uart.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #include "driver/uart_select.h"
  32. #define XOFF (char)0x13
  33. #define XON (char)0x11
  34. static const char* UART_TAG = "uart";
  35. #define UART_CHECK(a, str, ret_val) \
  36. if (!(a)) { \
  37. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  38. return (ret_val); \
  39. }
  40. #define UART_EMPTY_THRESH_DEFAULT (10)
  41. #define UART_FULL_THRESH_DEFAULT (120)
  42. #define UART_TOUT_THRESH_DEFAULT (10)
  43. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  44. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  45. #define UART_TX_IDLE_NUM_DEFAULT (0)
  46. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  47. #define UART_MIN_WAKEUP_THRESH (2)
  48. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  49. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  50. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  51. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  52. // Check actual UART mode set
  53. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  54. typedef struct {
  55. uart_event_type_t type; /*!< UART TX data type */
  56. struct {
  57. int brk_len;
  58. size_t size;
  59. uint8_t data[0];
  60. } tx_data;
  61. } uart_tx_data_t;
  62. typedef struct {
  63. int wr;
  64. int rd;
  65. int len;
  66. int* data;
  67. } uart_pat_rb_t;
  68. typedef struct {
  69. uart_port_t uart_num; /*!< UART port number*/
  70. int queue_size; /*!< UART event queue size*/
  71. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  72. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  73. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  74. bool coll_det_flg; /*!< UART collision detection flag */
  75. //rx parameters
  76. int rx_buffered_len; /*!< UART cached data length */
  77. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  78. int rx_buf_size; /*!< RX ring buffer size */
  79. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  80. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  81. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  82. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  83. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  84. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  85. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  86. uart_pat_rb_t rx_pattern_pos;
  87. //tx parameters
  88. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  89. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  90. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  91. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  92. int tx_buf_size; /*!< TX ring buffer size */
  93. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  94. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  95. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  96. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  97. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  98. uint32_t tx_len_cur;
  99. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  100. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  101. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  102. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  103. } uart_obj_t;
  104. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  105. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  106. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  107. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  108. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  109. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  110. {
  111. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  112. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  113. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  114. UART[uart_num]->conf0.bit_num = data_bit;
  115. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  116. return ESP_OK;
  117. }
  118. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  119. {
  120. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  121. *(data_bit) = UART[uart_num]->conf0.bit_num;
  122. return ESP_OK;
  123. }
  124. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  125. {
  126. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  127. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  128. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  129. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  130. if (stop_bit == UART_STOP_BITS_2) {
  131. stop_bit = UART_STOP_BITS_1;
  132. UART[uart_num]->rs485_conf.dl1_en = 1;
  133. } else {
  134. UART[uart_num]->rs485_conf.dl1_en = 0;
  135. }
  136. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  137. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  138. return ESP_OK;
  139. }
  140. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  141. {
  142. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  143. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  144. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  145. (*stop_bit) = UART_STOP_BITS_2;
  146. } else {
  147. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  148. }
  149. return ESP_OK;
  150. }
  151. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  152. {
  153. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  154. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  155. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  156. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  157. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  158. return ESP_OK;
  159. }
  160. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  161. {
  162. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  163. int val = UART[uart_num]->conf0.val;
  164. if(val & UART_PARITY_EN_M) {
  165. if(val & UART_PARITY_M) {
  166. (*parity_mode) = UART_PARITY_ODD;
  167. } else {
  168. (*parity_mode) = UART_PARITY_EVEN;
  169. }
  170. } else {
  171. (*parity_mode) = UART_PARITY_DISABLE;
  172. }
  173. return ESP_OK;
  174. }
  175. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  176. {
  177. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  178. esp_err_t ret = ESP_OK;
  179. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  180. int uart_clk_freq;
  181. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  182. /* this UART has been configured to use REF_TICK */
  183. uart_clk_freq = REF_CLK_FREQ;
  184. } else {
  185. uart_clk_freq = esp_clk_apb_freq();
  186. }
  187. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  188. if (clk_div < 16) {
  189. /* baud rate is too high for this clock frequency */
  190. ret = ESP_ERR_INVALID_ARG;
  191. } else {
  192. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  193. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  194. }
  195. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  196. return ret;
  197. }
  198. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  199. {
  200. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  201. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  202. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  203. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  204. uint32_t uart_clk_freq = esp_clk_apb_freq();
  205. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  206. uart_clk_freq = REF_CLK_FREQ;
  207. }
  208. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  209. return ESP_OK;
  210. }
  211. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  212. {
  213. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  214. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  215. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  216. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  217. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  218. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  219. return ESP_OK;
  220. }
  221. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  222. {
