uart.c 80 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_types.h"
  8. #include "esp_attr.h"
  9. #include "esp_intr_alloc.h"
  10. #include "esp_log.h"
  11. #include "esp_err.h"
  12. #include "esp_check.h"
  13. #include "malloc.h"
  14. #include "freertos/FreeRTOS.h"
  15. #include "freertos/semphr.h"
  16. #include "freertos/ringbuf.h"
  17. #include "hal/uart_hal.h"
  18. #include "hal/gpio_hal.h"
  19. #include "soc/uart_periph.h"
  20. #include "soc/rtc_cntl_reg.h"
  21. #include "driver/uart.h"
  22. #include "driver/gpio.h"
  23. #include "driver/uart_select.h"
  24. #include "driver/periph_ctrl.h"
  25. #include "sdkconfig.h"
  26. #include "esp_rom_gpio.h"
  27. #if CONFIG_IDF_TARGET_ESP32
  28. #include "esp32/clk.h"
  29. #elif CONFIG_IDF_TARGET_ESP32S2
  30. #include "esp32s2/clk.h"
  31. #elif CONFIG_IDF_TARGET_ESP32S3
  32. #include "esp32s3/clk.h"
  33. #elif CONFIG_IDF_TARGET_ESP32C3
  34. #include "esp32c3/clk.h"
  35. #elif CONFIG_IDF_TARGET_ESP32H2
  36. #include "esp32h2/clk.h"
  37. #endif
  38. #ifdef CONFIG_UART_ISR_IN_IRAM
  39. #define UART_ISR_ATTR IRAM_ATTR
  40. #define UART_MALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
  41. #else
  42. #define UART_ISR_ATTR
  43. #define UART_MALLOC_CAPS MALLOC_CAP_DEFAULT
  44. #endif
  45. #define XOFF (0x13)
  46. #define XON (0x11)
  47. static const char *UART_TAG = "uart";
  48. #define UART_EMPTY_THRESH_DEFAULT (10)
  49. #define UART_FULL_THRESH_DEFAULT (120)
  50. #define UART_TOUT_THRESH_DEFAULT (10)
  51. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  52. #define UART_TX_IDLE_NUM_DEFAULT (0)
  53. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  54. #define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
  55. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  56. | (UART_INTR_RXFIFO_TOUT) \
  57. | (UART_INTR_RXFIFO_OVF) \
  58. | (UART_INTR_BRK_DET) \
  59. | (UART_INTR_PARITY_ERR))
  60. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  61. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  62. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  63. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  64. // Check actual UART mode set
  65. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  66. #define UART_CONTEX_INIT_DEF(uart_num) {\
  67. .hal.dev = UART_LL_GET_HW(uart_num),\
  68. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  69. .hw_enabled = false,\
  70. }
  71. #if SOC_UART_SUPPORT_RTC_CLK
  72. #define RTC_ENABLED(uart_num) (BIT(uart_num))
  73. #endif
  74. typedef struct {
  75. uart_event_type_t type; /*!< UART TX data type */
  76. struct {
  77. int brk_len;
  78. size_t size;
  79. uint8_t data[0];
  80. } tx_data;
  81. } uart_tx_data_t;
  82. typedef struct {
  83. int wr;
  84. int rd;
  85. int len;
  86. int *data;
  87. } uart_pat_rb_t;
  88. typedef struct {
  89. uart_port_t uart_num; /*!< UART port number*/
  90. int event_queue_size; /*!< UART event queue size*/
  91. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  92. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  93. bool coll_det_flg; /*!< UART collision detection flag */
  94. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  95. int rx_buffered_len; /*!< UART cached data length */
  96. int rx_buf_size; /*!< RX ring buffer size */
  97. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  98. uint32_t rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  99. uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
  100. uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
  101. uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  102. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  103. uart_pat_rb_t rx_pattern_pos;
  104. int tx_buf_size; /*!< TX ring buffer size */
  105. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  106. uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  107. uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  108. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  109. uint32_t tx_len_cur;
  110. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  111. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  112. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  113. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  114. QueueHandle_t event_queue; /*!< UART event queue handler*/
  115. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  116. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  117. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  118. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  119. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  120. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  121. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  122. #if CONFIG_UART_ISR_IN_IRAM
  123. void *event_queue_storage;
  124. void *event_queue_struct;
  125. void *rx_ring_buf_storage;
  126. void *rx_ring_buf_struct;
  127. void *tx_ring_buf_storage;
  128. void *tx_ring_buf_struct;
  129. void *rx_mux_struct;
  130. void *tx_mux_struct;
  131. void *tx_fifo_sem_struct;
  132. void *tx_done_sem_struct;
  133. void *tx_brk_sem_struct;
  134. #endif
  135. } uart_obj_t;
  136. typedef struct {
  137. uart_hal_context_t hal; /*!< UART hal context*/
  138. portMUX_TYPE spinlock;
  139. bool hw_enabled;
  140. } uart_context_t;
  141. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  142. static uart_context_t uart_context[UART_NUM_MAX] = {
  143. UART_CONTEX_INIT_DEF(UART_NUM_0),
  144. UART_CONTEX_INIT_DEF(UART_NUM_1),
  145. #if UART_NUM_MAX > 2
  146. UART_CONTEX_INIT_DEF(UART_NUM_2),
  147. #endif
  148. };
  149. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  150. #if SOC_UART_SUPPORT_RTC_CLK
  151. static uint8_t rtc_enabled = 0;
  152. static portMUX_TYPE rtc_num_spinlock = portMUX_INITIALIZER_UNLOCKED;
  153. static void rtc_clk_enable(uart_port_t uart_num)
  154. {
  155. portENTER_CRITICAL(&rtc_num_spinlock);
  156. if (!(rtc_enabled & RTC_ENABLED(uart_num))) {
  157. rtc_enabled |= RTC_ENABLED(uart_num);
  158. }
  159. SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  160. portEXIT_CRITICAL(&rtc_num_spinlock);
  161. }
  162. static void rtc_clk_disable(uart_port_t uart_num)
  163. {
  164. assert(rtc_enabled & RTC_ENABLED(uart_num));
  165. portENTER_CRITICAL(&rtc_num_spinlock);
  166. rtc_enabled &= ~RTC_ENABLED(uart_num);
  167. if (rtc_enabled == 0) {
  168. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  169. }
  170. portEXIT_CRITICAL(&rtc_num_spinlock);
  171. }
  172. #endif
  173. static void uart_module_enable(uart_port_t uart_num)
  174. {
  175. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  176. if (uart_context[uart_num].hw_enabled != true) {
  177. periph_module_enable(uart_periph_signal[uart_num].module);
  178. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  179. // Workaround for ESP32C3: enable core reset
  180. // before enabling uart module clock
  181. // to prevent uart output garbage value.
