test_spi_master.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598
  1. /*
  2. Tests for the spi_master device driver
  3. */
  4. #include <esp_types.h>
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <malloc.h>
  8. #include <string.h>
  9. #include "rom/ets_sys.h"
  10. #include "freertos/FreeRTOS.h"
  11. #include "freertos/task.h"
  12. #include "freertos/semphr.h"
  13. #include "freertos/queue.h"
  14. #include "freertos/xtensa_api.h"
  15. #include "unity.h"
  16. #include "driver/spi_master.h"
  17. #include "driver/spi_slave.h"
  18. #include "soc/dport_reg.h"
  19. #include "esp_heap_caps.h"
  20. #include "esp_log.h"
  21. #include "soc/spi_periph.h"
  22. #include "freertos/ringbuf.h"
  23. #include "soc/gpio_periph.h"
  24. #include "sdkconfig.h"
  25. #include "test_utils.h"
  26. const static char TAG[] = "test_spi";
  27. #define SPI_BUS_TEST_DEFAULT_CONFIG() {\
  28. .miso_io_num=PIN_NUM_MISO, \
  29. .mosi_io_num=PIN_NUM_MOSI,\
  30. .sclk_io_num=PIN_NUM_CLK,\
  31. .quadwp_io_num=-1,\
  32. .quadhd_io_num=-1\
  33. }
  34. #define SPI_DEVICE_TEST_DEFAULT_CONFIG() {\
  35. .clock_speed_hz=10*1000*1000,\
  36. .mode=0,\
  37. .spics_io_num=PIN_NUM_CS,\
  38. .queue_size=16,\
  39. .pre_cb=NULL, \
  40. .cs_ena_pretrans = 0,\
  41. .cs_ena_posttrans = 0,\
  42. .input_delay_ns = 62.5,\
  43. }
  44. #define FUNC_SPI 1
  45. #define FUNC_GPIO 2
  46. void gpio_output_sel(uint32_t gpio_num, int func, uint32_t signal_idx)
  47. {
  48. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], func);
  49. GPIO.func_out_sel_cfg[gpio_num].func_sel=signal_idx;
  50. }
  51. static void check_spi_pre_n_for(int clk, int pre, int n)
  52. {
  53. esp_err_t ret;
  54. spi_device_handle_t handle;
  55. spi_device_interface_config_t devcfg={
  56. .command_bits=0,
  57. .address_bits=0,
  58. .dummy_bits=0,
  59. .clock_speed_hz=clk,
  60. .duty_cycle_pos=128,
  61. .mode=0,
  62. .spics_io_num=21,
  63. .queue_size=3
  64. };
  65. char sendbuf[16]="";
  66. spi_transaction_t t;
  67. memset(&t, 0, sizeof(t));
  68. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle);
  69. TEST_ASSERT(ret==ESP_OK);
  70. t.length=16*8;
  71. t.tx_buffer=sendbuf;
  72. ret=spi_device_transmit(handle, &t);
  73. printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, SPI2.clock.clkdiv_pre+1, SPI2.clock.clkcnt_n+1);
  74. TEST_ASSERT(SPI2.clock.clkcnt_n+1==n);
  75. TEST_ASSERT(SPI2.clock.clkdiv_pre+1==pre);
  76. ret=spi_bus_remove_device(handle);
  77. TEST_ASSERT(ret==ESP_OK);
  78. }
  79. TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
  80. {
  81. spi_bus_config_t buscfg={
  82. .mosi_io_num=4,
  83. .miso_io_num=26,
  84. .sclk_io_num=25,
  85. .quadwp_io_num=-1,
  86. .quadhd_io_num=-1
  87. };
  88. esp_err_t ret;
  89. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  90. TEST_ASSERT(ret==ESP_OK);
  91. check_spi_pre_n_for(26000000, 1, 3);
  92. check_spi_pre_n_for(20000000, 1, 4);
  93. check_spi_pre_n_for(8000000, 1, 10);
  94. check_spi_pre_n_for(800000, 2, 50);
  95. check_spi_pre_n_for(100000, 16, 50);
  96. check_spi_pre_n_for(333333, 4, 60);
  97. check_spi_pre_n_for(900000, 2, 44);
  98. check_spi_pre_n_for(1, 8192, 64); //Actually should generate the minimum clock speed, 152Hz
  99. check_spi_pre_n_for(26000000, 1, 3);
  100. ret=spi_bus_free(HSPI_HOST);
  101. TEST_ASSERT(ret==ESP_OK);
  102. }
  103. static spi_device_handle_t setup_spi_bus(int clkspeed, bool dma) {
  104. spi_bus_config_t buscfg={
  105. .mosi_io_num=26,
  106. .miso_io_num=26,
  107. .sclk_io_num=25,
  108. .quadwp_io_num=-1,
  109. .quadhd_io_num=-1,
  110. .max_transfer_sz=4096*3
  111. };
  112. spi_device_interface_config_t devcfg={
  113. .command_bits=0,
  114. .address_bits=0,
  115. .dummy_bits=0,
  116. .clock_speed_hz=clkspeed,
  117. .duty_cycle_pos=128,
  118. .mode=0,
  119. .spics_io_num=21,
  120. .queue_size=3,
  121. };
  122. esp_err_t ret;
  123. spi_device_handle_t handle;
  124. ret=spi_bus_initialize(HSPI_HOST, &buscfg, dma?1:0);
  125. TEST_ASSERT(ret==ESP_OK);
  126. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle);
  127. TEST_ASSERT(ret==ESP_OK);
  128. //connect MOSI to two devices breaks the output, fix it.
  129. gpio_output_sel(26, FUNC_GPIO, HSPID_OUT_IDX);
  130. printf("Bus/dev inited.\n");
  131. return handle;
  132. }
  133. static int spi_test(spi_device_handle_t handle, int num_bytes) {
  134. esp_err_t ret;
  135. int x;
  136. bool success = true;
  137. srand(num_bytes);
  138. char *sendbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
  139. char *recvbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
  140. for (x=0; x<num_bytes; x++) {
  141. sendbuf[x]=rand()&0xff;
  142. recvbuf[x]=0x55;
  143. }
  144. spi_transaction_t t;
  145. memset(&t, 0, sizeof(t));
  146. t.length=num_bytes*8;
  147. t.tx_buffer=sendbuf;
  148. t.rx_buffer=recvbuf;
  149. t.addr=0xA00000000000000FL;
  150. t.cmd=0x55;
  151. printf("Transmitting %d bytes...\n", num_bytes);
  152. ret=spi_device_transmit(handle, &t);
  153. TEST_ASSERT(ret==ESP_OK);
  154. srand(num_bytes);
  155. for (x=0; x<num_bytes; x++) {
  156. if (sendbuf[x]!=(rand()&0xff)) {
  157. printf("Huh? Sendbuf corrupted at byte %d\n", x);
  158. TEST_ASSERT(0);
  159. }
  160. if (sendbuf[x]!=recvbuf[x]) break;
  161. }
  162. if (x!=num_bytes) {
  163. int from=x-16;
  164. if (from<0) from=0;
  165. success = false;
  166. printf("Error at %d! Sent vs recved: (starting from %d)\n" , x, from);
  167. for (int i=0; i<32; i++) {
  168. if (i+from<num_bytes) printf("%02X ", sendbuf[from+i]);
  169. }
  170. printf("\n");
  171. for (int i=0; i<32; i++) {
  172. if (i+from<num_bytes) printf("%02X ", recvbuf[from+i]);
  173. }
  174. printf("\n");
  175. }
  176. if (success) printf("Success!\n");
  177. free(sendbuf);
  178. free(recvbuf);
  179. return success;
  180. }
  181. static void destroy_spi_bus(spi_device_handle_t handle) {
  182. esp_err_t ret;
  183. ret=spi_bus_remove_device(handle);
  184. TEST_ASSERT(ret==ESP_OK);
  185. ret=spi_bus_free(HSPI_HOST);
  186. TEST_ASSERT(ret==ESP_OK);
  187. }
  188. #define TEST_LEN 111
  189. TEST_CASE("SPI Master test", "[spi]")
  190. {
  191. bool success = true;
  192. printf("Testing bus at 80KHz\n");
  193. spi_device_handle_t handle=setup_spi_bus(80000, true);
  194. success &= spi_test(handle, 16); //small
  195. success &= spi_test(handle, 21); //small, unaligned
  196. success &= spi_test(handle, 36); //aligned
  197. success &= spi_test(handle, 128); //aligned
  198. success &= spi_test(handle, 129); //unaligned
  199. success &= spi_test(handle, 4096-2); //multiple descs, edge case 1
  200. success &= spi_test(handle, 4096-1); //multiple descs, edge case 2
  201. success &= spi_test(handle, 4096*3); //multiple descs
  202. destroy_spi_bus(handle);
  203. printf("Testing bus at 80KHz, non-DMA\n");
  204. handle=setup_spi_bus(80000, false);
  205. success &= spi_test(handle, 4); //aligned
  206. success &= spi_test(handle, 16); //small
  207. success &= spi_test(handle, 21); //small, unaligned
  208. success &= spi_test(handle, 32); //small
  209. success &= spi_test(handle, 47); //small, unaligned
  210. success &= spi_test(handle, 63); //small
  211. success &= spi_test(handle, 64); //small, unaligned
  212. destroy_spi_bus(handle);
  213. printf("Testing bus at 26MHz\n");
  214. handle=setup_spi_bus(20000000, true);
  215. success &= spi_test(handle, 128); //DMA, aligned
  216. success &= spi_test(handle, 4096*3); //DMA, multiple descs
  217. destroy_spi_bus(handle);
  218. printf("Testing bus at 900KHz\n");
  219. handle=setup_spi_bus(9000000, true);
  220. success &= spi_test(handle, 128); //DMA, aligned
  221. success &= spi_test(handle, 4096*3); //DMA, multiple descs
  222. destroy_spi_bus(handle);
  223. TEST_ASSERT(success);
  224. }
  225. TEST_CASE("SPI Master test, interaction of multiple devs", "[spi]") {
  226. esp_err_t ret;
  227. bool success = true;
  228. spi_device_interface_config_t devcfg={
  229. .command_bits=0,
  230. .address_bits=0,
  231. .dummy_bits=0,
  232. .clock_speed_hz=1000000,
  233. .duty_cycle_pos=128,
  234. .mode=0,
  235. .spics_io_num=23,
  236. .queue_size=3,
  237. };
  238. spi_device_handle_t handle1=setup_spi_bus(80000, true);
  239. spi_device_handle_t handle2;
  240. spi_bus_add_device(HSPI_HOST, &devcfg, &handle2);
  241. printf("Sending to dev 1\n");
  242. success &= spi_test(handle1, 7);
  243. printf("Sending to dev 1\n");
  244. success &= spi_test(handle1, 15);
  245. printf("Sending to dev 2\n");
  246. success &= spi_test(handle2, 15);
  247. printf("Sending to dev 1\n");
  248. success &= spi_test(handle1, 32);
  249. printf("Sending to dev 2\n");
  250. success &= spi_test(handle2, 32);
  251. printf("Sending to dev 1\n");
  252. success &= spi_test(handle1, 63);
  253. printf("Sending to dev 2\n");
  254. success &= spi_test(handle2, 63);
  255. printf("Sending to dev 1\n");
  256. success &= spi_test(handle1, 5000);
  257. printf("Sending to dev 2\n");
  258. success &= spi_test(handle2, 5000);
  259. ret=spi_bus_remove_device(handle2);
  260. TEST_ASSERT(ret==ESP_OK);
