system_api.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414
  1. // Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <string.h>
  15. #include "esp_system.h"
  16. #include "esp_attr.h"
  17. #include "esp_wifi.h"
  18. #include "esp_wifi_internal.h"
  19. #include "esp_log.h"
  20. #include "sdkconfig.h"
  21. #include "rom/efuse.h"
  22. #include "rom/cache.h"
  23. #include "rom/uart.h"
  24. #include "soc/dport_reg.h"
  25. #include "soc/gpio_reg.h"
  26. #include "soc/efuse_reg.h"
  27. #include "soc/rtc_cntl_reg.h"
  28. #include "soc/timer_group_reg.h"
  29. #include "soc/timer_group_struct.h"
  30. #include "soc/cpu.h"
  31. #include "soc/rtc.h"
  32. #include "soc/rtc_wdt.h"
  33. #include "freertos/FreeRTOS.h"
  34. #include "freertos/task.h"
  35. #include "freertos/xtensa_api.h"
  36. #include "esp_heap_caps.h"
  37. #include "esp_system_internal.h"
  38. static const char* TAG = "system_api";
  39. static uint8_t base_mac_addr[6] = { 0 };
  40. #define SHUTDOWN_HANDLERS_NO 2
  41. static shutdown_handler_t shutdown_handlers[SHUTDOWN_HANDLERS_NO];
  42. void system_init()
  43. {
  44. }
  45. esp_err_t esp_base_mac_addr_set(uint8_t *mac)
  46. {
  47. if (mac == NULL) {
  48. ESP_LOGE(TAG, "Base MAC address is NULL");
  49. abort();
  50. }
  51. memcpy(base_mac_addr, mac, 6);
  52. return ESP_OK;
  53. }
  54. esp_err_t esp_base_mac_addr_get(uint8_t *mac)
  55. {
  56. uint8_t null_mac[6] = {0};
  57. if (memcmp(base_mac_addr, null_mac, 6) == 0) {
  58. ESP_LOGI(TAG, "Base MAC address is not set, read default base MAC address from BLK0 of EFUSE");
  59. return ESP_ERR_INVALID_MAC;
  60. }
  61. memcpy(mac, base_mac_addr, 6);
  62. return ESP_OK;
  63. }
  64. esp_err_t esp_efuse_mac_get_custom(uint8_t *mac)
  65. {
  66. uint32_t mac_low;
  67. uint32_t mac_high;
  68. uint8_t efuse_crc;
  69. uint8_t calc_crc;
  70. uint8_t version = REG_READ(EFUSE_BLK3_RDATA5_REG) >> 24;
  71. if (version != 1) {
  72. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE version error, version = %d", version);
  73. return ESP_ERR_INVALID_VERSION;
  74. }
  75. mac_low = REG_READ(EFUSE_BLK3_RDATA1_REG);
  76. mac_high = REG_READ(EFUSE_BLK3_RDATA0_REG);
  77. mac[0] = mac_high >> 8;
  78. mac[1] = mac_high >> 16;
  79. mac[2] = mac_high >> 24;
  80. mac[3] = mac_low;
  81. mac[4] = mac_low >> 8;
  82. mac[5] = mac_low >> 16;
  83. efuse_crc = mac_high;
  84. calc_crc = esp_crc8(mac, 6);
  85. if (efuse_crc != calc_crc) {
  86. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  87. return ESP_ERR_INVALID_CRC;
  88. }
  89. return ESP_OK;
  90. }
  91. esp_err_t esp_efuse_mac_get_default(uint8_t* mac)
  92. {
  93. uint32_t mac_low;
  94. uint32_t mac_high;
  95. uint8_t efuse_crc;
  96. uint8_t calc_crc;
  97. mac_low = REG_READ(EFUSE_BLK0_RDATA1_REG);
  98. mac_high = REG_READ(EFUSE_BLK0_RDATA2_REG);
  99. mac[0] = mac_high >> 8;
  100. mac[1] = mac_high;
  101. mac[2] = mac_low >> 24;
  102. mac[3] = mac_low >> 16;
  103. mac[4] = mac_low >> 8;
  104. mac[5] = mac_low;
  105. efuse_crc = mac_high >> 16;
  106. calc_crc = esp_crc8(mac, 6);
  107. if (efuse_crc != calc_crc) {
  108. // Small range of MAC addresses are accepted even if CRC is invalid.
  109. // These addresses are reserved for Espressif internal use.