  182. #if SOC_UART_REQUIRE_CORE_RESET
  183. uart_hal_set_reset_core(&(uart_context[uart_num].hal), true);
  184. periph_module_reset(uart_periph_signal[uart_num].module);
  185. uart_hal_set_reset_core(&(uart_context[uart_num].hal), false);
  186. #else
  187. periph_module_reset(uart_periph_signal[uart_num].module);
  188. #endif
  189. }
  190. uart_context[uart_num].hw_enabled = true;
  191. }
  192. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  193. }
  194. static void uart_module_disable(uart_port_t uart_num)
  195. {
  196. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  197. if (uart_context[uart_num].hw_enabled != false) {
  198. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  199. periph_module_disable(uart_periph_signal[uart_num].module);
  200. }
  201. uart_context[uart_num].hw_enabled = false;
  202. }
  203. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  204. }
  205. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  206. {
  207. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  208. ESP_RETURN_ON_FALSE((data_bit < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  209. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  210. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  211. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  212. return ESP_OK;
  213. }
  214. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
  215. {
  216. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  217. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  218. return ESP_OK;
  219. }
  220. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  221. {
  222. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  223. ESP_RETURN_ON_FALSE((stop_bit < UART_STOP_BITS_MAX), ESP_FAIL, UART_TAG, "stop bit error");
  224. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  225. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  226. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  227. return ESP_OK;
  228. }
  229. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
  230. {
  231. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  232. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  233. return ESP_OK;
  234. }
  235. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  236. {
  237. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  238. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  239. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  240. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  241. return ESP_OK;
  242. }
  243. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
  244. {
  245. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  246. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  247. return ESP_OK;
  248. }
  249. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  250. {
  251. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  252. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  253. uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate);
  254. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  255. return ESP_OK;
  256. }
  257. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  258. {
  259. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  260. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  261. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  262. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  263. return ESP_OK;
  264. }
  265. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  266. {
  267. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  268. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  269. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  270. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  271. return ESP_OK;
  272. }
  273. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  274. {
  275. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  276. ESP_RETURN_ON_FALSE((rx_thresh_xon < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xon thresh error");
  277. ESP_RETURN_ON_FALSE((rx_thresh_xoff < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xoff thresh error");
  278. uart_sw_flowctrl_t sw_flow_ctl = {
  279. .xon_char = XON,
  280. .xoff_char = XOFF,
  281. .xon_thrd = rx_thresh_xon,
  282. .xoff_thrd = rx_thresh_xoff,
  283. };
  284. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  285. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  286. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  287. return ESP_OK;
  288. }
  289. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  290. {
  291. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  292. ESP_RETURN_ON_FALSE((rx_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
  293. ESP_RETURN_ON_FALSE((flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  294. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  295. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  296. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  297. return ESP_OK;
  298. }
  299. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
  300. {
  301. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  302. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  303. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  304. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  305. return ESP_OK;
  306. }
  307. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  308. {
  309. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  310. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  311. return ESP_OK;
  312. }
  313. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  314. {
  315. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  316. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  317. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  318. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  319. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  320. return ESP_OK;
  321. }
  322. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  323. {
  324. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  325. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  326. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  327. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  328. return ESP_OK;
  329. }
  330. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  331. {
  332. int *pdata = NULL;
  333. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  334. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  335. pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  336. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  337. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  338. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  339. }
  340. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  341. free(pdata);
  342. return ESP_OK;
  343. }
  344. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  345. {
  346. esp_err_t ret = ESP_OK;
  347. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  348. int next = p_pos->wr + 1;
  349. if (next >= p_pos->len) {
  350. next = 0;
  351. }
  352. if (next == p_pos->rd) {
  353. #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
  354. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  355. #endif
  356. ret = ESP_FAIL;
  357. } else {
  358. p_pos->data[p_pos->wr] = pos;
  359. p_pos->wr = next;
  360. ret = ESP_OK;
  361. }
  362. return ret;
  363. }
  364. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  365. {
  366. if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  367. return ESP_ERR_INVALID_STATE;
  368. } else {
  369. esp_err_t ret = ESP_OK;
  370. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  371. if (p_pos->rd == p_pos->wr) {
  372. ret = ESP_FAIL;
  373. } else {
  374. p_pos->rd++;
  375. }
  376. if (p_pos->rd >= p_pos->len) {
  377. p_pos->rd = 0;
  378. }
  379. return ret;
  380. }
  381. }
  382. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  383. {
  384. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  385. int rd = p_pos->rd;
  386. while (rd != p_pos->wr) {
  387. p_pos->data[rd] -= diff_len;
  388. int rd_rec = rd;
  389. rd ++;
  390. if (rd >= p_pos->len) {
  391. rd = 0;
  392. }
  393. if (p_pos->data[rd_rec] < 0) {
  394. p_pos->rd = rd;
  395. }
  396. }
  397. return ESP_OK;
  398. }
  399. int uart_pattern_pop_pos(uart_port_t uart_num)
  400. {
  401. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  402. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  403. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  404. int pos = -1;
  405. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  406. pos = pat_pos->data[pat_pos->rd];
  407. uart_pattern_dequeue(uart_num);
  408. }
  409. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  410. return pos;
  411. }
  412. int uart_pattern_get_pos(uart_port_t uart_num)
  413. {
  414. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  415. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  416. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  417. int pos = -1;
  418. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  419. pos = pat_pos->data[pat_pos->rd];
  420. }
  421. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  422. return pos;
  423. }
  424. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  425. {
  426. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  427. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  428. int *pdata = (int *) malloc(queue_length * sizeof(int));
  429. if (pdata == NULL) {
  430. return ESP_ERR_NO_MEM;
  431. }
  432. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  433. int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  434. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  435. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  436. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  437. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  438. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  439. free(ptmp);
  440. return ESP_OK;
  441. }
  442. #if CONFIG_IDF_TARGET_ESP32
  443. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  444. {
  445. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  446. ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  447. ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  448. ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  449. uart_at_cmd_t at_cmd = {0};
  450. at_cmd.cmd_char = pattern_chr;
  451. at_cmd.char_num = chr_num;
  452. at_cmd.gap_tout = chr_tout;
  453. at_cmd.pre_idle = pre_idle;
  454. at_cmd.post_idle = post_idle;
  455. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  456. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  457. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  458. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  459. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  460. return ESP_OK;