  223. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  224. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  225. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  226. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  227. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  228. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  229. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  230. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  231. UART[uart_num]->swfc_conf.xon_char = XON;
  232. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  233. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  234. return ESP_OK;
  235. }
  236. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  237. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  238. {
  239. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  240. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  241. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  242. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  243. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  244. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  245. UART[uart_num]->conf1.rx_flow_en = 1;
  246. } else {
  247. UART[uart_num]->conf1.rx_flow_en = 0;
  248. }
  249. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  250. UART[uart_num]->conf0.tx_flow_en = 1;
  251. } else {
  252. UART[uart_num]->conf0.tx_flow_en = 0;
  253. }
  254. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  255. return ESP_OK;
  256. }
  257. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  258. {
  259. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  260. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  261. if(UART[uart_num]->conf1.rx_flow_en) {
  262. val |= UART_HW_FLOWCTRL_RTS;
  263. }
  264. if(UART[uart_num]->conf0.tx_flow_en) {
  265. val |= UART_HW_FLOWCTRL_CTS;
  266. }
  267. (*flow_ctrl) = val;
  268. return ESP_OK;
  269. }
  270. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  271. {
  272. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  273. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  274. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  275. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  276. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  277. READ_PERI_REG(UART_FIFO_REG(uart_num));
  278. }
  279. return ESP_OK;
  280. }
  281. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  282. {
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. //intr_clr register is write-only
  285. UART[uart_num]->int_clr.val = clr_mask;
  286. return ESP_OK;
  287. }
  288. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  289. {
  290. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  291. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  292. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  293. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  294. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  295. return ESP_OK;
  296. }
  297. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  298. {
  299. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  300. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  301. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  302. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  303. return ESP_OK;
  304. }
  305. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  306. {
  307. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  308. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  309. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  310. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  311. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  312. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  313. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  314. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  315. free(pdata);
  316. }
  317. return ESP_OK;
  318. }
  319. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  320. {
  321. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  322. esp_err_t ret = ESP_OK;
  323. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  324. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  325. int next = p_pos->wr + 1;
  326. if (next >= p_pos->len) {
  327. next = 0;
  328. }
  329. if (next == p_pos->rd) {
  330. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  331. ret = ESP_FAIL;
  332. } else {
  333. p_pos->data[p_pos->wr] = pos;
  334. p_pos->wr = next;
  335. ret = ESP_OK;
  336. }
  337. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  338. return ret;
  339. }
  340. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  341. {
  342. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  343. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  344. return ESP_ERR_INVALID_STATE;
  345. } else {
  346. esp_err_t ret = ESP_OK;
  347. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  348. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  349. if (p_pos->rd == p_pos->wr) {
  350. ret = ESP_FAIL;
  351. } else {
  352. p_pos->rd++;
  353. }
  354. if (p_pos->rd >= p_pos->len) {
  355. p_pos->rd = 0;
  356. }
  357. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  358. return ret;
  359. }
  360. }
  361. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  362. {
  363. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  364. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  365. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  366. int rd = p_pos->rd;
  367. while(rd != p_pos->wr) {
  368. p_pos->data[rd] -= diff_len;
  369. int rd_rec = rd;
  370. rd ++;
  371. if (rd >= p_pos->len) {
  372. rd = 0;
  373. }
  374. if (p_pos->data[rd_rec] < 0) {
  375. p_pos->rd = rd;
  376. }
  377. }
  378. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  379. return ESP_OK;
  380. }
  381. int uart_pattern_pop_pos(uart_port_t uart_num)
  382. {
  383. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  384. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  385. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  386. int pos = -1;
  387. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  388. pos = pat_pos->data[pat_pos->rd];
  389. uart_pattern_dequeue(uart_num);
  390. }
  391. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  392. return pos;
  393. }
  394. int uart_pattern_get_pos(uart_port_t uart_num)
  395. {
  396. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  397. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  398. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  399. int pos = -1;
  400. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  401. pos = pat_pos->data[pat_pos->rd];
  402. }
  403. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  404. return pos;
  405. }
  406. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  407. {
  408. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  409. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  410. int* pdata = (int*) malloc(queue_length * sizeof(int));
  411. if(pdata == NULL) {
  412. return ESP_ERR_NO_MEM;
  413. }
  414. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  415. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  416. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  417. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  418. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  419. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  420. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  421. free(ptmp);
  422. return ESP_OK;
  423. }
  424. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  425. {
  426. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  427. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  428. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  429. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  430. UART[uart_num]->at_cmd_char.data = pattern_chr;
  431. UART[uart_num]->at_cmd_char.char_num = chr_num;
  432. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  433. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  434. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  435. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  436. }
  437. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  438. {