  261. destroy_spi_bus(handle1);
  262. TEST_ASSERT(success);
  263. }
  264. TEST_CASE("spi bus setting with different pin configs", "[spi]")
  265. {
  266. spi_bus_config_t cfg;
  267. uint32_t flags_o;
  268. uint32_t flags_expected;
  269. ESP_LOGI(TAG, "test 6 iomux output pins...");
  270. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_NATIVE_PINS | SPICOMMON_BUSFLAG_QUAD;
  271. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  272. .max_transfer_sz = 8, .flags = flags_expected};
  273. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  274. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  275. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  276. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  277. ESP_LOGI(TAG, "test 4 iomux output pins...");
  278. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_NATIVE_PINS | SPICOMMON_BUSFLAG_DUAL;
  279. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  280. .max_transfer_sz = 8, .flags = flags_expected};
  281. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  282. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  283. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  284. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  285. ESP_LOGI(TAG, "test 6 output pins...");
  286. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_QUAD;
  287. //swap MOSI and MISO
  288. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  289. .max_transfer_sz = 8, .flags = flags_expected};
  290. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  291. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  292. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  293. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  294. ESP_LOGI(TAG, "test 4 output pins...");
  295. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_DUAL;
  296. //swap MOSI and MISO
  297. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  298. .max_transfer_sz = 8, .flags = flags_expected};
  299. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  300. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  301. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  302. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  303. ESP_LOGI(TAG, "test master 5 output pins and MOSI on input-only pin...");
  304. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD;
  305. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  306. .max_transfer_sz = 8, .flags = flags_expected};
  307. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  308. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  309. ESP_LOGI(TAG, "test slave 5 output pins and MISO on input-only pin...");
  310. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD;
  311. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  312. .max_transfer_sz = 8, .flags = flags_expected};
  313. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  314. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  315. ESP_LOGI(TAG, "test master 3 output pins and MOSI on input-only pin...");
  316. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO;
  317. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  318. .max_transfer_sz = 8, .flags = flags_expected};
  319. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  320. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  321. ESP_LOGI(TAG, "test slave 3 output pins and MISO on input-only pin...");
  322. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO;
  323. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  324. .max_transfer_sz = 8, .flags = flags_expected};
  325. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  326. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  327. ESP_LOGI(TAG, "check native flag for 6 output pins...");
  328. flags_expected = SPICOMMON_BUSFLAG_NATIVE_PINS;
  329. //swap MOSI and MISO
  330. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  331. .max_transfer_sz = 8, .flags = flags_expected};
  332. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  333. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  334. ESP_LOGI(TAG, "check native flag for 4 output pins...");
  335. flags_expected = SPICOMMON_BUSFLAG_NATIVE_PINS;
  336. //swap MOSI and MISO
  337. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  338. .max_transfer_sz = 8, .flags = flags_expected};
  339. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  340. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  341. ESP_LOGI(TAG, "check dual flag for master 5 output pins and MISO/MOSI on input-only pin...");
  342. flags_expected = SPICOMMON_BUSFLAG_DUAL;
  343. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  344. .max_transfer_sz = 8, .flags = flags_expected};
  345. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  346. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  347. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  348. .max_transfer_sz = 8, .flags = flags_expected};
  349. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  350. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  351. ESP_LOGI(TAG, "check dual flag for master 3 output pins and MISO/MOSI on input-only pin...");
  352. flags_expected = SPICOMMON_BUSFLAG_DUAL;
  353. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  354. .max_transfer_sz = 8, .flags = flags_expected};
  355. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  356. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  357. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  358. .max_transfer_sz = 8, .flags = flags_expected};
  359. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  360. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  361. ESP_LOGI(TAG, "check sclk flag...");
  362. flags_expected = SPICOMMON_BUSFLAG_SCLK;
  363. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = -1, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  364. .max_transfer_sz = 8, .flags = flags_expected};
  365. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  366. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  367. ESP_LOGI(TAG, "check mosi flag...");
  368. flags_expected = SPICOMMON_BUSFLAG_MOSI;
  369. cfg = (spi_bus_config_t){.mosi_io_num = -1, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  370. .max_transfer_sz = 8, .flags = flags_expected};
  371. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  372. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  373. ESP_LOGI(TAG, "check miso flag...");
  374. flags_expected = SPICOMMON_BUSFLAG_MISO;
  375. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = -1, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  376. .max_transfer_sz = 8, .flags = flags_expected};
  377. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  378. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  379. ESP_LOGI(TAG, "check quad flag...");
  380. flags_expected = SPICOMMON_BUSFLAG_QUAD;
  381. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  382. .max_transfer_sz = 8, .flags = flags_expected};
  383. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  384. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  385. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = -1,
  386. .max_transfer_sz = 8, .flags = flags_expected};
  387. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  388. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  389. }
  390. TEST_CASE("SPI Master no response when switch from host1 (HSPI) to host2 (VSPI)", "[spi]")
  391. {
  392. //spi config
  393. spi_bus_config_t bus_config;
  394. spi_device_interface_config_t device_config;
  395. spi_device_handle_t spi;
  396. spi_host_device_t host;
  397. int dma = 1;
  398. memset(&bus_config, 0, sizeof(spi_bus_config_t));
  399. memset(&device_config, 0, sizeof(spi_device_interface_config_t));
  400. bus_config.miso_io_num = -1;
  401. bus_config.mosi_io_num = 26;
  402. bus_config.sclk_io_num = 25;
  403. bus_config.quadwp_io_num = -1;
  404. bus_config.quadhd_io_num = -1;
  405. device_config.clock_speed_hz = 50000;
  406. device_config.mode = 0;
  407. device_config.spics_io_num = -1;
  408. device_config.queue_size = 1;
  409. device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
  410. struct spi_transaction_t transaction = {
  411. .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
  412. .length = 16,
  413. .rx_buffer = NULL,
  414. .tx_data = {0x04, 0x00}
  415. };
  416. //initialize for first host
  417. host = 1;
  418. TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
  419. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  420. printf("before first xmit\n");
  421. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  422. printf("after first xmit\n");
  423. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  424. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  425. //for second host and failed before
  426. host = 2;
  427. TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
  428. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  429. printf("before second xmit\n");
  430. // the original version (bit mis-written) stucks here.
