR
- for( int i = 0; i < NO_CS; i++) {
- spi_device_t *dev = atomic_load(&host->device[i]);
- if (dev == NULL) continue;
- BaseType_t ret = uxQueueMessagesWaiting(dev->trans_queue);
- if ( ret != 0) {
- spi_isr_invoke(dev);
- return;
- }
- }
- }
- static inline SPI_MASTER_ISR_ATTR bool device_is_polling(spi_device_t *handle)
- {
- return atomic_load(&handle->host->acquire_cs) == handle->id && handle->host->polling;
- }
- /*-----------------------------------------------------------------------------
- Working Functions
- -----------------------------------------------------------------------------*/
- // The function is called to send a new transaction, in ISR or in the task.
- // Setup the transaction-specified registers and linked-list used by the DMA (or FIFO if DMA is not used)
- static void SPI_MASTER_ISR_ATTR spi_new_trans(spi_device_t *dev, spi_trans_priv_t *trans_buf)
- {
- spi_transaction_t *trans = NULL;
- spi_host_t *host = dev->host;
- int dev_id = dev->id;
- //clear int bit
- host->hw->slave.trans_done = 0;
- trans = trans_buf->trans;
- host->cur_cs = dev_id;
- //We should be done with the transmission.
- assert(host->hw->cmd.usr == 0);
- //Reconfigure according to device settings, the function only has effect when the dev_id is changed.
- spi_setup_device(host, dev_id);
- //Reset DMA peripheral
- host->hw->dma_conf.val |= SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
- host->hw->dma_out_link.start=0;
- host->hw->dma_in_link.start=0;
- host->hw->dma_conf.val &= ~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
- host->hw->dma_conf.out_data_burst_en=1;
- host->hw->dma_conf.indscr_burst_en=1;
- host->hw->dma_conf.outdscr_burst_en=1;
- //Set up QIO/DIO if needed
- host->hw->ctrl.val &= ~(SPI_FREAD_DUAL|SPI_FREAD_QUAD|SPI_FREAD_DIO|SPI_FREAD_QIO);
- host->hw->user.val &= ~(SPI_FWRITE_DUAL|SPI_FWRITE_QUAD|SPI_FWRITE_DIO|SPI_FWRITE_QIO);
- if (trans->flags & SPI_TRANS_MODE_DIO) {
- if (trans->flags & SPI_TRANS_MODE_DIOQIO_ADDR) {
- host->hw->ctrl.fread_dio=1;
- host->hw->user.fwrite_dio=1;
- } else {
- host->hw->ctrl.fread_dual=1;
- host->hw->user.fwrite_dual=1;
- }
- host->hw->ctrl.fastrd_mode=1;
- } else if (trans->flags & SPI_TRANS_MODE_QIO) {
- if (trans->flags & SPI_TRANS_MODE_DIOQIO_ADDR) {
- host->hw->ctrl.fread_qio=1;
- host->hw->user.fwrite_qio=1;
- } else {
- host->hw->ctrl.fread_quad=1;
- host->hw->user.fwrite_quad=1;
- }
- host->hw->ctrl.fastrd_mode=1;
- }
- //Fill DMA descriptors
- int extra_dummy=0;
- if (trans_buf->buffer_to_rcv) {
- if (host->dma_chan == 0) {
- //No need to setup anything; we'll copy the result out of the work registers directly later.