  439. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  440. }
  441. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  442. {
  443. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  444. }
  445. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  446. {
  447. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  448. }
  449. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  450. {
  451. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  452. }
  453. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  454. {
  455. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  456. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  457. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  458. UART[uart_num]->int_clr.txfifo_empty = 1;
  459. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  460. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  461. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  462. return ESP_OK;
  463. }
  464. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  465. {
  466. int ret;
  467. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  468. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  469. switch(uart_num) {
  470. case UART_NUM_1:
  471. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  472. break;
  473. case UART_NUM_2:
  474. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  475. break;
  476. case UART_NUM_0:
  477. default:
  478. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  479. break;
  480. }
  481. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  482. return ret;
  483. }
  484. esp_err_t uart_isr_free(uart_port_t uart_num)
  485. {
  486. esp_err_t ret;
  487. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  488. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  489. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  490. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  491. p_uart_obj[uart_num]->intr_handle=NULL;
  492. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  493. return ret;
  494. }
  495. //internal signal can be output to multiple GPIO pads
  496. //only one GPIO pad can connect with input signal
  497. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  498. {
  499. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  500. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  501. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  502. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  503. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  504. int tx_sig, rx_sig, rts_sig, cts_sig;
  505. switch(uart_num) {
  506. case UART_NUM_0:
  507. tx_sig = U0TXD_OUT_IDX;
  508. rx_sig = U0RXD_IN_IDX;
  509. rts_sig = U0RTS_OUT_IDX;
  510. cts_sig = U0CTS_IN_IDX;
  511. break;
  512. case UART_NUM_1:
  513. tx_sig = U1TXD_OUT_IDX;
  514. rx_sig = U1RXD_IN_IDX;
  515. rts_sig = U1RTS_OUT_IDX;
  516. cts_sig = U1CTS_IN_IDX;
  517. break;
  518. case UART_NUM_2:
  519. tx_sig = U2TXD_OUT_IDX;
  520. rx_sig = U2RXD_IN_IDX;
  521. rts_sig = U2RTS_OUT_IDX;
  522. cts_sig = U2CTS_IN_IDX;
  523. break;
  524. case UART_NUM_MAX:
  525. default:
  526. tx_sig = U0TXD_OUT_IDX;
  527. rx_sig = U0RXD_IN_IDX;
  528. rts_sig = U0RTS_OUT_IDX;
  529. cts_sig = U0CTS_IN_IDX;
  530. break;
  531. }
  532. if(tx_io_num >= 0) {
  533. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  534. gpio_set_level(tx_io_num, 1);
  535. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  536. }
  537. if(rx_io_num >= 0) {
  538. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  539. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  540. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  541. gpio_matrix_in(rx_io_num, rx_sig, 0);
  542. }
  543. if(rts_io_num >= 0) {
  544. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  545. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  546. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  547. }
  548. if(cts_io_num >= 0) {
  549. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  550. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  551. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  552. gpio_matrix_in(cts_io_num, cts_sig, 0);
  553. }
  554. return ESP_OK;
  555. }
  556. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  557. {
  558. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  559. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  560. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  561. UART[uart_num]->conf0.sw_rts = level & 0x1;
  562. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  563. return ESP_OK;
  564. }
  565. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  566. {
  567. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  568. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  569. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  570. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  571. return ESP_OK;
  572. }
  573. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  574. {
  575. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  576. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  577. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  578. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  579. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  580. return ESP_OK;
  581. }
  582. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  583. {
  584. esp_err_t r;
  585. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  586. UART_CHECK((uart_config), "param null", ESP_FAIL);
  587. if(uart_num == UART_NUM_0) {
  588. periph_module_enable(PERIPH_UART0_MODULE);
  589. } else if(uart_num == UART_NUM_1) {
  590. periph_module_enable(PERIPH_UART1_MODULE);
  591. } else if(uart_num == UART_NUM_2) {
  592. periph_module_enable(PERIPH_UART2_MODULE);
  593. }
  594. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  595. if (r != ESP_OK) return r;
  596. UART[uart_num]->conf0.val =
  597. (uart_config->parity << UART_PARITY_S)
  598. | (uart_config->data_bits << UART_BIT_NUM_S)
  599. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  600. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  601. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  602. if (r != ESP_OK) return r;
  603. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  604. if (r != ESP_OK) return r;
  605. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  606. //A hardware reset does not reset the fifo,
  607. //so we need to reset the fifo manually.
  608. uart_reset_rx_fifo(uart_num);
  609. return r;
  610. }
  611. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  612. {
  613. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  614. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  615. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  616. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  617. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  618. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  619. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  620. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  621. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  622. } else {
  623. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  624. }
  625. UART[uart_num]->conf1.rx_tout_en = 1;
  626. } else {
  627. UART[uart_num]->conf1.rx_tout_en = 0;
  628. }
  629. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  630. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  631. }
  632. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  633. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  634. }
  635. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  636. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  637. return ESP_OK;
  638. }
  639. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  640. {
  641. int cnt = 0;
  642. int len = length;
  643. while (len >= 0) {
  644. if (buf[len] == pat_chr) {
  645. cnt++;
  646. } else {
  647. cnt = 0;
  648. }
  649. if (cnt >= pat_num) {
  650. break;
  651. }
  652. len --;
  653. }
  654. return len;
  655. }
  656. //internal isr handler for default driver code.