  431. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  432. // test case success when see this.
  433. printf("after second xmit\n");
  434. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  435. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  436. }
  437. DRAM_ATTR static uint32_t data_dram[80]={0};
  438. //force to place in code area.
  439. static const uint8_t data_drom[320+3] = {
  440. 0xD8, 0xD1, 0x0A, 0xB8, 0xCE, 0x67, 0x1B, 0x11, 0x17, 0xA0, 0xDA, 0x89, 0x55, 0xC1, 0x40, 0x0F, 0x55, 0xEB, 0xF7, 0xEC, 0xF0, 0x3C, 0x0F, 0x4D, 0x2B, 0x9E, 0xBF, 0xCD, 0x57, 0x2C, 0x48, 0x1A,
  441. 0x8B, 0x47, 0xC5, 0x01, 0x0C, 0x05, 0x80, 0x30, 0xF4, 0xEA, 0xE5, 0x92, 0x56, 0x97, 0x98, 0x78, 0x21, 0x34, 0xA1, 0xBC, 0xAE, 0x93, 0x7E, 0x96, 0x08, 0xE6, 0x54, 0x6A, 0x6C, 0x67, 0xCF, 0x58,
  442. 0xEE, 0x15, 0xA8, 0xB6, 0x32, 0x8C, 0x85, 0xF7, 0xE9, 0x88, 0x5E, 0xB1, 0x76, 0xE4, 0xB2, 0xC7, 0x0F, 0x57, 0x51, 0x7A, 0x2F, 0xAB, 0x12, 0xC3, 0x37, 0x99, 0x4E, 0x67, 0x75, 0x28, 0xE4, 0x1D,
  443. 0xF8, 0xBA, 0x22, 0xCB, 0xA1, 0x18, 0x4C, 0xAB, 0x5F, 0xC9, 0xF3, 0xA2, 0x39, 0x92, 0x44, 0xE6, 0x7B, 0xE3, 0xD0, 0x16, 0xC5, 0xC2, 0xCB, 0xD9, 0xC0, 0x7F, 0x06, 0xBF, 0x3E, 0xCE, 0xE1, 0x26,
  444. 0xD5, 0x3C, 0xAD, 0x0E, 0xC1, 0xC7, 0x7D, 0x0D, 0x56, 0x85, 0x6F, 0x32, 0xC8, 0x63, 0x8D, 0x12, 0xAB, 0x1E, 0x81, 0x7B, 0xF4, 0xF1, 0xA9, 0xAF, 0xD9, 0x74, 0x60, 0x05, 0x3D, 0xCC, 0x0C, 0x34,
  445. 0x11, 0x44, 0xAE, 0x2A, 0x13, 0x2F, 0x04, 0xC3, 0x59, 0xF0, 0x54, 0x07, 0xBA, 0x26, 0xD9, 0xFB, 0x80, 0x95, 0xC0, 0x14, 0xFA, 0x27, 0xEF, 0xD3, 0x58, 0xB8, 0xE4, 0xA2, 0xE3, 0x5E, 0x94, 0xB3,
  446. 0xCD, 0x2C, 0x4F, 0xAC, 0x3B, 0xD1, 0xCA, 0xBE, 0x61, 0x71, 0x7B, 0x62, 0xEB, 0xF0, 0xFC, 0xEF, 0x22, 0xB7, 0x3F, 0x56, 0x65, 0x19, 0x61, 0x73, 0x1A, 0x4D, 0xE4, 0x23, 0xE5, 0x3A, 0x91, 0x5C,
  447. 0xE6, 0x1B, 0x5F, 0x0E, 0x10, 0x94, 0x7C, 0x9F, 0xCF, 0x75, 0xB3, 0xEB, 0x42, 0x4C, 0xCF, 0xFE, 0xAF, 0x68, 0x62, 0x3F, 0x9A, 0x3C, 0x81, 0x3E, 0x7A, 0x45, 0x92, 0x79, 0x91, 0x4F, 0xFF, 0xDE,
  448. 0x25, 0x18, 0x33, 0xB9, 0xA9, 0x3A, 0x3F, 0x1F, 0x4F, 0x4B, 0x5C, 0x71, 0x82, 0x75, 0xB0, 0x1F, 0xE9, 0x98, 0xA3, 0xE2, 0x65, 0xBB, 0xCA, 0x4F, 0xB7, 0x1D, 0x23, 0x43, 0x16, 0x73, 0xBD, 0x83,
  449. 0x70, 0x22, 0x7D, 0x0A, 0x6D, 0xD3, 0x77, 0x73, 0xD0, 0xF4, 0x06, 0xB2, 0x19, 0x8C, 0xFF, 0x58, 0xE4, 0xDB, 0xE9, 0xEC, 0x89, 0x6A, 0xF4, 0x0E, 0x67, 0x12, 0xEC, 0x11, 0xD2, 0x1F, 0x8D, 0xD7,
  450. };
  451. #if 1 //HSPI
  452. #define PIN_NUM_MISO HSPI_IOMUX_PIN_NUM_MISO
  453. #define PIN_NUM_MOSI HSPI_IOMUX_PIN_NUM_MOSI
  454. #define PIN_NUM_CLK HSPI_IOMUX_PIN_NUM_CLK
  455. #define PIN_NUM_CS HSPI_IOMUX_PIN_NUM_CS
  456. #elif 1 //VSPI
  457. #define PIN_NUM_MISO VSPI_IOMUX_PIN_NUM_MISO
  458. #define PIN_NUM_MOSI VSPI_IOMUX_PIN_NUM_MOSI
  459. #define PIN_NUM_CLK VSPI_IOMUX_PIN_NUM_CLK
  460. #define PIN_NUM_CS VSPI_IOMUX_PIN_NUM_CS
  461. #endif
  462. #define PIN_NUM_DC 21
  463. #define PIN_NUM_RST 18
  464. #define PIN_NUM_BCKL 5
  465. TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
  466. {
  467. #ifdef CONFIG_SPIRAM_SUPPORT
  468. //test psram if enabled
  469. ESP_LOGI(TAG, "testing PSRAM...");
  470. uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_SPIRAM);
  471. TEST_ASSERT(esp_ptr_external_ram(data_malloc));
  472. #else
  473. uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_DMA);
  474. TEST_ASSERT(esp_ptr_in_dram(data_malloc));
  475. #endif
  476. TEST_ASSERT(data_malloc != NULL);
  477. //refer to soc_memory_layout.c
  478. uint32_t* data_iram = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_EXEC);
  479. TEST_ASSERT(data_iram != NULL);
  480. ESP_LOGI(TAG, "iram: %p, dram: %p", data_iram, data_dram);
  481. ESP_LOGI(TAG, "drom: %p, malloc: %p", data_drom, data_malloc);
  482. TEST_ASSERT(esp_ptr_in_dram(data_dram));
  483. TEST_ASSERT(esp_ptr_in_iram(data_iram));
  484. TEST_ASSERT(esp_ptr_in_drom(data_drom));
  485. srand(52);
  486. for (int i = 0; i < 320/4; i++) {
  487. data_iram[i] = rand();
  488. data_dram[i] = rand();
  489. data_malloc[i] = rand();
  490. }
  491. esp_err_t ret;
  492. spi_device_handle_t spi;
  493. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  494. buscfg.miso_io_num = PIN_NUM_MOSI;
  495. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  496. //Initialize the SPI bus
  497. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  498. TEST_ASSERT(ret==ESP_OK);
  499. //Attach the LCD to the SPI bus
  500. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
  501. TEST_ASSERT(ret==ESP_OK);
  502. //connect MOSI to two devices breaks the output, fix it.