  461. }
  462. #endif
  463. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  464. {
  465. ESP_RETURN_ON_FALSE(uart_num < UART_NUM_MAX, ESP_FAIL, UART_TAG, "uart_num error");
  466. ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  467. ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  468. ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  469. uart_at_cmd_t at_cmd = {0};
  470. at_cmd.cmd_char = pattern_chr;
  471. at_cmd.char_num = chr_num;
  472. #if CONFIG_IDF_TARGET_ESP32
  473. int apb_clk_freq = 0;
  474. uint32_t uart_baud = 0;
  475. uint32_t uart_div = 0;
  476. uart_get_baudrate(uart_num, &uart_baud);
  477. apb_clk_freq = esp_clk_apb_freq();
  478. uart_div = apb_clk_freq / uart_baud;
  479. at_cmd.gap_tout = chr_tout * uart_div;
  480. at_cmd.pre_idle = pre_idle * uart_div;
  481. at_cmd.post_idle = post_idle * uart_div;
  482. #else
  483. at_cmd.gap_tout = chr_tout;
  484. at_cmd.pre_idle = pre_idle;
  485. at_cmd.post_idle = post_idle;
  486. #endif
  487. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  488. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  489. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  490. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  491. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  492. return ESP_OK;
  493. }
  494. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  495. {
  496. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  497. }
  498. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  499. {
  500. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  501. }
  502. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  503. {
  504. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  505. }
  506. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  507. {
  508. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  509. }
  510. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  511. {
  512. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  513. ESP_RETURN_ON_FALSE((thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "empty intr threshold error");
  514. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  515. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  516. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  517. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  518. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  519. return ESP_OK;
  520. }
  521. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  522. {
  523. int ret;
  524. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  525. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  526. ret = esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  527. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  528. return ret;
  529. }
  530. esp_err_t uart_isr_free(uart_port_t uart_num)
  531. {
  532. esp_err_t ret;
  533. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  534. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  535. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]->intr_handle != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "uart driver error");
  536. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  537. ret = esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  538. p_uart_obj[uart_num]->intr_handle = NULL;
  539. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  540. return ret;
  541. }
  542. static bool uart_try_set_iomux_pin(uart_port_t uart_num, int io_num, uint32_t idx)
  543. {
  544. /* Store a pointer to the default pin, to optimize access to its fields. */
  545. const uart_periph_sig_t *upin = &uart_periph_signal[uart_num].pins[idx];
  546. /* In theory, if default_gpio is -1, iomux_func should also be -1, but
  547. * let's be safe and test both. */
  548. if (upin->iomux_func == -1 || upin->default_gpio == -1 || upin->default_gpio != io_num) {
  549. return false;
  550. }
  551. /* Assign the correct funct to the GPIO. */
  552. assert (upin->iomux_func != -1);
  553. gpio_iomux_out(io_num, upin->iomux_func, false);
  554. /* If the pin is input, we also have to redirect the signal,
  555. * in order to bypasse the GPIO matrix. */
  556. if (upin->input) {
  557. gpio_iomux_in(io_num, upin->signal);
  558. }
  559. return true;
  560. }
  561. //internal signal can be output to multiple GPIO pads
  562. //only one GPIO pad can connect with input signal
  563. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  564. {
  565. ESP_RETURN_ON_FALSE((uart_num >= 0), ESP_FAIL, UART_TAG, "uart_num error");
  566. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  567. ESP_RETURN_ON_FALSE((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), ESP_FAIL, UART_TAG, "tx_io_num error");
  568. ESP_RETURN_ON_FALSE((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), ESP_FAIL, UART_TAG, "rx_io_num error");
  569. ESP_RETURN_ON_FALSE((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), ESP_FAIL, UART_TAG, "rts_io_num error");
  570. ESP_RETURN_ON_FALSE((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), ESP_FAIL, UART_TAG, "cts_io_num error");
  571. /* In the following statements, if the io_num is negative, no need to configure anything. */
  572. if (tx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, tx_io_num, SOC_UART_TX_PIN_IDX)) {
  573. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  574. gpio_set_level(tx_io_num, 1);
  575. esp_rom_gpio_connect_out_signal(tx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_TX_PIN_IDX), 0, 0);
  576. }
  577. if (rx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rx_io_num, SOC_UART_RX_PIN_IDX)) {
  578. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  579. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  580. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  581. esp_rom_gpio_connect_in_signal(rx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), 0);
  582. }
  583. if (rts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rts_io_num, SOC_UART_RTS_PIN_IDX)) {
  584. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  585. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  586. esp_rom_gpio_connect_out_signal(rts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0);
  587. }
  588. if (cts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, cts_io_num, SOC_UART_CTS_PIN_IDX)) {
  589. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  590. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  591. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  592. esp_rom_gpio_connect_in_signal(cts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_CTS_PIN_IDX), 0);
  593. }
  594. return ESP_OK;
  595. }
  596. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  597. {
  598. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  599. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_FAIL, UART_TAG, "disable hw flowctrl before using sw control");
  600. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  601. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  602. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  603. return ESP_OK;
  604. }
  605. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  606. {
  607. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  608. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  609. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  610. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  611. return ESP_OK;
  612. }
  613. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  614. {
  615. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  616. ESP_RETURN_ON_FALSE((idle_num <= UART_TX_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart idle num error");
  617. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  618. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  619. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  620. return ESP_OK;
  621. }
  622. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  623. {
  624. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  625. ESP_RETURN_ON_FALSE((uart_config), ESP_FAIL, UART_TAG, "param null");
  626. ESP_RETURN_ON_FALSE((uart_config->rx_flow_ctrl_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
  627. ESP_RETURN_ON_FALSE((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  628. ESP_RETURN_ON_FALSE((uart_config->data_bits < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  629. uart_module_enable(uart_num);
  630. #if SOC_UART_SUPPORT_RTC_CLK
  631. if (uart_config->source_clk == UART_SCLK_RTC) {
  632. rtc_clk_enable(uart_num);
  633. }
  634. #endif
  635. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  636. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  637. uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_config->source_clk);
  638. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate);
  639. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  640. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  641. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  642. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  643. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  644. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  645. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  646. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  647. return ESP_OK;
  648. }
  649. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  650. {
  651. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  652. ESP_RETURN_ON_FALSE((intr_conf), ESP_FAIL, UART_TAG, "param null");
  653. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  654. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  655. if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  656. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  657. } else {
  658. //Disable rx_tout intr
  659. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  660. }
  661. if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  662. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  663. }
  664. if (intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  665. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  666. }
  667. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  668. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  669. return ESP_OK;
  670. }
  671. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, uint8_t pat_num)
  672. {
  673. int cnt = 0;
  674. int len = length;
  675. while (len >= 0) {
  676. if (buf[len] == pat_chr) {
  677. cnt++;
  678. } else {
  679. cnt = 0;
  680. }
  681. if (cnt >= pat_num) {
  682. break;
  683. }
  684. len --;
  685. }
  686. return len;
  687. }
  688. //internal isr handler for default driver code.