- } else {
- spicommon_setup_dma_desc_links(host->dmadesc_rx, ((trans->rxlength+7)/8), (uint8_t*)trans_buf->buffer_to_rcv, true);
- host->hw->dma_in_link.addr=(int)(&host->dmadesc_rx[0]) & 0xFFFFF;
- host->hw->dma_in_link.start=1;
- }
- //when no_dummy is not set and in half-duplex mode, sets the dummy bit if RX phase exist
- if (((dev->cfg.flags&SPI_DEVICE_NO_DUMMY)==0) && (dev->cfg.flags&SPI_DEVICE_HALFDUPLEX)) {
- extra_dummy=dev->clk_cfg.dummy_num;
- }
- } else {
- //DMA temporary workaround: let RX DMA work somehow to avoid the issue in ESP32 v0/v1 silicon
- if (host->dma_chan != 0 ) {
- host->hw->dma_in_link.addr=0;
- host->hw->dma_in_link.start=1;
- }
- }
- if (trans_buf->buffer_to_send) {
- if (host->dma_chan == 0) {
- //Need to copy data to registers manually
- for (int x=0; x < trans->length; x+=32) {
- //Use memcpy to get around alignment issues for txdata
- uint32_t word;
- memcpy(&word, &trans_buf->buffer_to_send[x/32], 4);
- host->hw->data_buf[(x/32)]=word;
- }
- } else {
- spicommon_setup_dma_desc_links(host->dmadesc_tx, (trans->length+7)/8, (uint8_t*)trans_buf->buffer_to_send, false);
- host->hw->dma_out_link.addr=(int)(&host->dmadesc_tx[0]) & 0xFFFFF;
- host->hw->dma_out_link.start=1;
- }
- }
- //SPI iface needs to be configured for a delay in some cases.
- //configure dummy bits
- host->hw->user.usr_dummy=(dev->cfg.dummy_bits+extra_dummy) ? 1 : 0;
- host->hw->user1.usr_dummy_cyclelen=dev->cfg.dummy_bits+extra_dummy-1;
- int miso_long_delay = 0;
- if (dev->clk_cfg.miso_delay<0) {
- //if the data comes too late, delay half a SPI clock to improve reading
- miso_long_delay = 1;
- host->hw->ctrl2.miso_delay_num = 0;
- } else {
- //if the data is so fast that dummy_bit is used, delay some apb clocks to meet the timing
- host->hw->ctrl2.miso_delay_num = extra_dummy ? dev->clk_cfg.miso_delay : 0;
- }
- if (miso_long_delay) {
- switch (dev->cfg.mode) {
- case 0:
- host->hw->ctrl2.miso_delay_mode = 2;
- break;
- case 1:
- host->hw->ctrl2.miso_delay_mode = 1;
- break;
- case 2:
- host->hw->ctrl2.miso_delay_mode = 1;
- break;
- case 3:
- host->hw->ctrl2.miso_delay_mode = 2;
- break;
- }
- } else {
- host->hw->ctrl2.miso_delay_mode = 0;
- }
- host->hw->mosi_dlen.usr_mosi_dbitlen=trans->length-1;
- if ( dev->cfg.flags & SPI_DEVICE_HALFDUPLEX ) {
- host->hw->miso_dlen.usr_miso_dbitlen=trans->rxlength-1;
- } else {
- //rxlength is not used in full-duplex mode
- host->hw->miso_dlen.usr_miso_dbitlen=trans->length-1;
- }
- //Configure bit sizes, load addr and command
- int cmdlen;
- int addrlen;
- if (!(dev->cfg.flags & SPI_DEVICE_HALFDUPLEX) && dev->cfg.cs_ena_pretrans != 0) {
- /* The command and address phase is not compatible with cs_ena_pretrans
- * in full duplex mode.
- */
- cmdlen = 0;
- addrlen = 0;
- } else {
- if (trans->flags & SPI_TRANS_VARIABLE_CMD) {
- cmdlen = ((spi_transaction_ext_t *)trans)->command_bits;
- } else {
- cmdlen = dev->cfg.command_bits;
- }
- if (trans->flags & SPI_TRANS_VARIABLE_ADDR) {
- addrlen = ((spi_transaction_ext_t *)trans)->address_bits;
- } else {
- addrlen = dev->cfg.address_bits;
- }
- }
- host->hw->user1.usr_addr_bitlen=addrlen-1;
- host->hw->user2.usr_command_bitlen=cmdlen-1;
- host->hw->user.usr_addr=addrlen ? 1 : 0;
- host->hw->user.usr_command=cmdlen ? 1 : 0;
- if ((dev->cfg.flags & SPI_DEVICE_TXBIT_LSBFIRST)==0) {
- /* Output command will be sent from bit 7 to 0 of command_value, and
- * then bit 15 to 8 of the same register field. Shift and swap to send
- * more straightly.