  503. gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX);
  504. #define TEST_REGION_SIZE 5
  505. static spi_transaction_t trans[TEST_REGION_SIZE];
  506. int x;
  507. memset(trans, 0, sizeof(trans));
  508. trans[0].length = 320*8,
  509. trans[0].tx_buffer = data_iram;
  510. trans[0].rx_buffer = data_malloc+1;
  511. trans[1].length = 320*8,
  512. trans[1].tx_buffer = data_dram;
  513. trans[1].rx_buffer = data_iram;
  514. trans[2].length = 320*8,
  515. trans[2].tx_buffer = data_malloc+2;
  516. trans[2].rx_buffer = data_dram;
  517. trans[3].length = 320*8,
  518. trans[3].tx_buffer = data_drom;
  519. trans[3].rx_buffer = data_iram;
  520. trans[4].length = 4*8,
  521. trans[4].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
  522. uint32_t* ptr = (uint32_t*)trans[4].rx_data;
  523. *ptr = 0x54545454;
  524. ptr = (uint32_t*)trans[4].tx_data;
  525. *ptr = 0xbc124960;
  526. //Queue all transactions.
  527. for (x=0; x<TEST_REGION_SIZE; x++) {
  528. ESP_LOGI(TAG, "transmitting %d...", x);
  529. ret=spi_device_transmit(spi,&trans[x]);
  530. TEST_ASSERT(ret==ESP_OK);
  531. if (trans[x].flags & SPI_TRANS_USE_RXDATA) {
  532. TEST_ASSERT_EQUAL_HEX8_ARRAY(trans[x].tx_data, trans[x].rx_data, 4);
  533. } else {
  534. TEST_ASSERT_EQUAL_HEX32_ARRAY(trans[x].tx_buffer, trans[x].rx_buffer, trans[x].length / 8 /4);
  535. }
  536. }
  537. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  538. TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
  539. free(data_malloc);
  540. free(data_iram);
  541. }
  542. //this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
  543. // 1. RX buffer not aligned (start and end)
  544. // 2. not setting rx_buffer
  545. // 3. setting rx_length != length
  546. TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
  547. {
  548. uint8_t tx_buf[320]={0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
  549. uint8_t rx_buf[320];
  550. esp_err_t ret;
  551. spi_device_handle_t spi;
  552. spi_bus_config_t buscfg={
  553. .miso_io_num=PIN_NUM_MOSI,
  554. .mosi_io_num=PIN_NUM_MOSI,
  555. .sclk_io_num=PIN_NUM_CLK,
  556. .quadwp_io_num=-1,
  557. .quadhd_io_num=-1
  558. };
  559. spi_device_interface_config_t devcfg={
  560. .clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
  561. .mode=0, //SPI mode 0
  562. .spics_io_num=PIN_NUM_CS, //CS pin
  563. .queue_size=7, //We want to be able to queue 7 transactions at a time
  564. .pre_cb=NULL,
  565. };
  566. //Initialize the SPI bus
  567. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  568. TEST_ASSERT(ret==ESP_OK);
  569. //Attach the LCD to the SPI bus
  570. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
  571. TEST_ASSERT(ret==ESP_OK);
  572. //connect MOSI to two devices breaks the output, fix it.
  573. gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX);
  574. memset(rx_buf, 0x66, 320);
  575. for ( int i = 0; i < 8; i ++ ) {
  576. memset( rx_buf, 0x66, sizeof(rx_buf));
  577. spi_transaction_t t = {};
  578. t.length = 8*(i+1);
  579. t.rxlength = 0;
  580. t.tx_buffer = tx_buf+2*i;
  581. t.rx_buffer = rx_buf + i;
  582. if ( i == 1 ) {
  583. //test set no start
  584. t.rx_buffer = NULL;
  585. } else if ( i == 2 ) {
  586. //test rx length != tx_length
  587. t.rxlength = t.length - 8;
  588. }
  589. spi_device_transmit( spi, &t );
  590. for( int i = 0; i < 16; i ++ ) {
  591. printf("%02X ", rx_buf[i]);
  592. }
  593. printf("\n");
  594. if ( i == 1 ) {
  595. // no rx, skip check
  596. } else if ( i == 2 ) {
  597. //test rx length = tx length-1
  598. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8-1 );
  599. } else {
  600. //normal check
  601. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8 );
  602. }
  603. }
  604. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  605. TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
  606. }
  607. static const char MASTER_TAG[] = "test_master";
  608. static const char SLAVE_TAG[] = "test_slave";
  609. DRAM_ATTR static uint8_t master_send[] = {
  610. 0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43,
  611. 0x74,
  612. 0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43,
  613. 0x74,
  614. 0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43,
  615. 0x74,
  616. };
  617. DRAM_ATTR static uint8_t slave_send[] = {
  618. 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0,
  619. 0xda,
  620. 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0,
  621. 0xda,
  622. 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0,
  623. 0xda,
  624. };
  625. static void master_deinit(spi_device_handle_t spi)
  626. {
  627. TEST_ESP_OK( spi_bus_remove_device(spi) );
  628. TEST_ESP_OK( spi_bus_free(HSPI_HOST) );
  629. }
  630. #define SPI_SLAVE_TEST_DEFAULT_CONFIG() {\
  631. .mode=0,\
  632. .spics_io_num=PIN_NUM_CS,\
  633. .queue_size=3,\
  634. .flags=0,\
  635. }
  636. static void slave_pull_up(const spi_bus_config_t* cfg, int spics_io_num)
  637. {
  638. gpio_set_pull_mode(cfg->mosi_io_num, GPIO_PULLUP_ENABLE);
  639. gpio_set_pull_mode(cfg->sclk_io_num, GPIO_PULLUP_ENABLE);
  640. gpio_set_pull_mode(spics_io_num, GPIO_PULLUP_ENABLE);
  641. }
  642. typedef struct {
  643. uint32_t len;
  644. uint8_t *start;
  645. } slave_txdata_t;
  646. typedef struct {
  647. uint32_t len;
  648. uint8_t* tx_start;
  649. uint8_t data[1];
  650. } slave_rxdata_t;
  651. typedef struct {
  652. spi_host_device_t spi;
  653. RingbufHandle_t data_received;
  654. QueueHandle_t data_to_send;
  655. } spi_slave_task_context_t;
  656. esp_err_t init_slave_context(spi_slave_task_context_t *context)
  657. {
  658. context->data_to_send = xQueueCreate( 16, sizeof( slave_txdata_t ));
  659. if ( context->data_to_send == NULL ) {
  660. return ESP_ERR_NO_MEM;
  661. }
  662. context->data_received = xRingbufferCreate( 1024, RINGBUF_TYPE_NOSPLIT );
  663. if ( context->data_received == NULL ) {
  664. return ESP_ERR_NO_MEM;
  665. }
  666. context->spi=VSPI_HOST;
  667. return ESP_OK;
  668. }
  669. void deinit_slave_context(spi_slave_task_context_t *context)
  670. {
  671. TEST_ASSERT( context->data_to_send != NULL );
  672. vQueueDelete( context->data_to_send );
  673. context->data_to_send = NULL;
  674. TEST_ASSERT( context->data_received != NULL );
  675. vRingbufferDelete( context->data_received );
  676. context->data_received = NULL;
  677. }
  678. /* The task requires a queue and a ringbuf, which should be initialized before task starts.
  679. Send ``slave_txdata_t`` to the queue to make the task send data;
  680. the task returns data got to the ringbuf, which should have sufficient size.
  681. */
  682. static void task_slave(void* arg)
  683. {
  684. spi_slave_task_context_t* context = (spi_slave_task_context_t*) arg;
  685. QueueHandle_t queue = context->data_to_send;
  686. RingbufHandle_t ringbuf = context->data_received;
  687. uint8_t recvbuf[320+8];
  688. slave_txdata_t txdata;
  689. ESP_LOGI( SLAVE_TAG, "slave up" );
  690. //never quit, but blocked by the queue, waiting to be killed, when no more send from main task.