  689. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  690. {
  691. uart_obj_t *p_uart = (uart_obj_t *) param;
  692. uint8_t uart_num = p_uart->uart_num;
  693. int rx_fifo_len = 0;
  694. uint32_t uart_intr_status = 0;
  695. uart_event_t uart_event;
  696. portBASE_TYPE HPTaskAwoken = 0;
  697. static uint8_t pat_flg = 0;
  698. while (1) {
  699. // The `continue statement` may cause the interrupt to loop infinitely
  700. // we exit the interrupt here
  701. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  702. //Exit form while loop
  703. if (uart_intr_status == 0) {
  704. break;
  705. }
  706. uart_event.type = UART_EVENT_MAX;
  707. if (uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  708. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  709. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  710. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  711. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  712. if (p_uart->tx_waiting_brk) {
  713. continue;
  714. }
  715. //TX semaphore will only be used when tx_buf_size is zero.
  716. if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  717. p_uart->tx_waiting_fifo = false;
  718. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  719. } else {
  720. //We don't use TX ring buffer, because the size is zero.
  721. if (p_uart->tx_buf_size == 0) {
  722. continue;
  723. }
  724. bool en_tx_flg = false;
  725. uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  726. //We need to put a loop here, in case all the buffer items are very short.
  727. //That would cause a watch_dog reset because empty interrupt happens so often.
  728. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  729. while (tx_fifo_rem) {
  730. if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  731. size_t size;
  732. p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  733. if (p_uart->tx_head) {
  734. //The first item is the data description
  735. //Get the first item to get the data information
  736. if (p_uart->tx_len_tot == 0) {
  737. p_uart->tx_ptr = NULL;
  738. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  739. if (p_uart->tx_head->type == UART_DATA_BREAK) {
  740. p_uart->tx_brk_flg = 1;
  741. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  742. }
  743. //We have saved the data description from the 1st item, return buffer.
  744. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  745. } else if (p_uart->tx_ptr == NULL) {
  746. //Update the TX item pointer, we will need this to return item to buffer.
  747. p_uart->tx_ptr = (uint8_t *)p_uart->tx_head;
  748. en_tx_flg = true;
  749. p_uart->tx_len_cur = size;
  750. }
  751. } else {
  752. //Can not get data from ring buffer, return;
  753. break;
  754. }
  755. }
  756. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  757. //To fill the TX FIFO.
  758. uint32_t send_len = 0;
  759. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  760. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  761. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  762. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  763. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  764. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  765. }
  766. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  767. (const uint8_t *)p_uart->tx_ptr,
  768. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  769. &send_len);
  770. p_uart->tx_ptr += send_len;
  771. p_uart->tx_len_tot -= send_len;
  772. p_uart->tx_len_cur -= send_len;
  773. tx_fifo_rem -= send_len;
  774. if (p_uart->tx_len_cur == 0) {
  775. //Return item to ring buffer.
  776. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  777. p_uart->tx_head = NULL;
  778. p_uart->tx_ptr = NULL;
  779. //Sending item done, now we need to send break if there is a record.
  780. //Set TX break signal after FIFO is empty
  781. if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  782. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  783. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  784. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  785. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  786. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  787. p_uart->tx_waiting_brk = 1;
  788. //do not enable TX empty interrupt
  789. en_tx_flg = false;
  790. } else {
  791. //enable TX empty interrupt
  792. en_tx_flg = true;
  793. }
  794. } else {
  795. //enable TX empty interrupt
  796. en_tx_flg = true;
  797. }
  798. }
  799. }
  800. if (en_tx_flg) {
  801. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  802. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  803. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  804. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  805. }
  806. }
  807. } else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  808. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  809. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  810. ) {
  811. if (pat_flg == 1) {
  812. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  813. pat_flg = 0;
  814. }
  815. if (p_uart->rx_buffer_full_flg == false) {
  816. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  817. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  818. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  819. }
  820. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  821. uint8_t pat_chr = 0;
  822. uint8_t pat_num = 0;
  823. int pat_idx = -1;
  824. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  825. //Get the buffer from the FIFO
  826. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  827. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  828. uart_event.type = UART_PATTERN_DET;
  829. uart_event.size = rx_fifo_len;
  830. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  831. } else {
  832. //After Copying the Data From FIFO ,Clear intr_status
  833. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  834. uart_event.type = UART_DATA;
  835. uart_event.size = rx_fifo_len;
  836. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  837. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  838. if (p_uart->uart_select_notif_callback) {
  839. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  840. }
  841. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  842. }
  843. p_uart->rx_stash_len = rx_fifo_len;
  844. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  845. //Mainly for applications that uses flow control or small ring buffer.
  846. if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  847. p_uart->rx_buffer_full_flg = true;
  848. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  849. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  850. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  851. if (uart_event.type == UART_PATTERN_DET) {
  852. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  853. if (rx_fifo_len < pat_num) {
  854. //some of the characters are read out in last interrupt
  855. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  856. } else {
  857. uart_pattern_enqueue(uart_num,
  858. pat_idx <= -1 ?
  859. //can not find the pattern in buffer,
  860. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  861. // find the pattern in buffer
  862. p_uart->rx_buffered_len + pat_idx);
  863. }
  864. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  865. if ((p_uart->event_queue != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken))) {
  866. #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
  867. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  868. #endif
  869. }
  870. }
  871. uart_event.type = UART_BUFFER_FULL;
  872. } else {
  873. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  874. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  875. if (rx_fifo_len < pat_num) {
  876. //some of the characters are read out in last interrupt
  877. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  878. } else if (pat_idx >= 0) {
  879. // find the pattern in stash buffer.