- */
- host->hw->user2.usr_command_value = SPI_SWAP_DATA_TX(trans->cmd, cmdlen);
- // shift the address to MSB of addr (and maybe slv_wr_status) register.
- // output address will be sent from MSB to LSB of addr register, then comes the MSB to LSB of slv_wr_status register.
- if (addrlen > 32) {
- host->hw->addr = trans->addr >> (addrlen - 32);
- host->hw->slv_wr_status = trans->addr << (64 - addrlen);
- } else {
- host->hw->addr = trans->addr << (32 - addrlen);
- }
- } else {
- /* The output command start from bit0 to bit 15, kept as is.
- * The output address start from the LSB of the highest byte, i.e.
- * addr[24] -> addr[31]
- * ...
- * addr[0] -> addr[7]
- * slv_wr_status[24] -> slv_wr_status[31]
- * ...
- * slv_wr_status[0] -> slv_wr_status[7]
- * So swap the byte order to let the LSB sent first.
- */
- host->hw->user2.usr_command_value = trans->cmd;
- uint64_t addr = __builtin_bswap64(trans->addr);
- host->hw->addr = addr>>32;
- host->hw->slv_wr_status = addr;
- }
- if ((!(dev->cfg.flags & SPI_DEVICE_HALFDUPLEX) && trans_buf->buffer_to_rcv) ||
- trans_buf->buffer_to_send) {
- host->hw->user.usr_mosi = 1;
- } else {
- host->hw->user.usr_mosi = 0;
- }
- host->hw->user.usr_miso = (trans_buf->buffer_to_rcv) ? 1 : 0;
- //Call pre-transmission callback, if any
- if (dev->cfg.pre_cb) dev->cfg.pre_cb(trans);
- //Kick off transfer
- host->hw->cmd.usr=1;
- }
- // The function is called when a transaction is done, in ISR or in the task.
- // Fetch the data from FIFO and call the ``post_cb``.
- static void SPI_MASTER_ISR_ATTR spi_post_trans(spi_host_t *host)
- {
- spi_transaction_t *cur_trans = host->cur_trans_buf.trans;
- if (host->cur_trans_buf.buffer_to_rcv && host->dma_chan == 0 ) {
- //Need to copy from SPI regs to result buffer.
- for (int x = 0; x < cur_trans->rxlength; x += 32) {
- //Do a memcpy to get around possible alignment issues in rx_buffer
- uint32_t word = host->hw->data_buf[x / 32];
- int len = cur_trans->rxlength - x;
- if (len > 32) len = 32;
- memcpy(&host->cur_trans_buf.buffer_to_rcv[x / 32], &word, (len + 7) / 8);
- }
- }
- //Call post-transaction callback, if any
- spi_device_t* dev = atomic_load(&host->device[host->cur_cs]);
- if (dev->cfg.post_cb) dev->cfg.post_cb(cur_trans);
- host->cur_cs = NO_CS;
- }
- // This is run in interrupt context.
- static void SPI_MASTER_ISR_ATTR spi_intr(void *arg)
- {
- int i;
- BaseType_t r;
- BaseType_t do_yield = pdFALSE;
- spi_host_t *host = (spi_host_t *)arg;
- assert(host->hw->slave.trans_done == 1);
- /*------------ deal with the in-flight transaction -----------------*/
- if (host->cur_cs != NO_CS) {
- //Okay, transaction is done.
- const int cs = host->cur_cs;
- //Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset.
- if (host->dma_chan) {
- spicommon_dmaworkaround_idle(host->dma_chan);
- }
- //cur_cs is changed to NO_CS here
- spi_post_trans(host);
- //Return transaction descriptor.
- xQueueSendFromISR(atomic_load(&host->device[cs])->ret_queue, &host->cur_trans_buf, &do_yield);
- #ifdef CONFIG_PM_ENABLE
- //Release APB frequency lock
- esp_pm_lock_release(host->pm_lock);
- #endif
- }
- /*------------ new transaction starts here ------------------*/
- assert(host->cur_cs == NO_CS);
- // Clear isr_free before the checking of acquire_cs so that the task will always block if we find the bus is not acquired.