  657. static void uart_rx_intr_handler_default(void *param)
  658. {
  659. uart_obj_t *p_uart = (uart_obj_t*) param;
  660. uint8_t uart_num = p_uart->uart_num;
  661. uart_dev_t* uart_reg = UART[uart_num];
  662. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  663. uint8_t buf_idx = 0;
  664. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  665. uart_event_t uart_event;
  666. portBASE_TYPE HPTaskAwoken = 0;
  667. static uint8_t pat_flg = 0;
  668. while(uart_intr_status != 0x0) {
  669. buf_idx = 0;
  670. uart_event.type = UART_EVENT_MAX;
  671. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  672. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  673. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  674. if(p_uart->tx_waiting_brk) {
  675. continue;
  676. }
  677. //TX semaphore will only be used when tx_buf_size is zero.
  678. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  679. p_uart->tx_waiting_fifo = false;
  680. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  681. if(HPTaskAwoken == pdTRUE) {
  682. portYIELD_FROM_ISR();
  683. }
  684. } else {
  685. //We don't use TX ring buffer, because the size is zero.
  686. if(p_uart->tx_buf_size == 0) {
  687. continue;
  688. }
  689. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  690. bool en_tx_flg = false;
  691. //We need to put a loop here, in case all the buffer items are very short.
  692. //That would cause a watch_dog reset because empty interrupt happens so often.
  693. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  694. while(tx_fifo_rem) {
  695. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  696. size_t size;
  697. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  698. if(p_uart->tx_head) {
  699. //The first item is the data description
  700. //Get the first item to get the data information
  701. if(p_uart->tx_len_tot == 0) {
  702. p_uart->tx_ptr = NULL;
  703. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  704. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  705. p_uart->tx_brk_flg = 1;
  706. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  707. }
  708. //We have saved the data description from the 1st item, return buffer.
  709. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  710. if(HPTaskAwoken == pdTRUE) {
  711. portYIELD_FROM_ISR();
  712. }
  713. }else if(p_uart->tx_ptr == NULL) {
  714. //Update the TX item pointer, we will need this to return item to buffer.
  715. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  716. en_tx_flg = true;
  717. p_uart->tx_len_cur = size;
  718. }
  719. }
  720. else {
  721. //Can not get data from ring buffer, return;
  722. break;
  723. }
  724. }
  725. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  726. //To fill the TX FIFO.
  727. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  728. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  729. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  730. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  731. uart_reg->conf0.sw_rts = 0;
  732. uart_reg->int_ena.tx_done = 1;
  733. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  734. }
  735. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  736. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  737. *(p_uart->tx_ptr++) & 0xff);
  738. }
  739. p_uart->tx_len_tot -= send_len;
  740. p_uart->tx_len_cur -= send_len;
  741. tx_fifo_rem -= send_len;
  742. if (p_uart->tx_len_cur == 0) {
  743. //Return item to ring buffer.
  744. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  745. if(HPTaskAwoken == pdTRUE) {
  746. portYIELD_FROM_ISR();
  747. }
  748. p_uart->tx_head = NULL;
  749. p_uart->tx_ptr = NULL;
  750. //Sending item done, now we need to send break if there is a record.
  751. //Set TX break signal after FIFO is empty
  752. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  753. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  754. uart_reg->int_ena.tx_brk_done = 0;
  755. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  756. uart_reg->conf0.txd_brk = 1;
  757. uart_reg->int_clr.tx_brk_done = 1;
  758. uart_reg->int_ena.tx_brk_done = 1;
  759. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  760. p_uart->tx_waiting_brk = 1;
  761. //do not enable TX empty interrupt
  762. en_tx_flg = false;
  763. } else {
  764. //enable TX empty interrupt
  765. en_tx_flg = true;
  766. }
  767. } else {
  768. //enable TX empty interrupt
  769. en_tx_flg = true;
  770. }
  771. }
  772. }
  773. if (en_tx_flg) {
  774. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  775. uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  776. }
  777. }
  778. }
  779. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  780. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  781. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  782. ) {
  783. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  784. if(pat_flg == 1) {
  785. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  786. pat_flg = 0;
  787. }
  788. if (p_uart->rx_buffer_full_flg == false) {
  789. //We have to read out all data in RX FIFO to clear the interrupt signal
  790. while (buf_idx < rx_fifo_len) {
  791. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  792. }
  793. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  794. int pat_num = uart_reg->at_cmd_char.char_num;
  795. int pat_idx = -1;
  796. //Get the buffer from the FIFO
  797. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  798. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  799. uart_event.type = UART_PATTERN_DET;
  800. uart_event.size = rx_fifo_len;
  801. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  802. } else {
  803. //After Copying the Data From FIFO ,Clear intr_status
  804. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  805. uart_event.type = UART_DATA;
  806. uart_event.size = rx_fifo_len;
  807. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  808. if (p_uart->uart_select_notif_callback) {
  809. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  810. }
  811. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  812. }
  813. p_uart->rx_stash_len = rx_fifo_len;
  814. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  815. //Mainly for applications that uses flow control or small ring buffer.