  880. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  881. }
  882. }
  883. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  884. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  885. }
  886. } else {
  887. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  888. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  889. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  890. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  891. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  892. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  893. uart_event.type = UART_PATTERN_DET;
  894. uart_event.size = rx_fifo_len;
  895. pat_flg = 1;
  896. }
  897. }
  898. } else if (uart_intr_status & UART_INTR_RXFIFO_OVF) {
  899. // When fifo overflows, we reset the fifo.
  900. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  901. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  902. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  903. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  904. if (p_uart->uart_select_notif_callback) {
  905. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  906. }
  907. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  908. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  909. uart_event.type = UART_FIFO_OVF;
  910. } else if (uart_intr_status & UART_INTR_BRK_DET) {
  911. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  912. uart_event.type = UART_BREAK;
  913. } else if (uart_intr_status & UART_INTR_FRAM_ERR) {
  914. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  915. if (p_uart->uart_select_notif_callback) {
  916. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  917. }
  918. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  919. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  920. uart_event.type = UART_FRAME_ERR;
  921. } else if (uart_intr_status & UART_INTR_PARITY_ERR) {
  922. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  923. if (p_uart->uart_select_notif_callback) {
  924. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  925. }
  926. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  927. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  928. uart_event.type = UART_PARITY_ERR;
  929. } else if (uart_intr_status & UART_INTR_TX_BRK_DONE) {
  930. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  931. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  932. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  933. if (p_uart->tx_brk_flg == 1) {
  934. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  935. }
  936. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  937. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  938. if (p_uart->tx_brk_flg == 1) {
  939. p_uart->tx_brk_flg = 0;
  940. p_uart->tx_waiting_brk = 0;
  941. } else {
  942. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  943. }
  944. } else if (uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  945. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  946. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  947. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  948. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  949. } else if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  950. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  951. uart_event.type = UART_PATTERN_DET;
  952. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  953. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  954. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  955. // RS485 collision or frame error interrupt triggered
  956. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  957. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  958. // Set collision detection flag
  959. p_uart_obj[uart_num]->coll_det_flg = true;
  960. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  961. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  962. uart_event.type = UART_EVENT_MAX;
  963. } else if (uart_intr_status & UART_INTR_TX_DONE) {
  964. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  965. // The TX_DONE interrupt is triggered but transmit is active
  966. // then postpone interrupt processing for next interrupt
  967. uart_event.type = UART_EVENT_MAX;
  968. } else {
  969. // Workaround for RS485: If the RS485 half duplex mode is active
  970. // and transmitter is in idle state then reset received buffer and reset RTS pin
  971. // skip this behavior for other UART modes
  972. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  973. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  974. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  975. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  976. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  977. }
  978. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  979. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  980. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  981. }
  982. } else {
  983. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  984. uart_event.type = UART_EVENT_MAX;
  985. }
  986. if (uart_event.type != UART_EVENT_MAX && p_uart->event_queue) {
  987. if (pdFALSE == xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken)) {
  988. #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
  989. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  990. #endif
  991. }
  992. }
  993. }
  994. if (HPTaskAwoken == pdTRUE) {
  995. portYIELD_FROM_ISR();
  996. }
  997. }
  998. /**************************************************************/
  999. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  1000. {
  1001. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1002. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1003. BaseType_t res;
  1004. portTickType ticks_start = xTaskGetTickCount();
  1005. //Take tx_mux
  1006. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  1007. if (res == pdFALSE) {
  1008. return ESP_ERR_TIMEOUT;
  1009. }
  1010. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1011. if (uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  1012. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1013. return ESP_OK;
  1014. }
  1015. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1016. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1017. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1018. TickType_t ticks_end = xTaskGetTickCount();
  1019. if (ticks_end - ticks_start > ticks_to_wait) {
  1020. ticks_to_wait = 0;
  1021. } else {
  1022. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1023. }
  1024. //take 2nd tx_done_sem, wait given from ISR
  1025. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1026. if (res == pdFALSE) {
  1027. // The TX_DONE interrupt will be disabled in ISR
  1028. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1029. return ESP_ERR_TIMEOUT;
  1030. }
  1031. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1032. return ESP_OK;
  1033. }
  1034. int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
  1035. {
  1036. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1037. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1038. ESP_RETURN_ON_FALSE(buffer, (-1), UART_TAG, "buffer null");
  1039. if (len == 0) {
  1040. return 0;
  1041. }
  1042. int tx_len = 0;
  1043. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1044. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1045. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1046. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1047. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1048. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1049. }
  1050. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t *) buffer, len, (uint32_t *)&tx_len);
  1051. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1052. return tx_len;
  1053. }
  1054. static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
  1055. {
  1056. if (size == 0) {
  1057. return 0;
  1058. }
  1059. size_t original_size = size;
  1060. //lock for uart_tx
  1061. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1062. p_uart_obj[uart_num]->coll_det_flg = false;
  1063. if (p_uart_obj[uart_num]->tx_buf_size > 0) {
  1064. size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1065. int offset = 0;
  1066. uart_tx_data_t evt;
  1067. evt.tx_data.size = size;
  1068. evt.tx_data.brk_len = brk_len;
  1069. if (brk_en) {
  1070. evt.type = UART_DATA_BREAK;
  1071. } else {
  1072. evt.type = UART_DATA;
  1073. }
  1074. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1075. while (size > 0) {
  1076. size_t send_size = size > max_size / 2 ? max_size / 2 : size;
  1077. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
  1078. size -= send_size;
  1079. offset += send_size;
  1080. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1081. }
  1082. } else {
  1083. while (size) {
  1084. //semaphore for tx_fifo available
  1085. if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1086. uint32_t sent = 0;
  1087. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1088. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1089. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1090. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1091. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1092. }
  1093. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t *)src, size, &sent);
  1094. if (sent < size) {
  1095. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1096. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1097. }
  1098. size -= sent;
  1099. src += sent;
  1100. }
  1101. }
  1102. if (brk_en) {
  1103. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1104. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1105. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1106. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1107. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1108. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1109. }
  1110. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1111. }
  1112. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1113. return original_size;
  1114. }
  1115. int uart_write_bytes(uart_port_t uart_num, const void *src, size_t size)
  1116. {
  1117. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1118. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num] != NULL), (-1), UART_TAG, "uart driver error");
  1119. ESP_RETURN_ON_FALSE(src, (-1), UART_TAG, "buffer null");
  1120. return uart_tx_all(uart_num, src, size, 0, 0);
  1121. }
  1122. int uart_write_bytes_with_break(uart_port_t uart_num, const void *src, size_t size, int brk_len)
  1123. {
  1124. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1125. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1126. ESP_RETURN_ON_FALSE((size > 0), (-1), UART_TAG, "uart size error");
  1127. ESP_RETURN_ON_FALSE((src), (-1), UART_TAG, "uart data null");
  1128. ESP_RETURN_ON_FALSE((brk_len > 0 && brk_len < 256), (-1), UART_TAG, "break_num error");
  1129. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1130. }
  1131. static bool uart_check_buf_full(uart_port_t uart_num)
  1132. {
  1133. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1134. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1135. if (res == pdTRUE) {
  1136. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1137. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1138. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1139. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1140. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1141. return true;
  1142. }
  1143. }
  1144. return false;
  1145. }
  1146. int uart_read_bytes(uart_port_t uart_num, void *buf, uint32_t length, TickType_t ticks_to_wait)
  1147. {
  1148. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1149. ESP_RETURN_ON_FALSE((buf), (-1), UART_TAG, "uart data null");
  1150. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1151. uint8_t *data = NULL;
  1152. size_t size;
  1153. size_t copy_len = 0;
  1154. int len_tmp;
  1155. if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) {
  1156. return -1;
  1157. }
  1158. while (length) {
  1159. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1160. data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1161. if (data) {
  1162. p_uart_obj[uart_num]->rx_head_ptr = data;
  1163. p_uart_obj[uart_num]->rx_ptr = data;
  1164. p_uart_obj[uart_num]->rx_cur_remain = size;
  1165. } else {
  1166. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1167. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1168. //to solve the possible asynchronous issues.