- // Small possiblility that the task is blocked but we find the bus is acquired.
- host->isr_free = false;
- /* When the bus is not occupied, the task uses esp_intr_enable to inform the ISR there's new transaction.
- * If the queue is empty, we disable the system interrupt.
- * We disable this first, to avoid the conflict when the task enable and the ISR disable at the same time
- * If the transaction is sent (queue not empty), we will re-ebale it (see below).
- */
- esp_intr_disable( host->intr );
- int acquire_cs = atomic_load(&host->acquire_cs);
- if (acquire_cs != NO_CS) {
- // Only look in the queue of the occupying device.
- i = acquire_cs;
- spi_device_t* dev = atomic_load(&host->device[i]);
- assert(dev);
- r = xQueueReceiveFromISR(dev->trans_queue, &host->cur_trans_buf, &do_yield);
- // If the Queue is empty, skip the sending by setting i=NO_CS
- // Otherwise i is kept as is and the transaction will be sent.
- if (!r) {
- // Set the free to true before resume the task
- host->isr_free = true;
- xSemaphoreGiveFromISR(dev->semphr_polling, &do_yield);
- i = NO_CS;
- }
- } else {
- //Go through all device queues to find a transaction to send
- //ToDo: This is a stupidly simple low-cs-first priority scheme. Make this configurable somehow. - JD
- for (i = 0; i < NO_CS; i++) {
- spi_device_t* dev = atomic_load(&host->device[i]);
- if (dev) {
- r = xQueueReceiveFromISR(dev->trans_queue, &host->cur_trans_buf, &do_yield);
- //Stop looking if we have a transaction to send.
- if (r) break;
- }
- }
- if (i==NO_CS) {
- host->isr_free = true;
- }
- }
- // Actually send the transaction
- if (i != NO_CS) {
- spi_trans_priv_t *const cur_trans_buf = &host->cur_trans_buf;
- if (host->dma_chan != 0 && (cur_trans_buf->buffer_to_rcv || cur_trans_buf->buffer_to_send)) {
- //mark channel as active, so that the DMA will not be reset by the slave
- spicommon_dmaworkaround_transfer_active(host->dma_chan);
- }
- spi_new_trans(atomic_load(&host->device[i]), cur_trans_buf);
- //re-enable interrupt disabled above
- esp_intr_enable(host->intr);
- }
- if (do_yield) portYIELD_FROM_ISR();
- }
- static SPI_MASTER_ISR_ATTR esp_err_t check_trans_valid(spi_device_handle_t handle, spi_transaction_t *trans_desc)
- {
- SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
- spi_host_t *host = handle->host;
- //check transmission length
- SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_RXDATA)==0 ||trans_desc->rxlength <= 32, "rxdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
- SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_TXDATA)==0 ||trans_desc->length <= 32, "txdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
- SPI_CHECK(trans_desc->length <= handle->host->max_transfer_sz*8, "txdata transfer > host maximum", ESP_ERR_INVALID_ARG);
- SPI_CHECK(trans_desc->rxlength <= handle->host->max_transfer_sz*8, "rxdata transfer > host maximum", ESP_ERR_INVALID_ARG);
- SPI_CHECK((handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || trans_desc->rxlength <= trans_desc->length, "rx length > tx length in full duplex mode", ESP_ERR_INVALID_ARG);
- //check working mode
- SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (handle->cfg.flags & SPI_DEVICE_3WIRE)), "incompatible iface params", ESP_ERR_INVALID_ARG);
- SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (!(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX))), "incompatible iface params", ESP_ERR_INVALID_ARG);
- SPI_CHECK( !(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || host->dma_chan == 0 || !(trans_desc->flags & SPI_TRANS_USE_RXDATA || trans_desc->rx_buffer != NULL)
- || !(trans_desc->flags & SPI_TRANS_USE_TXDATA || trans_desc->tx_buffer!=NULL), "SPI half duplex mode does not support using DMA with both MOSI and MISO phases.", ESP_ERR_INVALID_ARG );
- //MOSI phase is skipped only when both tx_buffer and SPI_TRANS_USE_TXDATA are not set.