  691. while( 1 ) {
  692. xQueueReceive( queue, &txdata, portMAX_DELAY );
  693. ESP_LOGI( "test", "to send: %p", txdata.start );
  694. spi_slave_transaction_t t = {};
  695. t.length = txdata.len;
  696. t.tx_buffer = txdata.start;
  697. t.rx_buffer = recvbuf+8;
  698. //loop until trans_len != 0 to skip glitches
  699. memset(recvbuf, 0x66, sizeof(recvbuf));
  700. do {
  701. TEST_ESP_OK( spi_slave_transmit( context->spi, &t, portMAX_DELAY ) );
  702. } while ( t.trans_len == 0 );
  703. memcpy(recvbuf, &t.trans_len, sizeof(uint32_t));
  704. *(uint8_t**)(recvbuf+4) = txdata.start;
  705. ESP_LOGI( SLAVE_TAG, "received: %d", t.trans_len );
  706. xRingbufferSend( ringbuf, recvbuf, 8+(t.trans_len+7)/8, portMAX_DELAY );
  707. }
  708. }
  709. #define TEST_SPI_HOST HSPI_HOST
  710. #define TEST_SLAVE_HOST VSPI_HOST
  711. static uint8_t bitswap(uint8_t in)
  712. {
  713. uint8_t out = 0;
  714. for (int i = 0; i < 8; i++) {
  715. out = out >> 1;
  716. if (in&0x80) out |= 0x80;
  717. in = in << 1;
  718. }
  719. return out;
  720. }
  721. void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first)
  722. {
  723. spi_device_handle_t spi;
  724. ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first?"LSB":"MSB");
  725. //initial master, mode 0, 1MHz
  726. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  727. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1));
  728. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  729. devcfg.clock_speed_hz = 1*1000*1000;
  730. if (lsb_first) devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST;
  731. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  732. //connecting pins to two peripherals breaks the output, fix it.
  733. gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  734. gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  735. gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  736. gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  737. for (int i= 0; i < 8; i++) {
  738. //prepare slave tx data
  739. slave_txdata_t slave_txdata = (slave_txdata_t) {
  740. .start = slave_send,
  741. .len = 256,
  742. };
  743. xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY);
  744. vTaskDelay(50);
  745. //prepare master tx data
  746. int cmd_bits = (i+1)*2;
  747. int addr_bits = 56-8*i;
  748. int round_up = (cmd_bits+addr_bits+7)/8*8;
  749. addr_bits = round_up - cmd_bits;
  750. spi_transaction_ext_t trans = (spi_transaction_ext_t) {
  751. .base = {
  752. .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
  753. .addr = 0x456789abcdef0123,
  754. .cmd = 0xcdef,
  755. },
  756. .command_bits = cmd_bits,
  757. .address_bits = addr_bits,
  758. };
  759. ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
  760. ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits);
  761. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&trans));
  762. //wait for both master and slave end
  763. size_t rcv_len;
  764. slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY);
  765. rcv_len-=8;
  766. uint8_t *buffer = rcv_data->data;
  767. ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
  768. TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len+7)/8);
  769. TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits+addr_bits);
  770. ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len);
  771. uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1);
  772. uint64_t addr_expected = trans.base.addr & ((1ULL<<addr_bits) - 1);
  773. uint8_t *data_ptr = buffer;
  774. uint16_t cmd_got = *(uint16_t*)data_ptr;
  775. data_ptr += cmd_bits/8;
  776. cmd_got = __builtin_bswap16(cmd_got);
  777. cmd_got = cmd_got >> (16-cmd_bits);
  778. int remain_bits = cmd_bits % 8;
  779. uint64_t addr_got = *(uint64_t*)data_ptr;
  780. data_ptr += 8;
  781. addr_got = __builtin_bswap64(addr_got);
  782. addr_got = (addr_got << remain_bits);
  783. addr_got |= (*data_ptr >> (8-remain_bits));
  784. addr_got = addr_got >> (64-addr_bits);
  785. if (lsb_first) {
  786. cmd_got = __builtin_bswap16(cmd_got);
  787. addr_got = __builtin_bswap64(addr_got);
  788. uint8_t *swap_ptr = (uint8_t*)&cmd_got;
  789. swap_ptr[0] = bitswap(swap_ptr[0]);
  790. swap_ptr[1] = bitswap(swap_ptr[1]);
  791. cmd_got = cmd_got >> (16-cmd_bits);
  792. swap_ptr = (uint8_t*)&addr_got;
  793. for (int j = 0; j < 8; j++) swap_ptr[j] = bitswap(swap_ptr[j]);
  794. addr_got = addr_got >> (64-addr_bits);
  795. }
  796. ESP_LOGI(SLAVE_TAG, "cmd_got: %04X, addr_got: %08X%08X", cmd_got, (uint32_t)(addr_got>>32), (uint32_t)addr_got);
  797. TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got);
  798. if (addr_bits > 0) {
  799. TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got);
  800. TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8);
  801. }
  802. //clean
  803. vRingbufferReturnItem(slave_context->data_received, buffer);
  804. }
  805. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  806. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  807. }
  808. TEST_CASE("SPI master variable cmd & addr test","[spi]")
  809. {
  810. spi_slave_task_context_t slave_context = {};
  811. esp_err_t err = init_slave_context( &slave_context );
  812. TEST_ASSERT( err == ESP_OK );
  813. TaskHandle_t handle_slave;
  814. xTaskCreate( task_slave, "spi_slave", 4096, &slave_context, 0, &handle_slave);
  815. //initial slave, mode 0, no dma
  816. int dma_chan = 0;
  817. int slave_mode = 0;
  818. spi_bus_config_t slv_buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  819. spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG();
  820. slvcfg.mode = slave_mode;
  821. //Initialize SPI slave interface
  822. TEST_ESP_OK( spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan) );
  823. test_cmd_addr(&slave_context, false);
  824. test_cmd_addr(&slave_context, true);
  825. vTaskDelete( handle_slave );
  826. handle_slave = 0;
  827. deinit_slave_context(&slave_context);
  828. TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
  829. ESP_LOGI(MASTER_TAG, "test passed.");
  830. }
  831. /********************************************************************************
  832. * Test Timing By Internal Connections
  833. ********************************************************************************/
  834. typedef enum {
  835. FULL_DUPLEX = 0,
  836. HALF_DUPLEX_MISO = 1,
  837. HALF_DUPLEX_MOSI = 2,
  838. } spi_dup_t;
  839. static int timing_speed_array[]={/**/
  840. SPI_MASTER_FREQ_8M ,
  841. SPI_MASTER_FREQ_9M ,
  842. SPI_MASTER_FREQ_10M,
  843. SPI_MASTER_FREQ_11M,
  844. SPI_MASTER_FREQ_13M,
  845. SPI_MASTER_FREQ_16M,
  846. SPI_MASTER_FREQ_20M,
  847. SPI_MASTER_FREQ_26M,