  1169. if (uart_check_buf_full(uart_num)) {
  1170. //This condition will never be true if `uart_read_bytes`
  1171. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1172. continue;
  1173. } else {
  1174. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1175. return copy_len;
  1176. }
  1177. }
  1178. }
  1179. if (p_uart_obj[uart_num]->rx_cur_remain > length) {
  1180. len_tmp = length;
  1181. } else {
  1182. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1183. }
  1184. memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1185. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1186. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1187. uart_pattern_queue_update(uart_num, len_tmp);
  1188. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1189. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1190. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1191. copy_len += len_tmp;
  1192. length -= len_tmp;
  1193. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1194. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1195. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1196. p_uart_obj[uart_num]->rx_ptr = NULL;
  1197. uart_check_buf_full(uart_num);
  1198. }
  1199. }
  1200. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1201. return copy_len;
  1202. }
  1203. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
  1204. {
  1205. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1206. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1207. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1208. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1209. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1210. return ESP_OK;
  1211. }
  1212. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1213. static esp_err_t uart_disable_intr_mask_and_return_prev(uart_port_t uart_num, uint32_t disable_mask, uint32_t *prev_mask)
  1214. {
  1215. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1216. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1217. *prev_mask = uart_hal_get_intr_ena_status(&uart_context[uart_num].hal) & disable_mask;
  1218. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  1219. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1220. return ESP_OK;
  1221. }
  1222. esp_err_t uart_flush_input(uart_port_t uart_num)
  1223. {
  1224. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1225. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1226. uart_obj_t *p_uart = p_uart_obj[uart_num];
  1227. uint8_t *data;
  1228. size_t size;
  1229. uint32_t prev_mask;
  1230. //rx sem protect the ring buffer read related functions
  1231. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1232. uart_disable_intr_mask_and_return_prev(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT, &prev_mask);
  1233. while (true) {
  1234. if (p_uart->rx_head_ptr) {
  1235. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1236. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1237. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1238. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1239. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1240. p_uart->rx_ptr = NULL;
  1241. p_uart->rx_cur_remain = 0;
  1242. p_uart->rx_head_ptr = NULL;
  1243. }
  1244. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1245. if(data == NULL) {
  1246. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1247. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1248. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1249. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1250. // this must be called outside the critical section
  1251. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1252. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1253. }
  1254. //We also need to clear the `rx_buffer_full_flg` here.
  1255. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1256. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1257. break;
  1258. }
  1259. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1260. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1261. uart_pattern_queue_update(uart_num, size);
  1262. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1263. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1264. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1265. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1266. if (res == pdTRUE) {
  1267. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1268. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1269. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1270. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1271. }
  1272. }
  1273. }
  1274. p_uart->rx_ptr = NULL;
  1275. p_uart->rx_cur_remain = 0;
  1276. p_uart->rx_head_ptr = NULL;
  1277. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1278. uart_enable_intr_mask(uart_num, prev_mask);
  1279. xSemaphoreGive(p_uart->rx_mux);
  1280. return ESP_OK;
  1281. }
  1282. static void uart_free_driver_obj(uart_obj_t *uart_obj)
  1283. {
  1284. if (uart_obj->tx_fifo_sem) {
  1285. vSemaphoreDelete(uart_obj->tx_fifo_sem);
  1286. }
  1287. if (uart_obj->tx_done_sem) {
  1288. vSemaphoreDelete(uart_obj->tx_done_sem);
  1289. }
  1290. if (uart_obj->tx_brk_sem) {
  1291. vSemaphoreDelete(uart_obj->tx_brk_sem);
  1292. }
  1293. if (uart_obj->tx_mux) {
  1294. vSemaphoreDelete(uart_obj->tx_mux);
  1295. }
  1296. if (uart_obj->rx_mux) {
  1297. vSemaphoreDelete(uart_obj->rx_mux);
  1298. }
  1299. if (uart_obj->event_queue) {
  1300. vQueueDelete(uart_obj->event_queue);
  1301. }
  1302. if (uart_obj->rx_ring_buf) {
  1303. vRingbufferDelete(uart_obj->rx_ring_buf);
  1304. }
  1305. if (uart_obj->tx_ring_buf) {
  1306. vRingbufferDelete(uart_obj->tx_ring_buf);
  1307. }
  1308. #if CONFIG_UART_ISR_IN_IRAM
  1309. free(uart_obj->event_queue_storage);
  1310. free(uart_obj->event_queue_struct);
  1311. free(uart_obj->tx_ring_buf_storage);
  1312. free(uart_obj->tx_ring_buf_struct);
  1313. free(uart_obj->rx_ring_buf_storage);
  1314. free(uart_obj->rx_ring_buf_struct);
  1315. free(uart_obj->rx_mux_struct);
  1316. free(uart_obj->tx_mux_struct);
  1317. free(uart_obj->tx_brk_sem_struct);
  1318. free(uart_obj->tx_done_sem_struct);
  1319. free(uart_obj->tx_fifo_sem_struct);
  1320. #endif
  1321. free(uart_obj);
  1322. }
  1323. static uart_obj_t *uart_alloc_driver_obj(int event_queue_size, int tx_buffer_size, int rx_buffer_size)
  1324. {
  1325. uart_obj_t *uart_obj = heap_caps_calloc(1, sizeof(uart_obj_t), UART_MALLOC_CAPS);
  1326. if (!uart_obj) {
  1327. return NULL;
  1328. }
  1329. #if CONFIG_UART_ISR_IN_IRAM
  1330. if (event_queue_size > 0) {
  1331. uart_obj->event_queue_storage = heap_caps_calloc(event_queue_size, sizeof(uart_event_t), UART_MALLOC_CAPS);
  1332. uart_obj->event_queue_struct = heap_caps_calloc(1, sizeof(StaticQueue_t), UART_MALLOC_CAPS);
  1333. if (!uart_obj->event_queue_storage || !uart_obj->event_queue_struct) {