  816. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  817. p_uart->rx_buffer_full_flg = true;
  818. uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  819. if (uart_event.type == UART_PATTERN_DET) {
  820. if (rx_fifo_len < pat_num) {
  821. //some of the characters are read out in last interrupt
  822. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  823. } else {
  824. uart_pattern_enqueue(uart_num,
  825. pat_idx <= -1 ?
  826. //can not find the pattern in buffer,
  827. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  828. // find the pattern in buffer
  829. p_uart->rx_buffered_len + pat_idx);
  830. }
  831. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  832. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  833. }
  834. }
  835. uart_event.type = UART_BUFFER_FULL;
  836. } else {
  837. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  838. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  839. if (rx_fifo_len < pat_num) {
  840. //some of the characters are read out in last interrupt
  841. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  842. } else if(pat_idx >= 0) {
  843. // find pattern in statsh buffer.
  844. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  845. }
  846. }
  847. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  848. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  849. }
  850. if(HPTaskAwoken == pdTRUE) {
  851. portYIELD_FROM_ISR();
  852. }
  853. } else {
  854. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  855. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  856. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  857. uart_reg->int_clr.at_cmd_char_det = 1;
  858. uart_event.type = UART_PATTERN_DET;
  859. uart_event.size = rx_fifo_len;
  860. pat_flg = 1;
  861. }
  862. }
  863. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  864. // When fifo overflows, we reset the fifo.
  865. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  866. uart_reset_rx_fifo(uart_num);
  867. uart_reg->int_clr.rxfifo_ovf = 1;
  868. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  869. uart_event.type = UART_FIFO_OVF;
  870. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  871. if (p_uart->uart_select_notif_callback) {
  872. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  873. }
  874. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  875. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  876. uart_reg->int_clr.brk_det = 1;
  877. uart_event.type = UART_BREAK;
  878. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  879. uart_reg->int_clr.frm_err = 1;
  880. uart_event.type = UART_FRAME_ERR;
  881. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  882. if (p_uart->uart_select_notif_callback) {
  883. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  884. }
  885. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  886. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  887. uart_reg->int_clr.parity_err = 1;
  888. uart_event.type = UART_PARITY_ERR;
  889. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  890. if (p_uart->uart_select_notif_callback) {
  891. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  892. }
  893. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  894. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  895. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  896. uart_reg->conf0.txd_brk = 0;
  897. uart_reg->int_ena.tx_brk_done = 0;
  898. uart_reg->int_clr.tx_brk_done = 1;
  899. if(p_uart->tx_brk_flg == 1) {
  900. uart_reg->int_ena.txfifo_empty = 1;
  901. }
  902. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  903. if(p_uart->tx_brk_flg == 1) {
  904. p_uart->tx_brk_flg = 0;
  905. p_uart->tx_waiting_brk = 0;
  906. } else {
  907. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  908. if(HPTaskAwoken == pdTRUE) {
  909. portYIELD_FROM_ISR();
  910. }
  911. }
  912. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  913. uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  914. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  915. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  916. uart_reg->int_clr.at_cmd_char_det = 1;
  917. uart_event.type = UART_PATTERN_DET;
  918. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  919. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  920. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  921. // RS485 collision or frame error interrupt triggered
  922. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  923. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  924. uart_reset_rx_fifo(uart_num);
  925. // Set collision detection flag
  926. p_uart_obj[uart_num]->coll_det_flg = true;
  927. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  928. uart_event.type = UART_EVENT_MAX;
  929. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  930. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  931. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  932. // If RS485 half duplex mode is enable then reset FIFO and
  933. // reset RTS pin to start receiver driver
  934. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  935. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  936. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  937. uart_reg->conf0.sw_rts = 1;
  938. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  939. }
  940. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  941. if (HPTaskAwoken == pdTRUE) {
  942. portYIELD_FROM_ISR();
  943. }
  944. } else {
  945. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  946. uart_event.type = UART_EVENT_MAX;
  947. }
  948. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  949. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  950. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  951. }
  952. if(HPTaskAwoken == pdTRUE) {
  953. portYIELD_FROM_ISR();
  954. }
  955. }
  956. uart_intr_status = uart_reg->int_st.val;
  957. }
  958. }
  959. /**************************************************************/
  960. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  961. {
  962. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  963. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  964. BaseType_t res;
  965. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  966. //Take tx_mux