  848. SPI_MASTER_FREQ_40M,
  849. SPI_MASTER_FREQ_80M,
  850. };
  851. typedef struct {
  852. uint8_t master_rxbuf[320];
  853. spi_transaction_t master_trans[16];
  854. TaskHandle_t handle_slave;
  855. spi_slave_task_context_t slave_context;
  856. slave_txdata_t slave_trans[16];
  857. } timing_context_t;
  858. void master_print_data(spi_transaction_t *t, spi_dup_t dup)
  859. {
  860. if (t->tx_buffer) {
  861. ESP_LOG_BUFFER_HEX( "master tx", t->tx_buffer, t->length/8 );
  862. } else {
  863. ESP_LOGI( "master tx", "no data" );
  864. }
  865. int rxlength;
  866. if (dup!=HALF_DUPLEX_MISO) {
  867. rxlength = t->length/8;
  868. } else {
  869. rxlength = t->rxlength/8;
  870. }
  871. if (t->rx_buffer) {
  872. ESP_LOG_BUFFER_HEX( "master rx", t->rx_buffer, rxlength );
  873. } else {
  874. ESP_LOGI( "master rx", "no data" );
  875. }
  876. }
  877. void slave_print_data(slave_rxdata_t *t)
  878. {
  879. int rcv_len = (t->len+7)/8;
  880. ESP_LOGI(SLAVE_TAG, "trans_len: %d", t->len);
  881. ESP_LOG_BUFFER_HEX( "slave tx", t->tx_start, rcv_len);
  882. ESP_LOG_BUFFER_HEX( "slave rx", t->data, rcv_len);
  883. }
  884. esp_err_t check_data(spi_transaction_t *t, spi_dup_t dup, slave_rxdata_t *slave_t)
  885. {
  886. int length;
  887. if (dup!=HALF_DUPLEX_MISO) {
  888. length = t->length;
  889. } else {
  890. length = t->rxlength;
  891. }
  892. TEST_ASSERT(length!=0);
  893. //currently the rcv_len can be in range of [t->length-1, t->length+3]
  894. uint32_t rcv_len = slave_t->len;
  895. TEST_ASSERT(rcv_len >= length-1 && rcv_len <= length+3);
  896. //the timing speed is temporarily only for master
  897. if (dup!=HALF_DUPLEX_MISO) {
  898. // TEST_ASSERT_EQUAL_HEX8_ARRAY(t->tx_buffer, slave_t->data, (t->length+7)/8);
  899. }
  900. if (dup!=HALF_DUPLEX_MOSI) {
  901. TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_t->tx_start, t->rx_buffer, (length+7)/8);
  902. }
  903. return ESP_OK;
  904. }
  905. int test_len[] = {1, 3, 5, 7, 9, 11, 33, 64};
  906. static void timing_init_transactions(spi_dup_t dup, timing_context_t* context)
  907. {
  908. spi_transaction_t* trans = context->master_trans;
  909. uint8_t *rx_buf_ptr = context->master_rxbuf;
  910. if (dup==HALF_DUPLEX_MISO) {
  911. for (int i = 0; i < 8; i++ ) {
  912. trans[i] = (spi_transaction_t) {
  913. .flags = 0,
  914. .rxlength = 8*test_len[i],
  915. .rx_buffer = rx_buf_ptr,
  916. };
  917. rx_buf_ptr += ((context->master_trans[i].rxlength + 31)/8)&(~3);
  918. }
  919. } else if (dup==HALF_DUPLEX_MOSI) {
  920. for (int i = 0; i < 8; i++ ) {
  921. trans[i] = (spi_transaction_t) {
  922. .flags = 0,
  923. .length = 8*test_len[i],
  924. .tx_buffer = master_send+i,
  925. };
  926. }
  927. } else {
  928. for (int i = 0; i < 8; i++ ) {
  929. trans[i] = (spi_transaction_t) {
  930. .flags = 0,
  931. .length = 8*test_len[i],
  932. .tx_buffer = master_send+i,
  933. .rx_buffer = rx_buf_ptr,
  934. };
  935. rx_buf_ptr += ((context->master_trans[i].length + 31)/8)&(~3);
  936. }
  937. }
  938. //prepare slave tx data
  939. for (int i = 0; i < 8; i ++) {
  940. context->slave_trans[i] = (slave_txdata_t) {
  941. .start = slave_send + 4*(i%3),
  942. .len = 512,
  943. };
  944. }
  945. }
  946. typedef struct {
  947. const char cfg_name[30];
  948. /*The test work till the frequency below,
  949. *set the frequency to higher and remove checks in the driver to know how fast the system can run.
  950. */
  951. int freq_limit;
  952. spi_dup_t dup;
  953. bool master_iomux;
  954. bool slave_iomux;
  955. int slave_tv_ns;
  956. } test_timing_config_t;
  957. #define ESP_SPI_SLAVE_TV (12.5*3)
  958. #define GPIO_DELAY (12.5*2)
  959. #define SAMPLE_DELAY 12.5
  960. #define TV_INT_CONNECT_GPIO (ESP_SPI_SLAVE_TV+GPIO_DELAY)
  961. #define TV_INT_CONNECT (ESP_SPI_SLAVE_TV)
  962. #define TV_WITH_ESP_SLAVE_GPIO (ESP_SPI_SLAVE_TV+SAMPLE_DELAY+GPIO_DELAY)
  963. #define TV_WITH_ESP_SLAVE (ESP_SPI_SLAVE_TV+SAMPLE_DELAY)
  964. //currently ESP32 slave only supports up to 20MHz, but 40MHz on the same board
  965. #define ESP_SPI_SLAVE_MAX_FREQ SPI_MASTER_FREQ_20M
  966. #define ESP_SPI_SLAVE_MAX_FREQ_SYNC SPI_MASTER_FREQ_40M
  967. static test_timing_config_t timing_master_conf_t[] = {
  968. { .cfg_name = "FULL_DUP, MASTER IOMUX",
  969. .freq_limit = SPI_MASTER_FREQ_13M,
  970. .dup = FULL_DUPLEX,
  971. .master_iomux = true,
  972. .slave_iomux = false,
  973. .slave_tv_ns = TV_INT_CONNECT_GPIO,
  974. },
  975. { .cfg_name = "FULL_DUP, SLAVE IOMUX",
  976. .freq_limit = SPI_MASTER_FREQ_13M,
  977. .dup = FULL_DUPLEX,
  978. .master_iomux = false,
  979. .slave_iomux = true,
  980. .slave_tv_ns = TV_INT_CONNECT,
  981. },
  982. { .cfg_name = "FULL_DUP, BOTH GPIO",
  983. .freq_limit = SPI_MASTER_FREQ_10M,
  984. .dup = FULL_DUPLEX,
  985. .master_iomux = false,
  986. .slave_iomux = false,
  987. .slave_tv_ns = TV_INT_CONNECT_GPIO,
  988. },
  989. { .cfg_name = "HALF_DUP, MASTER IOMUX",
  990. .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
  991. .dup = HALF_DUPLEX_MISO,
  992. .master_iomux = true,
  993. .slave_iomux = false,
  994. .slave_tv_ns = TV_INT_CONNECT_GPIO,
  995. },
  996. { .cfg_name = "HALF_DUP, SLAVE IOMUX",
  997. .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
  998. .dup = HALF_DUPLEX_MISO,
  999. .master_iomux = false,
  1000. .slave_iomux = true,
  1001. .slave_tv_ns = TV_INT_CONNECT,
  1002. },
  1003. { .cfg_name = "HALF_DUP, BOTH GPIO",
  1004. .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
  1005. .dup = HALF_DUPLEX_MISO,
  1006. .master_iomux = false,
  1007. .slave_iomux = false,
  1008. .slave_tv_ns = TV_INT_CONNECT_GPIO,
  1009. },
  1010. { .cfg_name = "MOSI_DUP, MASTER IOMUX",
  1011. .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
  1012. .dup = HALF_DUPLEX_MOSI,
  1013. .master_iomux = true,
  1014. .slave_iomux = false,
  1015. .slave_tv_ns = TV_INT_CONNECT_GPIO,
  1016. },
  1017. { .cfg_name = "MOSI_DUP, SLAVE IOMUX",
  1018. .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
  1019. .dup = HALF_DUPLEX_MOSI,
  1020. .master_iomux = false,
  1021. .slave_iomux = true,
  1022. .slave_tv_ns = TV_INT_CONNECT,
  1023. },
  1024. { .cfg_name = "MOSI_DUP, BOTH GPIO",
  1025. .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
  1026. .dup = HALF_DUPLEX_MOSI,
  1027. .master_iomux = false,
  1028. .slave_iomux = false,
  1029. .slave_tv_ns = TV_INT_CONNECT_GPIO,
  1030. },
  1031. };
  1032. //this case currently only checks master read
  1033. TEST_CASE("test timing_master","[spi][timeout=120]")
  1034. {
  1035. timing_context_t context;
  1036. //Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected.