- SPI_CHECK(trans_desc->length != 0 || (trans_desc->tx_buffer == NULL && !(trans_desc->flags & SPI_TRANS_USE_TXDATA)),
- "trans tx_buffer should be NULL and SPI_TRANS_USE_TXDATA should be cleared to skip MOSI phase.", ESP_ERR_INVALID_ARG);
- //MISO phase is skipped only when both rx_buffer and SPI_TRANS_USE_RXDATA are not set.
- //If set rxlength=0 in full_duplex mode, it will be automatically set to length
- SPI_CHECK(!(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || trans_desc->rxlength != 0 ||
- (trans_desc->rx_buffer == NULL && ((trans_desc->flags & SPI_TRANS_USE_RXDATA)==0)),
- "trans rx_buffer should be NULL and SPI_TRANS_USE_RXDATA should be cleared to skip MISO phase.", ESP_ERR_INVALID_ARG);
- //In Full duplex mode, default rxlength to be the same as length, if not filled in.
- // set rxlength to length is ok, even when rx buffer=NULL
- if (trans_desc->rxlength==0 && !(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX)) {
- trans_desc->rxlength=trans_desc->length;
- }
- return ESP_OK;
- }
- static SPI_MASTER_ISR_ATTR void uninstall_priv_desc(spi_trans_priv_t* trans_buf)
- {
- spi_transaction_t *trans_desc = trans_buf->trans;
- if ((void *)trans_buf->buffer_to_send != &trans_desc->tx_data[0] &&
- trans_buf->buffer_to_send != trans_desc->tx_buffer) {
- free((void *)trans_buf->buffer_to_send); //force free, ignore const
- }
- //copy data from temporary DMA-capable buffer back to IRAM buffer and free the temporary one.
- if ((void *)trans_buf->buffer_to_rcv != &trans_desc->rx_data[0] &&
- trans_buf->buffer_to_rcv != trans_desc->rx_buffer) {
- if (trans_desc->flags & SPI_TRANS_USE_RXDATA) {
- memcpy((uint8_t *) & trans_desc->rx_data[0], trans_buf->buffer_to_rcv, (trans_desc->rxlength + 7) / 8);
- } else {
- memcpy(trans_desc->rx_buffer, trans_buf->buffer_to_rcv, (trans_desc->rxlength + 7) / 8);
- }
- free(trans_buf->buffer_to_rcv);
- }
- }
- static SPI_MASTER_ISR_ATTR esp_err_t setup_priv_desc(spi_transaction_t *trans_desc, spi_trans_priv_t* new_desc, bool isdma)
- {
- *new_desc = (spi_trans_priv_t) { .trans = trans_desc, };
- // rx memory assign
- uint32_t* rcv_ptr;
- if ( trans_desc->flags & SPI_TRANS_USE_RXDATA ) {
- rcv_ptr = (uint32_t *)&trans_desc->rx_data[0];
- } else {
- //if not use RXDATA neither rx_buffer, buffer_to_rcv assigned to NULL
- rcv_ptr = trans_desc->rx_buffer;
- }
- if (rcv_ptr && isdma && (!esp_ptr_dma_capable(rcv_ptr) || ((int)rcv_ptr % 4 != 0))) {
- //if rxbuf in the desc not DMA-capable, malloc a new one. The rx buffer need to be length of multiples of 32 bits to avoid heap corruption.