  967. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  968. if(res == pdFALSE) {
  969. return ESP_ERR_TIMEOUT;
  970. }
  971. ticks_to_wait = ticks_end - xTaskGetTickCount();
  972. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  973. ticks_to_wait = ticks_end - xTaskGetTickCount();
  974. if(UART[uart_num]->status.txfifo_cnt == 0) {
  975. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  976. return ESP_OK;
  977. }
  978. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  979. //take 2nd tx_done_sem, wait given from ISR
  980. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  981. if(res == pdFALSE) {
  982. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  983. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  984. return ESP_ERR_TIMEOUT;
  985. }
  986. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  987. return ESP_OK;
  988. }
  989. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  990. {
  991. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  992. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  993. UART[uart_num]->conf0.txd_brk = 1;
  994. UART[uart_num]->int_clr.tx_brk_done = 1;
  995. UART[uart_num]->int_ena.tx_brk_done = 1;
  996. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  997. return ESP_OK;
  998. }
  999. //Fill UART tx_fifo and return a number,
  1000. //This function by itself is not thread-safe, always call from within a muxed section.
  1001. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1002. {
  1003. uint8_t i = 0;
  1004. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1005. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1006. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1007. // Set the RTS pin if RS485 mode is enabled
  1008. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1009. UART[uart_num]->conf0.sw_rts = 0;
  1010. UART[uart_num]->int_ena.tx_done = 1;
  1011. }
  1012. for (i = 0; i < copy_cnt; i++) {
  1013. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1014. }
  1015. return copy_cnt;
  1016. }
  1017. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1018. {
  1019. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1020. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1021. UART_CHECK(buffer, "buffer null", (-1));
  1022. if(len == 0) {
  1023. return 0;
  1024. }
  1025. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1026. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1027. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1028. return tx_len;
  1029. }
  1030. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1031. {
  1032. if(size == 0) {
  1033. return 0;
  1034. }
  1035. size_t original_size = size;
  1036. //lock for uart_tx
  1037. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1038. p_uart_obj[uart_num]->coll_det_flg = false;
  1039. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1040. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1041. int offset = 0;
  1042. uart_tx_data_t evt;
  1043. evt.tx_data.size = size;
  1044. evt.tx_data.brk_len = brk_len;
  1045. if(brk_en) {
  1046. evt.type = UART_DATA_BREAK;
  1047. } else {
  1048. evt.type = UART_DATA;
  1049. }
  1050. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1051. while(size > 0) {
  1052. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1053. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1054. size -= send_size;
  1055. offset += send_size;
  1056. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1057. }
  1058. } else {
  1059. while(size) {
  1060. //semaphore for tx_fifo available
  1061. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1062. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1063. if(sent < size) {
  1064. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1065. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1066. }
  1067. size -= sent;
  1068. src += sent;
  1069. }
  1070. }
  1071. if(brk_en) {
  1072. uart_set_break(uart_num, brk_len);
  1073. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1074. }
  1075. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1076. }
  1077. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1078. return original_size;
  1079. }
  1080. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1081. {
  1082. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1083. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1084. UART_CHECK(src, "buffer null", (-1));
  1085. return uart_tx_all(uart_num, src, size, 0, 0);
  1086. }
  1087. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1088. {
  1089. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1090. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1091. UART_CHECK((size > 0), "uart size error", (-1));
  1092. UART_CHECK((src), "uart data null", (-1));
  1093. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1094. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1095. }
  1096. static bool uart_check_buf_full(uart_port_t uart_num)
  1097. {
  1098. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1099. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1100. if(res == pdTRUE) {
  1101. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1102. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1103. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1104. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1105. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1106. return true;
  1107. }
  1108. }
  1109. return false;
  1110. }
  1111. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1112. {
  1113. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1114. UART_CHECK((buf), "uart data null", (-1));
  1115. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1116. uint8_t* data = NULL;
  1117. size_t size;
  1118. size_t copy_len = 0;
  1119. int len_tmp;
  1120. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1121. return -1;
  1122. }
  1123. while(length) {
  1124. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1125. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1126. if(data) {
  1127. p_uart_obj[uart_num]->rx_head_ptr = data;
  1128. p_uart_obj[uart_num]->rx_ptr = data;
  1129. p_uart_obj[uart_num]->rx_cur_remain = size;
  1130. } else {
  1131. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1132. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1133. //to solve the possible asynchronous issues.