  1037. //slave_pull_up(&slv_buscfg, slvcfg.spics_io_num);
  1038. context.slave_context = (spi_slave_task_context_t){};
  1039. esp_err_t err = init_slave_context( &context.slave_context );
  1040. TEST_ASSERT( err == ESP_OK );
  1041. xTaskCreate( task_slave, "spi_slave", 4096, &context.slave_context, 0, &context.handle_slave);
  1042. const int test_size = sizeof(timing_master_conf_t)/sizeof(test_timing_config_t);
  1043. for (int i = 0; i < test_size; i++) {
  1044. test_timing_config_t* conf = &timing_master_conf_t[i];
  1045. spi_device_handle_t spi;
  1046. timing_init_transactions(conf->dup, &context);
  1047. ESP_LOGI(MASTER_TAG, "****************** %s ***************", conf->cfg_name);
  1048. for (int j=0; j<sizeof(timing_speed_array)/sizeof(int); j++ ) {
  1049. if (timing_speed_array[j] > conf->freq_limit) break;
  1050. ESP_LOGI(MASTER_TAG, "======> %dk", timing_speed_array[j]/1000);
  1051. //master config
  1052. const int master_mode = 0;
  1053. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  1054. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  1055. devcfg.mode = master_mode;
  1056. if (conf->dup==HALF_DUPLEX_MISO||conf->dup==HALF_DUPLEX_MOSI) {
  1057. devcfg.cs_ena_pretrans = 20;
  1058. devcfg.flags |= SPI_DEVICE_HALFDUPLEX;
  1059. } else {
  1060. devcfg.cs_ena_pretrans = 1;
  1061. }
  1062. devcfg.cs_ena_posttrans = 20;
  1063. devcfg.input_delay_ns = conf->slave_tv_ns;
  1064. devcfg.clock_speed_hz = timing_speed_array[j];
  1065. //slave config
  1066. int slave_mode = 0;
  1067. spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG();
  1068. slvcfg.mode = slave_mode;
  1069. //pin config & initialize
  1070. //we can't have two sets of iomux pins on the same pins
  1071. assert(!conf->master_iomux || !conf->slave_iomux);
  1072. if (conf->slave_iomux) {
  1073. //only in this case, use VSPI iomux pins
  1074. buscfg.miso_io_num = VSPI_IOMUX_PIN_NUM_MISO;
  1075. buscfg.mosi_io_num = VSPI_IOMUX_PIN_NUM_MOSI;
  1076. buscfg.sclk_io_num = VSPI_IOMUX_PIN_NUM_CLK;
  1077. devcfg.spics_io_num = VSPI_IOMUX_PIN_NUM_CS;
  1078. slvcfg.spics_io_num = VSPI_IOMUX_PIN_NUM_CS;
  1079. } else {
  1080. buscfg.miso_io_num = HSPI_IOMUX_PIN_NUM_MISO;
  1081. buscfg.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI;
  1082. buscfg.sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK;
  1083. devcfg.spics_io_num = HSPI_IOMUX_PIN_NUM_CS;
  1084. slvcfg.spics_io_num = HSPI_IOMUX_PIN_NUM_CS;
  1085. }
  1086. slave_pull_up(&buscfg, slvcfg.spics_io_num);
  1087. //this does nothing, but avoid the driver from using iomux pins if required
  1088. buscfg.quadhd_io_num = (!conf->master_iomux && !conf->slave_iomux? VSPI_IOMUX_PIN_NUM_MISO: -1);
  1089. TEST_ESP_OK(spi_bus_initialize(HSPI_HOST, &buscfg, 0));
  1090. TEST_ESP_OK(spi_bus_add_device(HSPI_HOST, &devcfg, &spi));
  1091. //slave automatically use iomux pins if pins are on VSPI_* pins
  1092. buscfg.quadhd_io_num = -1;
  1093. TEST_ESP_OK( spi_slave_initialize(VSPI_HOST, &buscfg, &slvcfg, 0) );
  1094. //initialize master and slave on the same pins break some of the output configs, fix them
  1095. if (conf->master_iomux) {
  1096. gpio_output_sel(buscfg.mosi_io_num, FUNC_SPI, HSPID_OUT_IDX);
  1097. gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, VSPIQ_OUT_IDX);
  1098. gpio_output_sel(devcfg.spics_io_num, FUNC_SPI, HSPICS0_OUT_IDX);
  1099. gpio_output_sel(buscfg.sclk_io_num, FUNC_SPI, HSPICLK_OUT_IDX);
  1100. } else if (conf->slave_iomux) {
  1101. gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX);
  1102. gpio_output_sel(buscfg.miso_io_num, FUNC_SPI, VSPIQ_OUT_IDX);
  1103. gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, HSPICS0_OUT_IDX);
  1104. gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, HSPICLK_OUT_IDX);
  1105. } else {
  1106. gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX);
  1107. gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, VSPIQ_OUT_IDX);
  1108. gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, HSPICS0_OUT_IDX);
  1109. gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, HSPICLK_OUT_IDX);
  1110. }
  1111. //clear master receive buffer
  1112. memset(context.master_rxbuf, 0x66, sizeof(context.master_rxbuf));
  1113. //prepare slave tx data
  1114. for (int k = 0; k < 8; k ++) xQueueSend( context.slave_context.data_to_send, &context.slave_trans[k], portMAX_DELAY );
  1115. for( int k= 0; k < 8; k ++ ) {
  1116. //wait for both master and slave end
  1117. ESP_LOGI( MASTER_TAG, "=> test%d", k );
  1118. //send master tx data
  1119. vTaskDelay(9);
  1120. spi_transaction_t *t = &context.master_trans[k];
  1121. TEST_ESP_OK (spi_device_transmit( spi, t) );
  1122. master_print_data(t, conf->dup);
  1123. size_t rcv_len;
  1124. slave_rxdata_t *rcv_data = xRingbufferReceive( context.slave_context.data_received, &rcv_len, portMAX_DELAY );
  1125. slave_print_data(rcv_data);
  1126. //check result
  1127. TEST_ESP_OK(check_data(t, conf->dup, rcv_data));
  1128. //clean
  1129. vRingbufferReturnItem(context.slave_context.data_received, rcv_data);
  1130. }
  1131. master_deinit(spi);
  1132. TEST_ASSERT(spi_slave_free(VSPI_HOST) == ESP_OK);
  1133. }
  1134. }
  1135. vTaskDelete( context.handle_slave );
  1136. context.handle_slave = 0;
  1137. deinit_slave_context(&context.slave_context);
  1138. ESP_LOGI(MASTER_TAG, "test passed.");
  1139. }
  1140. /********************************************************************************
  1141. * Test SPI transaction interval
  1142. ********************************************************************************/
  1143. #define RECORD_TIME_PREPARE() uint32_t __t1, __t2
  1144. #define RECORD_TIME_START() do {__t1 = xthal_get_ccount();}while(0)
  1145. #define RECORD_TIME_END(p_time) do{__t2 = xthal_get_ccount(); *p_time = (__t2-__t1)/240;}while(0)
  1146. static void speed_setup(spi_device_handle_t* spi, bool use_dma)
  1147. {
  1148. esp_err_t ret;
  1149. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  1150. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  1151. devcfg.queue_size=8; //We want to be able to queue 7 transactions at a time
  1152. //Initialize the SPI bus and the device to test
  1153. ret=spi_bus_initialize(HSPI_HOST, &buscfg, (use_dma?1:0));
  1154. TEST_ASSERT(ret==ESP_OK);
  1155. ret=spi_bus_add_device(HSPI_HOST, &devcfg, spi);
  1156. TEST_ASSERT(ret==ESP_OK);
  1157. }
  1158. static void speed_deinit(spi_device_handle_t spi)
  1159. {
  1160. TEST_ESP_OK( spi_bus_remove_device(spi) );
  1161. TEST_ESP_OK( spi_bus_free(HSPI_HOST) );
  1162. }
  1163. static void sorted_array_insert(uint32_t* array, int* size, uint32_t item)
  1164. {
  1165. int pos;
  1166. for (pos = *size; pos>0; pos--) {
  1167. if (array[pos-1] < item) break;
  1168. array[pos] = array[pos-1];
  1169. }
  1170. array[pos]=item;
  1171. (*size)++;
  1172. }
  1173. #define TEST_TIMES 11
  1174. static IRAM_ATTR void spi_transmit_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight)
  1175. {
  1176. RECORD_TIME_PREPARE();
  1177. spi_device_transmit(spi, trans); // prime the flash cache
  1178. RECORD_TIME_START();
  1179. spi_device_transmit(spi, trans);
  1180. RECORD_TIME_END(t_flight);
  1181. }
  1182. static IRAM_ATTR void spi_transmit_polling_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight)
  1183. {
  1184. RECORD_TIME_PREPARE();
  1185. spi_device_polling_transmit(spi, trans); // prime the flash cache
  1186. RECORD_TIME_START();
  1187. spi_device_polling_transmit(spi, trans);
  1188. RECORD_TIME_END(t_flight);
  1189. }
  1190. TEST_CASE("spi_speed","[spi]")
  1191. {
  1192. uint32_t t_flight;