- ESP_LOGI( SPI_TAG, "Allocate RX buffer for DMA" );
- rcv_ptr = heap_caps_malloc((trans_desc->rxlength + 31) / 8, MALLOC_CAP_DMA);
- if (rcv_ptr == NULL) goto clean_up;
- }
- new_desc->buffer_to_rcv = rcv_ptr;
- // tx memory assign
- const uint32_t *send_ptr;
- if ( trans_desc->flags & SPI_TRANS_USE_TXDATA ) {
- send_ptr = (uint32_t *)&trans_desc->tx_data[0];
- } else {
- //if not use TXDATA neither tx_buffer, tx data assigned to NULL
- send_ptr = trans_desc->tx_buffer ;
- }
- if (send_ptr && isdma && !esp_ptr_dma_capable( send_ptr )) {
- //if txbuf in the desc not DMA-capable, malloc a new one
- ESP_LOGI( SPI_TAG, "Allocate TX buffer for DMA" );
- uint32_t *temp = heap_caps_malloc((trans_desc->length + 7) / 8, MALLOC_CAP_DMA);
- if (temp == NULL) goto clean_up;
- memcpy( temp, send_ptr, (trans_desc->length + 7) / 8 );
- send_ptr = temp;
- }
- new_desc->buffer_to_send = send_ptr;
- return ESP_OK;
- clean_up:
- uninstall_priv_desc(new_desc);
- return ESP_ERR_NO_MEM;
- }
- esp_err_t SPI_MASTER_ATTR spi_device_queue_trans(spi_device_handle_t handle, spi_transaction_t *trans_desc, TickType_t ticks_to_wait)
- {
- esp_err_t ret = check_trans_valid(handle, trans_desc);
- if (ret != ESP_OK) return ret;
- spi_host_t *host = handle->host;
- SPI_CHECK( !device_is_polling(handle), "Cannot queue new transaction while previous polling transaction is not terminated.", ESP_ERR_INVALID_STATE );
- spi_trans_priv_t trans_buf;
- ret = setup_priv_desc(trans_desc, &trans_buf, (host->dma_chan!=0));
- if (ret != ESP_OK) return ret;
- #ifdef CONFIG_PM_ENABLE
- esp_pm_lock_acquire(host->pm_lock);
- #endif
- //Send to queue and invoke the ISR.
- BaseType_t r = xQueueSend(handle->trans_queue, (void *)&trans_buf, ticks_to_wait);
- if (!r) {
- ret = ESP_ERR_TIMEOUT;
- #ifdef CONFIG_PM_ENABLE
- //Release APB frequency lock
- esp_pm_lock_release(host->pm_lock);
- #endif
- goto clean_up;
- }
- spi_isr_invoke(handle);
- return ESP_OK;
- clean_up:
- uninstall_priv_desc(&trans_buf);
- return ret;
- }
- esp_err_t SPI_MASTER_ATTR spi_device_get_trans_result(spi_device_handle_t handle, spi_transaction_t **trans_desc, TickType_t ticks_to_wait)
- {
- BaseType_t r;
- spi_trans_priv_t trans_buf;
- SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
- //use the interrupt, block until return
- r=xQueueReceive(handle->ret_queue, (void*)&trans_buf, ticks_to_wait);
- if (!r) {
- // The memory occupied by rx and tx DMA buffer destroyed only when receiving from the queue (transaction finished).
- // If timeout, wait and retry.
- // Every in-flight transaction request occupies internal memory as DMA buffer if needed.
- return ESP_ERR_TIMEOUT;
- }
- //release temporary buffers
- uninstall_priv_desc(&trans_buf);
- (*trans_desc) = trans_buf.trans;
- return ESP_OK;
- }
- //Porcelain to do one blocking transmission.
- esp_err_t SPI_MASTER_ATTR spi_device_transmit(spi_device_handle_t handle, spi_transaction_t *trans_desc)
- {
- esp_err_t ret;
- spi_transaction_t *ret_trans;
- //ToDo: check if any spi transfers in flight
- ret = spi_device_queue_trans(handle, trans_desc, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- ret = spi_device_get_trans_result(handle, &ret_trans, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- assert(ret_trans == trans_desc);
- return ESP_OK;
- }
- esp_err_t SPI_MASTER_ATTR spi_device_acquire_bus(spi_device_t *device, TickType_t wait)
- {
- spi_host_t *const host = device->host;
- SPI_CHECK(wait==portMAX_DELAY, "acquire finite time not supported now.", ESP_ERR_INVALID_ARG);
- SPI_CHECK( !device_is_polling(device), "Cannot acquire bus when a polling transaction is in progress.", ESP_ERR_INVALID_STATE );
- esp_err_t ret = device_acquire_bus_internal(device, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- ret = device_wait_for_isr_idle(device, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- device->host->bus_locked = true;
- ESP_LOGD(SPI_TAG, "device%d acquired the bus", device->id);
- #ifdef CONFIG_PM_ENABLE
- // though we don't suggest to block the task before ``release_bus``, still allow doing so.