  110. if ((mac_high & 0xFFFF) == 0x18fe) {
  111. if ((mac_low >= 0x346a85c7) && (mac_low <= 0x346a85f8)) {
  112. return ESP_OK;
  113. }
  114. } else {
  115. ESP_LOGE(TAG, "Base MAC address from BLK0 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  116. abort();
  117. }
  118. }
  119. return ESP_OK;
  120. }
  121. esp_err_t system_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
  122. esp_err_t esp_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
  123. esp_err_t esp_derive_local_mac(uint8_t* local_mac, const uint8_t* universal_mac)
  124. {
  125. uint8_t idx;
  126. if (local_mac == NULL || universal_mac == NULL) {
  127. ESP_LOGE(TAG, "mac address param is NULL");
  128. return ESP_ERR_INVALID_ARG;
  129. }
  130. memcpy(local_mac, universal_mac, 6);
  131. for (idx = 0; idx < 64; idx++) {
  132. local_mac[0] = universal_mac[0] | 0x02;
  133. local_mac[0] ^= idx << 2;
  134. if (memcmp(local_mac, universal_mac, 6)) {
  135. break;
  136. }
  137. }
  138. return ESP_OK;
  139. }
  140. esp_err_t esp_read_mac(uint8_t* mac, esp_mac_type_t type)
  141. {
  142. uint8_t efuse_mac[6];
  143. if (mac == NULL) {
  144. ESP_LOGE(TAG, "mac address param is NULL");
  145. return ESP_ERR_INVALID_ARG;
  146. }
  147. if (type < ESP_MAC_WIFI_STA || type > ESP_MAC_ETH) {
  148. ESP_LOGE(TAG, "mac type is incorrect");
  149. return ESP_ERR_INVALID_ARG;
  150. }
  151. _Static_assert(UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR \
  152. || UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR, \
  153. "incorrect NUM_MAC_ADDRESS_FROM_EFUSE value");
  154. if (esp_base_mac_addr_get(efuse_mac) != ESP_OK) {
  155. esp_efuse_mac_get_default(efuse_mac);
  156. }
  157. switch (type) {
  158. case ESP_MAC_WIFI_STA:
  159. memcpy(mac, efuse_mac, 6);
  160. break;
  161. case ESP_MAC_WIFI_SOFTAP:
  162. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  163. memcpy(mac, efuse_mac, 6);
  164. mac[5] += 1;
  165. }
  166. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  167. esp_derive_local_mac(mac, efuse_mac);
  168. }
  169. break;
  170. case ESP_MAC_BT:
  171. memcpy(mac, efuse_mac, 6);
  172. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  173. mac[5] += 2;
  174. }
  175. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  176. mac[5] += 1;
  177. }
  178. break;
  179. case ESP_MAC_ETH:
  180. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  181. memcpy(mac, efuse_mac, 6);
  182. mac[5] += 3;
  183. }
  184. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  185. efuse_mac[5] += 1;
  186. esp_derive_local_mac(mac, efuse_mac);
  187. }
  188. break;
  189. default:
  190. ESP_LOGW(TAG, "incorrect mac type");
  191. break;
  192. }
  193. return ESP_OK;
  194. }
  195. esp_err_t esp_register_shutdown_handler(shutdown_handler_t handler)
  196. {
  197. int i;
  198. for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  199. if (shutdown_handlers[i] == NULL) {
  200. shutdown_handlers[i] = handler;
  201. return ESP_OK;
  202. }
  203. }
  204. return ESP_FAIL;
  205. }
  206. void esp_restart_noos() __attribute__ ((noreturn));
  207. void IRAM_ATTR esp_restart(void)
  208. {
  209. int i;
  210. for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  211. if (shutdown_handlers[i]) {
  212. shutdown_handlers[i]();
  213. }
  214. }
  215. // Disable scheduler on this core.
  216. vTaskSuspendAll();
  217. esp_restart_noos();
  218. }
  219. /* "inner" restart function for after RTOS, interrupts & anything else on this
  220. * core are already stopped. Stalls other core, resets hardware,
  221. * triggers restart.
  222. */
  223. void IRAM_ATTR esp_restart_noos()
  224. {
  225. // Disable interrupts
  226. xt_ints_off(0xFFFFFFFF);
  227. // Enable RTC watchdog for 1 second
  228. rtc_wdt_protect_off();
  229. rtc_wdt_disable();
  230. rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_RTC);
  231. rtc_wdt_set_stage(RTC_WDT_STAGE1, RTC_WDT_STAGE_ACTION_RESET_SYSTEM);
  232. rtc_wdt_set_length_of_reset_signal(RTC_WDT_SYS_RESET_SIG, RTC_WDT_LENGTH_200ns);
  233. rtc_wdt_set_length_of_reset_signal(RTC_WDT_CPU_RESET_SIG, RTC_WDT_LENGTH_200ns);
  234. rtc_wdt_set_time(RTC_WDT_STAGE0, 1000);
  235. rtc_wdt_enable();
  236. rtc_wdt_protect_on();
  237. // Reset and stall the other CPU.