  1134. if(uart_check_buf_full(uart_num)) {
  1135. //This condition will never be true if `uart_read_bytes`
  1136. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1137. continue;
  1138. } else {
  1139. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1140. return copy_len;
  1141. }
  1142. }
  1143. }
  1144. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1145. len_tmp = length;
  1146. } else {
  1147. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1148. }
  1149. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1150. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1151. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1152. uart_pattern_queue_update(uart_num, len_tmp);
  1153. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1154. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1155. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1156. copy_len += len_tmp;
  1157. length -= len_tmp;
  1158. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1159. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1160. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1161. p_uart_obj[uart_num]->rx_ptr = NULL;
  1162. uart_check_buf_full(uart_num);
  1163. }
  1164. }
  1165. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1166. return copy_len;
  1167. }
  1168. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1169. {
  1170. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1171. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1172. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1173. return ESP_OK;
  1174. }
  1175. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1176. esp_err_t uart_flush_input(uart_port_t uart_num)
  1177. {
  1178. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1179. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1180. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1181. uint8_t* data;
  1182. size_t size;
  1183. //rx sem protect the ring buffer read related functions
  1184. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1185. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1186. while(true) {
  1187. if(p_uart->rx_head_ptr) {
  1188. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1189. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1190. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1191. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1192. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1193. p_uart->rx_ptr = NULL;
  1194. p_uart->rx_cur_remain = 0;
  1195. p_uart->rx_head_ptr = NULL;
  1196. }
  1197. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1198. if(data == NULL) {
  1199. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1200. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1201. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1202. }
  1203. //We also need to clear the `rx_buffer_full_flg` here.
  1204. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1205. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1206. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1207. break;
  1208. }
  1209. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1210. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1211. uart_pattern_queue_update(uart_num, size);
  1212. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1213. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1214. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1215. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1216. if(res == pdTRUE) {
  1217. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1218. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1219. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1220. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1221. }
  1222. }
  1223. }
  1224. p_uart->rx_ptr = NULL;
  1225. p_uart->rx_cur_remain = 0;
  1226. p_uart->rx_head_ptr = NULL;
  1227. uart_reset_rx_fifo(uart_num);
  1228. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1229. xSemaphoreGive(p_uart->rx_mux);
  1230. return ESP_OK;
  1231. }
  1232. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1233. {
  1234. esp_err_t r;
  1235. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1236. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1237. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1238. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1239. if(p_uart_obj[uart_num] == NULL) {
  1240. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1241. if(p_uart_obj[uart_num] == NULL) {
  1242. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1243. return ESP_FAIL;
  1244. }
  1245. p_uart_obj[uart_num]->uart_num = uart_num;
  1246. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1247. p_uart_obj[uart_num]->coll_det_flg = false;
  1248. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1249. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1250. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1251. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1252. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1253. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1254. p_uart_obj[uart_num]->queue_size = queue_size;
  1255. p_uart_obj[uart_num]->tx_ptr = NULL;
  1256. p_uart_obj[uart_num]->tx_head = NULL;
  1257. p_uart_obj[uart_num]->tx_len_tot = 0;
  1258. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1259. p_uart_obj[uart_num]->tx_brk_len = 0;
  1260. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1261. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1262. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1263. if(uart_queue) {
  1264. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1265. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1266. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1267. } else {
  1268. p_uart_obj[uart_num]->xQueueUart = NULL;
  1269. }
  1270. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1271. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1272. p_uart_obj[uart_num]->rx_ptr = NULL;
  1273. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1274. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1275. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1276. if(tx_buffer_size > 0) {
  1277. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1278. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1279. } else {
  1280. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1281. p_uart_obj[uart_num]->tx_buf_size = 0;
  1282. }
  1283. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1284. } else {
  1285. ESP_LOGE(UART_TAG, "UART driver already installed");
  1286. return ESP_FAIL;
  1287. }
  1288. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1289. if (r!=ESP_OK) goto err;
  1290. uart_intr_config_t uart_intr = {
  1291. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1292. | UART_RXFIFO_TOUT_INT_ENA_M
  1293. | UART_FRM_ERR_INT_ENA_M
  1294. | UART_RXFIFO_OVF_INT_ENA_M
  1295. | UART_BRK_DET_INT_ENA_M
  1296. | UART_PARITY_ERR_INT_ENA_M,
  1297. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1298. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1299. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1300. };