- // this keeps the spi clock at 80MHz even if all tasks are blocked
- esp_pm_lock_acquire(device->host->pm_lock);
- #endif
- //configure the device so that we don't need to do it again in the following transactions
- spi_setup_device( host, device->id );
- //the DMA is also occupied by the device, all the slave devices that using DMA should wait until bus released.
- if (host->dma_chan != 0) {
- spicommon_dmaworkaround_transfer_active(host->dma_chan);
- }
- return ESP_OK;
- }
- // This function restore configurations required in the non-polling mode
- void SPI_MASTER_ATTR spi_device_release_bus(spi_device_t *dev)
- {
- spi_host_t *host = dev->host;
- if (device_is_polling(dev)){
- ESP_LOGE(SPI_TAG, "Cannot release bus when a polling transaction is in progress.");
- assert(0);
- }
- if (host->dma_chan != 0) {
- spicommon_dmaworkaround_idle(host->dma_chan);
- }
- //Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset.
- //allow clock to be lower than 80MHz when all tasks blocked
- #ifdef CONFIG_PM_ENABLE
- //Release APB frequency lock
- esp_pm_lock_release(host->pm_lock);
- #endif
- ESP_LOGD(SPI_TAG, "device%d release bus", dev->id);
- dev->host->bus_locked = false;
- device_release_bus_internal(dev->host);
- }
- esp_err_t SPI_MASTER_ISR_ATTR spi_device_polling_start(spi_device_handle_t handle, spi_transaction_t *trans_desc, TickType_t ticks_to_wait)
- {
- esp_err_t ret;
- SPI_CHECK(ticks_to_wait == portMAX_DELAY, "currently timeout is not available for polling transactions", ESP_ERR_INVALID_ARG);
- spi_host_t *host = handle->host;
- ret = check_trans_valid(handle, trans_desc);
- if (ret!=ESP_OK) return ret;
- SPI_CHECK( !device_is_polling(handle), "Cannot send polling transaction while the previous polling transaction is not terminated.", ESP_ERR_INVALID_STATE );
- ret = setup_priv_desc(trans_desc, &host->cur_trans_buf, (handle->host->dma_chan!=0));
- if (ret!=ESP_OK) return ret;
- device_acquire_bus_internal(handle, portMAX_DELAY);
- device_wait_for_isr_idle(handle, portMAX_DELAY);
- assert(atomic_load(&host->acquire_cs) == handle->id);
- assert(host->isr_free);
- //Polling, no interrupt is used.
- host->polling = true;
- ESP_LOGV(SPI_TAG, "polling trans");
- spi_new_trans(handle, &host->cur_trans_buf);
- return ESP_OK;
- }
- esp_err_t SPI_MASTER_ISR_ATTR spi_device_polling_end(spi_device_handle_t handle, TickType_t ticks_to_wait)
- {
- SPI_CHECK(handle != NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
- spi_host_t *host = handle->host;
- //if (host->acquire_cs == handle->id && host->polling) {
- assert(host->cur_cs == atomic_load(&host->acquire_cs));
- TickType_t start = xTaskGetTickCount();
- while (!host->hw->slave.trans_done) {
- TickType_t end = xTaskGetTickCount();
- if (end - start > ticks_to_wait) {
- return ESP_ERR_TIMEOUT;
- }
- }
- ESP_LOGV(SPI_TAG, "polling trans done");
- //deal with the in-flight transaction
- spi_post_trans(host);
- //release temporary buffers
- uninstall_priv_desc(&host->cur_trans_buf);
- host->polling = false;
- if (!host->bus_locked) {
- device_release_bus_internal(host);
- }
- return ESP_OK;
- }
- esp_err_t SPI_MASTER_ISR_ATTR spi_device_polling_transmit(spi_device_handle_t handle, spi_transaction_t* trans_desc)
- {
- esp_err_t ret;
- ret = spi_device_polling_start(handle, trans_desc, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- ret = spi_device_polling_end(handle, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- return ESP_OK;
- }
|