  1334. goto err;
  1335. }
  1336. }
  1337. if (tx_buffer_size > 0) {
  1338. uart_obj->tx_ring_buf_storage = heap_caps_calloc(1, tx_buffer_size, UART_MALLOC_CAPS);
  1339. uart_obj->tx_ring_buf_struct = heap_caps_calloc(1, sizeof(StaticRingbuffer_t), UART_MALLOC_CAPS);
  1340. if (!uart_obj->tx_ring_buf_storage || !uart_obj->tx_ring_buf_struct) {
  1341. goto err;
  1342. }
  1343. }
  1344. uart_obj->rx_ring_buf_storage = heap_caps_calloc(1, rx_buffer_size, UART_MALLOC_CAPS);
  1345. uart_obj->rx_ring_buf_struct = heap_caps_calloc(1, sizeof(StaticRingbuffer_t), UART_MALLOC_CAPS);
  1346. uart_obj->rx_mux_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1347. uart_obj->tx_mux_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1348. uart_obj->tx_brk_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1349. uart_obj->tx_done_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1350. uart_obj->tx_fifo_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1351. if (!uart_obj->rx_ring_buf_storage || !uart_obj->rx_ring_buf_struct || !uart_obj->rx_mux_struct ||
  1352. !uart_obj->tx_mux_struct || !uart_obj->tx_brk_sem_struct || !uart_obj->tx_done_sem_struct ||
  1353. !uart_obj->tx_fifo_sem_struct) {
  1354. goto err;
  1355. }
  1356. if (event_queue_size > 0) {
  1357. uart_obj->event_queue = xQueueCreateStatic(event_queue_size, sizeof(uart_event_t),
  1358. uart_obj->event_queue_storage, uart_obj->event_queue_struct);
  1359. if (!uart_obj->event_queue) {
  1360. goto err;
  1361. }
  1362. }
  1363. if (tx_buffer_size > 0) {
  1364. uart_obj->tx_ring_buf = xRingbufferCreateStatic(tx_buffer_size, RINGBUF_TYPE_NOSPLIT,
  1365. uart_obj->tx_ring_buf_storage, uart_obj->tx_ring_buf_struct);
  1366. if (!uart_obj->tx_ring_buf) {
  1367. goto err;
  1368. }
  1369. }
  1370. uart_obj->rx_ring_buf = xRingbufferCreateStatic(rx_buffer_size, RINGBUF_TYPE_BYTEBUF,
  1371. uart_obj->rx_ring_buf_storage, uart_obj->rx_ring_buf_struct);
  1372. uart_obj->rx_mux = xSemaphoreCreateMutexStatic(uart_obj->rx_mux_struct);
  1373. uart_obj->tx_mux = xSemaphoreCreateMutexStatic(uart_obj->tx_mux_struct);
  1374. uart_obj->tx_brk_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_brk_sem_struct);
  1375. uart_obj->tx_done_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_done_sem_struct);
  1376. uart_obj->tx_fifo_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_fifo_sem_struct);
  1377. if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem ||
  1378. !uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) {
  1379. goto err;
  1380. }
  1381. #else
  1382. if (event_queue_size > 0) {
  1383. uart_obj->event_queue = xQueueCreate(event_queue_size, sizeof(uart_event_t));
  1384. if (!uart_obj->event_queue) {
  1385. goto err;
  1386. }
  1387. }
  1388. if (tx_buffer_size > 0) {
  1389. uart_obj->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1390. if (!uart_obj->tx_ring_buf) {
  1391. goto err;
  1392. }
  1393. }
  1394. uart_obj->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1395. uart_obj->tx_mux = xSemaphoreCreateMutex();
  1396. uart_obj->rx_mux = xSemaphoreCreateMutex();
  1397. uart_obj->tx_brk_sem = xSemaphoreCreateBinary();
  1398. uart_obj->tx_done_sem = xSemaphoreCreateBinary();
  1399. uart_obj->tx_fifo_sem = xSemaphoreCreateBinary();
  1400. if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem ||
  1401. !uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) {
  1402. goto err;
  1403. }
  1404. #endif
  1405. return uart_obj;
  1406. err:
  1407. uart_free_driver_obj(uart_obj);
  1408. return NULL;
  1409. }
  1410. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int event_queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1411. {
  1412. esp_err_t r;
  1413. #ifdef CONFIG_ESP_GDBSTUB_ENABLED
  1414. ESP_RETURN_ON_FALSE((uart_num != CONFIG_ESP_CONSOLE_UART_NUM), ESP_FAIL, UART_TAG, "UART used by GDB-stubs! Please disable GDB in menuconfig.");
  1415. #endif // CONFIG_ESP_GDBSTUB_ENABLED
  1416. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1417. ESP_RETURN_ON_FALSE((rx_buffer_size > SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "uart rx buffer length error");
  1418. ESP_RETURN_ON_FALSE((tx_buffer_size > SOC_UART_FIFO_LEN) || (tx_buffer_size == 0), ESP_FAIL, UART_TAG, "uart tx buffer length error");
  1419. #if CONFIG_UART_ISR_IN_IRAM
  1420. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1421. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1422. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1423. }
  1424. #else
  1425. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1426. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1427. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1428. }
  1429. #endif
  1430. if (p_uart_obj[uart_num] == NULL) {
  1431. p_uart_obj[uart_num] = uart_alloc_driver_obj(event_queue_size, tx_buffer_size, rx_buffer_size);
  1432. if (p_uart_obj[uart_num] == NULL) {
  1433. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1434. return ESP_FAIL;
  1435. }
  1436. p_uart_obj[uart_num]->uart_num = uart_num;
  1437. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1438. p_uart_obj[uart_num]->coll_det_flg = false;
  1439. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1440. p_uart_obj[uart_num]->event_queue_size = event_queue_size;
  1441. p_uart_obj[uart_num]->tx_ptr = NULL;
  1442. p_uart_obj[uart_num]->tx_head = NULL;
  1443. p_uart_obj[uart_num]->tx_len_tot = 0;
  1444. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1445. p_uart_obj[uart_num]->tx_brk_len = 0;
  1446. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1447. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1448. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1449. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1450. p_uart_obj[uart_num]->rx_ptr = NULL;
  1451. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1452. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1453. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1454. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1455. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1456. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1457. if (uart_queue) {
  1458. *uart_queue = p_uart_obj[uart_num]->event_queue;
  1459. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->event_queue));
  1460. }
  1461. } else {
  1462. ESP_LOGE(UART_TAG, "UART driver already installed");
  1463. return ESP_FAIL;
  1464. }
  1465. uart_intr_config_t uart_intr = {
  1466. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1467. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1468. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1469. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
  1470. };
  1471. uart_module_enable(uart_num);
  1472. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1473. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1474. r = uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1475. if (r != ESP_OK) {