  238. // CPU must be reset before stalling, in case it was running a s32c1i
  239. // instruction. This would cause memory pool to be locked by arbiter
  240. // to the stalled CPU, preventing current CPU from accessing this pool.
  241. const uint32_t core_id = xPortGetCoreID();
  242. const uint32_t other_core_id = (core_id == 0) ? 1 : 0;
  243. esp_cpu_reset(other_core_id);
  244. esp_cpu_stall(other_core_id);
  245. // Other core is now stalled, can access DPORT registers directly
  246. esp_dport_access_int_abort();
  247. // Disable TG0/TG1 watchdogs
  248. TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  249. TIMERG0.wdt_config0.en = 0;
  250. TIMERG0.wdt_wprotect=0;
  251. TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  252. TIMERG1.wdt_config0.en = 0;
  253. TIMERG1.wdt_wprotect=0;
  254. // Flush any data left in UART FIFOs
  255. uart_tx_wait_idle(0);
  256. uart_tx_wait_idle(1);
  257. uart_tx_wait_idle(2);
  258. // Disable cache
  259. Cache_Read_Disable(0);
  260. Cache_Read_Disable(1);
  261. // 2nd stage bootloader reconfigures SPI flash signals.
  262. // Reset them to the defaults expected by ROM.
  263. WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30);
  264. WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30);
  265. WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30);
  266. WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30);
  267. WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30);
  268. WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30);
  269. // Reset wifi/bluetooth/ethernet/sdio (bb/mac)
  270. DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG,
  271. DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST |
  272. DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST |
  273. DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST |
  274. DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST);
  275. DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0);
  276. // Reset timer/spi/uart
  277. DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,
  278. DPORT_TIMERS_RST | DPORT_SPI01_RST | DPORT_UART_RST);
  279. DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
  280. // Set CPU back to XTAL source, no PLL, same as hard reset
  281. rtc_clk_cpu_freq_set_xtal();
  282. // Clear entry point for APP CPU
  283. DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0);
  284. // Reset CPUs
  285. if (core_id == 0) {
  286. // Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
  287. esp_cpu_reset(1);
  288. esp_cpu_reset(0);
  289. } else {
  290. // Running on APP CPU: need to reset PRO CPU and unstall it,
  291. // then reset APP CPU
  292. esp_cpu_reset(0);
  293. esp_cpu_unstall(0);
  294. esp_cpu_reset(1);
  295. }
  296. while(true) {
  297. ;
  298. }
  299. }
  300. void system_restart(void) __attribute__((alias("esp_restart")));
  301. uint32_t esp_get_free_heap_size( void )
  302. {
  303. return heap_caps_get_free_size( MALLOC_CAP_DEFAULT );
  304. }
  305. uint32_t esp_get_minimum_free_heap_size( void )
  306. {
  307. return heap_caps_get_minimum_free_size( MALLOC_CAP_DEFAULT );
  308. }
  309. uint32_t system_get_free_heap_size(void) __attribute__((alias("esp_get_free_heap_size")));
  310. const char* system_get_sdk_version(void)
  311. {
  312. return "master";
  313. }
  314. const char* esp_get_idf_version(void)
  315. {
  316. return IDF_VER;
  317. }
  318. static void get_chip_info_esp32(esp_chip_info_t* out_info)
  319. {
  320. uint32_t reg = REG_READ(EFUSE_BLK0_RDATA3_REG);
  321. memset(out_info, 0, sizeof(*out_info));
  322. out_info->model = CHIP_ESP32;
  323. if ((reg & EFUSE_RD_CHIP_VER_REV1_M) != 0) {
  324. out_info->revision = 1;
  325. }
  326. if ((reg & EFUSE_RD_CHIP_VER_DIS_APP_CPU_M) == 0) {
  327. out_info->cores = 2;
  328. } else {
  329. out_info->cores = 1;
  330. }
  331. out_info->features = CHIP_FEATURE_WIFI_BGN;
  332. if ((reg & EFUSE_RD_CHIP_VER_DIS_BT_M) == 0) {
  333. out_info->features |= CHIP_FEATURE_BT | CHIP_FEATURE_BLE;
  334. }
  335. int package = (reg & EFUSE_RD_CHIP_VER_PKG_M) >> EFUSE_RD_CHIP_VER_PKG_S;
  336. if (package == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 ||
  337. package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 ||
  338. package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) {
  339. out_info->features |= CHIP_FEATURE_EMB_FLASH;
  340. }
  341. }
  342. void esp_chip_info(esp_chip_info_t* out_info)
  343. {
  344. // Only ESP32 is supported now, in the future call one of the
  345. // chip-specific functions based on sdkconfig choice
  346. return get_chip_info_esp32(out_info);
  347. }