  1193. //to get rid of the influence of randomly interrupts, we measured the performance by median value
  1194. uint32_t t_flight_sorted[TEST_TIMES];
  1195. esp_err_t ret;
  1196. int t_flight_num = 0;
  1197. spi_device_handle_t spi;
  1198. const bool use_dma = true;
  1199. WORD_ALIGNED_ATTR spi_transaction_t trans = {
  1200. .length = 1*8,
  1201. .flags = SPI_TRANS_USE_TXDATA,
  1202. };
  1203. //first work with DMA
  1204. speed_setup(&spi, use_dma);
  1205. //record flight time by isr, with DMA
  1206. t_flight_num = 0;
  1207. for (int i = 0; i < TEST_TIMES; i++) {
  1208. spi_transmit_measure(spi, &trans, &t_flight);
  1209. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1210. }
  1211. for (int i = 0; i < TEST_TIMES; i++) {
  1212. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  1213. }
  1214. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  1215. //acquire the bus to send polling transactions faster
  1216. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  1217. TEST_ESP_OK(ret);
  1218. //record flight time by polling and with DMA
  1219. t_flight_num = 0;
  1220. for (int i = 0; i < TEST_TIMES; i++) {
  1221. spi_transmit_polling_measure(spi, &trans, &t_flight);
  1222. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1223. }
  1224. for (int i = 0; i < TEST_TIMES; i++) {
  1225. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  1226. }
  1227. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  1228. //release the bus
  1229. spi_device_release_bus(spi);
  1230. speed_deinit(spi);
  1231. speed_setup(&spi, !use_dma);
  1232. //record flight time by isr, without DMA
  1233. t_flight_num = 0;
  1234. for (int i = 0; i < TEST_TIMES; i++) {
  1235. spi_transmit_measure(spi, &trans, &t_flight);
  1236. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1237. }
  1238. for (int i = 0; i < TEST_TIMES; i++) {
  1239. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  1240. }
  1241. TEST_PERFORMANCE_LESS_THAN( SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  1242. //acquire the bus to send polling transactions faster
  1243. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  1244. TEST_ESP_OK(ret);
  1245. //record flight time by polling, without DMA
  1246. t_flight_num = 0;
  1247. for (int i = 0; i < TEST_TIMES; i++) {
  1248. spi_transmit_polling_measure(spi, &trans, &t_flight);
  1249. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1250. }
  1251. for (int i = 0; i < TEST_TIMES; i++) {
  1252. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  1253. }
  1254. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  1255. //release the bus
  1256. spi_device_release_bus(spi);
  1257. speed_deinit(spi);
  1258. }
  1259. typedef struct {
  1260. spi_device_handle_t handle;
  1261. bool finished;
  1262. } task_context_t;
  1263. void spi_task1(void* arg)
  1264. {
  1265. //task1 send 50 polling transactions, acquire the bus and send another 50
  1266. int count=0;
  1267. spi_transaction_t t = {
  1268. .flags = SPI_TRANS_USE_TXDATA,
  1269. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  1270. .length = 4*8,
  1271. };
  1272. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  1273. for( int j = 0; j < 50; j ++ ) {
  1274. TEST_ESP_OK(spi_device_polling_transmit( handle, &t ));
  1275. ESP_LOGI( TAG, "task1:%d", count++ );
  1276. }
  1277. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  1278. for( int j = 0; j < 50; j ++ ) {
  1279. TEST_ESP_OK(spi_device_polling_transmit( handle, &t ));
  1280. ESP_LOGI( TAG, "task1:%d", count++ );
  1281. }
  1282. spi_device_release_bus(handle);
  1283. ESP_LOGI(TAG, "task1 terminates");
  1284. ((task_context_t*)arg)->finished = true;
  1285. vTaskDelete(NULL);
  1286. }
  1287. void spi_task2(void* arg)
  1288. {
  1289. int count=0;
  1290. //task2 acquire the bus, send 50 polling transactions and then 50 non-polling
  1291. spi_transaction_t t = {
  1292. .flags = SPI_TRANS_USE_TXDATA,
  1293. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  1294. .length = 4*8,
  1295. };
  1296. spi_transaction_t *ret_t;
  1297. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  1298. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  1299. for (int i = 0; i < 50; i ++) {
  1300. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  1301. ESP_LOGI( TAG, "task2: %d", count++ );
  1302. }
  1303. for( int j = 0; j < 50; j ++ ) {
  1304. TEST_ESP_OK(spi_device_queue_trans( handle, &t, portMAX_DELAY ));
  1305. }
  1306. for( int j = 0; j < 50; j ++ ) {
  1307. TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY));
  1308. assert(ret_t == &t);
  1309. ESP_LOGI( TAG, "task2: %d", count++ );
  1310. }
  1311. spi_device_release_bus(handle);
  1312. vTaskDelay(1);
  1313. ESP_LOGI(TAG, "task2 terminates");
  1314. ((task_context_t*)arg)->finished = true;
  1315. vTaskDelete(NULL);
  1316. }
  1317. void spi_task3(void* arg)
  1318. {
  1319. //task3 send 30 polling transactions, acquire the bus, send 20 polling transactions and then 50 non-polling
  1320. int count=0;
  1321. spi_transaction_t t = {
  1322. .flags = SPI_TRANS_USE_TXDATA,
  1323. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  1324. .length = 4*8,
  1325. };
  1326. spi_transaction_t *ret_t;
  1327. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  1328. for (int i = 0; i < 30; i ++) {
  1329. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  1330. ESP_LOGI( TAG, "task3: %d", count++ );
  1331. }
  1332. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  1333. for (int i = 0; i < 20; i ++) {
  1334. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  1335. ESP_LOGI( TAG, "task3: %d", count++ );
  1336. }
  1337. for (int j = 0; j < 50; j++) {
  1338. TEST_ESP_OK(spi_device_queue_trans(handle, &t, portMAX_DELAY));
  1339. }
  1340. for (int j = 0; j < 50; j++) {
  1341. TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY));
  1342. assert(ret_t == &t);
  1343. ESP_LOGI(TAG, "task3: %d", count++);
  1344. }
  1345. spi_device_release_bus(handle);
  1346. ESP_LOGI(TAG, "task3 terminates");
  1347. ((task_context_t*)arg)->finished = true;
  1348. vTaskDelete(NULL);
  1349. }
  1350. TEST_CASE("spi poll tasks","[spi]")
  1351. {
  1352. task_context_t context1={};
  1353. task_context_t context2={};
  1354. task_context_t context3={};
  1355. TaskHandle_t task1, task2, task3;
  1356. esp_err_t ret;
  1357. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  1358. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  1359. devcfg.queue_size = 100;
  1360. //Initialize the SPI bus and 3 devices
  1361. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  1362. TEST_ASSERT(ret==ESP_OK);
  1363. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context1.handle);
  1364. TEST_ASSERT(ret==ESP_OK);
  1365. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context2.handle);
  1366. TEST_ASSERT(ret==ESP_OK);
  1367. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context3.handle);
  1368. TEST_ASSERT(ret==ESP_OK);
  1369. xTaskCreate( spi_task1, "task1", 2048, &context1, 0, &task1 );
  1370. xTaskCreate( spi_task2, "task2", 2048, &context2, 0, &task2 );
  1371. xTaskCreate( spi_task3, "task3", 2048, &context3, 0, &task3 );
  1372. for(;;){
  1373. vTaskDelay(10);
  1374. if (context1.finished && context2.finished && context3.finished) break;
  1375. }
  1376. TEST_ESP_OK( spi_bus_remove_device(context1.handle) );
  1377. TEST_ESP_OK( spi_bus_remove_device(context2.handle) );
  1378. TEST_ESP_OK( spi_bus_remove_device(context3.handle) );
  1379. TEST_ESP_OK( spi_bus_free(HSPI_HOST) );
  1380. }
  1381. //TODO: add a case when a non-polling transaction happened in the bus-acquiring time and then release the bus then queue a new trans