  1476. goto err;
  1477. }
  1478. r = uart_intr_config(uart_num, &uart_intr);
  1479. if (r != ESP_OK) {
  1480. goto err;
  1481. }
  1482. return r;
  1483. err:
  1484. uart_driver_delete(uart_num);
  1485. return r;
  1486. }
  1487. //Make sure no other tasks are still using UART before you call this function
  1488. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1489. {
  1490. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1491. if (p_uart_obj[uart_num] == NULL) {
  1492. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1493. return ESP_OK;
  1494. }
  1495. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1496. uart_disable_rx_intr(uart_num);
  1497. uart_disable_tx_intr(uart_num);
  1498. uart_pattern_link_free(uart_num);
  1499. uart_free_driver_obj(p_uart_obj[uart_num]);
  1500. p_uart_obj[uart_num] = NULL;
  1501. #if SOC_UART_SUPPORT_RTC_CLK
  1502. uart_sclk_t sclk = 0;
  1503. uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk);
  1504. if (sclk == UART_SCLK_RTC) {
  1505. rtc_clk_disable(uart_num);
  1506. }
  1507. #endif
  1508. uart_module_disable(uart_num);
  1509. return ESP_OK;
  1510. }
  1511. bool uart_is_driver_installed(uart_port_t uart_num)
  1512. {
  1513. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1514. }
  1515. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1516. {
  1517. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1518. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1519. }
  1520. }
  1521. portMUX_TYPE *uart_get_selectlock(void)
  1522. {
  1523. return &uart_selectlock;
  1524. }
  1525. // Set UART mode
  1526. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1527. {
  1528. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1529. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  1530. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1531. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1532. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_ERR_INVALID_ARG, UART_TAG,
  1533. "disable hw flowctrl before using RS485 mode");
  1534. }
  1535. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1536. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1537. if (mode == UART_MODE_RS485_COLLISION_DETECT) {
  1538. // This mode allows read while transmitting that allows collision detection
  1539. p_uart_obj[uart_num]->coll_det_flg = false;
  1540. // Enable collision detection interrupts
  1541. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1542. | UART_INTR_RXFIFO_FULL
  1543. | UART_INTR_RS485_CLASH
  1544. | UART_INTR_RS485_FRM_ERR
  1545. | UART_INTR_RS485_PARITY_ERR);
  1546. }
  1547. p_uart_obj[uart_num]->uart_mode = mode;
  1548. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1549. return ESP_OK;
  1550. }
  1551. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1552. {
  1553. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1554. ESP_RETURN_ON_FALSE((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1555. "rx fifo full threshold value error");
  1556. if (p_uart_obj[uart_num] == NULL) {
  1557. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1558. return ESP_ERR_INVALID_STATE;
  1559. }
  1560. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1561. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1562. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1563. }
  1564. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1565. return ESP_OK;
  1566. }
  1567. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1568. {
  1569. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1570. ESP_RETURN_ON_FALSE((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1571. "tx fifo empty threshold value error");
  1572. if (p_uart_obj[uart_num] == NULL) {
  1573. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1574. return ESP_ERR_INVALID_STATE;
  1575. }
  1576. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1577. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1578. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1579. }
  1580. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1581. return ESP_OK;
  1582. }
  1583. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1584. {
  1585. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1586. // get maximum timeout threshold
  1587. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1588. if (tout_thresh > tout_max_thresh) {
  1589. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1590. return ESP_ERR_INVALID_ARG;
  1591. }
  1592. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1593. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1594. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1595. return ESP_OK;
  1596. }
  1597. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
  1598. {
  1599. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1600. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1601. ESP_RETURN_ON_FALSE((collision_flag != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "wrong parameter pointer");
  1602. ESP_RETURN_ON_FALSE((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1603. ESP_ERR_INVALID_ARG, UART_TAG, "wrong mode");
  1604. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1605. return ESP_OK;
  1606. }
  1607. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1608. {
  1609. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1610. ESP_RETURN_ON_FALSE((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V && wakeup_threshold > UART_MIN_WAKEUP_THRESH), ESP_ERR_INVALID_ARG, UART_TAG,
  1611. "wakeup_threshold out of bounds");
  1612. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1613. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1614. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1615. return ESP_OK;
  1616. }
  1617. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
  1618. {
  1619. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1620. ESP_RETURN_ON_FALSE((out_wakeup_threshold != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "argument is NULL");
  1621. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1622. return ESP_OK;
  1623. }
  1624. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1625. {
  1626. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1627. while (!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1628. return ESP_OK;
  1629. }
  1630. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1631. {
  1632. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1633. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1634. return ESP_OK;
  1635. }
  1636. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1637. {
  1638. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1639. if (rx_tout) {
  1640. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1641. } else {
  1642. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1643. }
  1644. }