  1301. r=uart_intr_config(uart_num, &uart_intr);
  1302. if (r!=ESP_OK) goto err;
  1303. return r;
  1304. err:
  1305. uart_driver_delete(uart_num);
  1306. return r;
  1307. }
  1308. //Make sure no other tasks are still using UART before you call this function
  1309. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1310. {
  1311. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1312. if(p_uart_obj[uart_num] == NULL) {
  1313. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1314. return ESP_OK;
  1315. }
  1316. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1317. uart_disable_rx_intr(uart_num);
  1318. uart_disable_tx_intr(uart_num);
  1319. uart_pattern_link_free(uart_num);
  1320. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1321. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1322. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1323. }
  1324. if(p_uart_obj[uart_num]->tx_done_sem) {
  1325. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1326. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1327. }
  1328. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1329. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1330. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1331. }
  1332. if(p_uart_obj[uart_num]->tx_mux) {
  1333. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1334. p_uart_obj[uart_num]->tx_mux = NULL;
  1335. }
  1336. if(p_uart_obj[uart_num]->rx_mux) {
  1337. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1338. p_uart_obj[uart_num]->rx_mux = NULL;
  1339. }
  1340. if(p_uart_obj[uart_num]->xQueueUart) {
  1341. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1342. p_uart_obj[uart_num]->xQueueUart = NULL;
  1343. }
  1344. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1345. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1346. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1347. }
  1348. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1349. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1350. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1351. }
  1352. free(p_uart_obj[uart_num]);
  1353. p_uart_obj[uart_num] = NULL;
  1354. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1355. if(uart_num == UART_NUM_0) {
  1356. periph_module_disable(PERIPH_UART0_MODULE);
  1357. } else if(uart_num == UART_NUM_1) {
  1358. periph_module_disable(PERIPH_UART1_MODULE);
  1359. } else if(uart_num == UART_NUM_2) {
  1360. periph_module_disable(PERIPH_UART2_MODULE);
  1361. }
  1362. }
  1363. return ESP_OK;
  1364. }
  1365. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1366. {
  1367. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1368. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1369. }
  1370. }
  1371. portMUX_TYPE *uart_get_selectlock()
  1372. {
  1373. return &uart_selectlock;
  1374. }
  1375. // Set UART mode
  1376. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1377. {
  1378. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1379. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1380. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1381. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1382. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1383. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1384. }
  1385. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1386. UART[uart_num]->rs485_conf.en = 0;
  1387. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1388. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1389. UART[uart_num]->conf0.irda_en = 0;
  1390. UART[uart_num]->conf0.sw_rts = 0;
  1391. switch (mode) {
  1392. case UART_MODE_UART:
  1393. break;
  1394. case UART_MODE_RS485_COLLISION_DETECT:
  1395. // This mode allows read while transmitting that allows collision detection
  1396. p_uart_obj[uart_num]->coll_det_flg = false;
  1397. // Transmitter’s output signal loop back to the receiver’s input signal
  1398. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1399. // Transmitter should send data when its receiver is busy
  1400. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1401. UART[uart_num]->rs485_conf.en = 1;
  1402. // Enable collision detection interrupts
  1403. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1404. | UART_RXFIFO_FULL_INT_ENA
  1405. | UART_RS485_CLASH_INT_ENA
  1406. | UART_RS485_FRM_ERR_INT_ENA
  1407. | UART_RS485_PARITY_ERR_INT_ENA);
  1408. break;
  1409. case UART_MODE_RS485_APP_CTRL:
  1410. // Application software control, remove echo
  1411. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1412. UART[uart_num]->rs485_conf.en = 1;
  1413. break;
  1414. case UART_MODE_RS485_HALF_DUPLEX:
  1415. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1416. UART[uart_num]->conf0.sw_rts = 1;
  1417. UART[uart_num]->rs485_conf.en = 1;
  1418. // Must be set to 0 to automatically remove echo
  1419. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1420. // This is to void collision
  1421. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1422. break;
  1423. case UART_MODE_IRDA:
  1424. UART[uart_num]->conf0.irda_en = 1;
  1425. break;
  1426. default:
  1427. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1428. break;
  1429. }
  1430. p_uart_obj[uart_num]->uart_mode = mode;
  1431. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1432. return ESP_OK;
  1433. }
  1434. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1435. {
  1436. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1437. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1438. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1439. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1440. // transmission time of one symbol (~11 bit) on current baudrate
  1441. if (tout_thresh > 0) {
  1442. UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & UART_RX_TOUT_THRHD_V);
  1443. UART[uart_num]->conf1.rx_tout_en = 1;
  1444. } else {
  1445. UART[uart_num]->conf1.rx_tout_en = 0;
  1446. }
  1447. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1448. return ESP_OK;
  1449. }
  1450. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1451. {
  1452. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1453. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1454. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1455. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1456. "wrong mode", ESP_ERR_INVALID_ARG);
  1457. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1458. return ESP_OK;
  1459. }
  1460. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1461. {
  1462. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1463. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1464. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1465. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1466. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1467. return ESP_OK;
  1468. }
  1469. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1470. {
  1471. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1472. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1473. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1474. return ESP_OK;
  1475. }