pm_impl.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953
  1. /*
  2. * SPDX-FileCopyrightText: 2016-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdlib.h>
  7. #include <stdbool.h>
  8. #include <string.h>
  9. #include <stdint.h>
  10. #include <sys/param.h>
  11. #include "esp_attr.h"
  12. #include "esp_err.h"
  13. #include "esp_pm.h"
  14. #include "esp_log.h"
  15. #include "esp_cpu.h"
  16. #include "esp_private/crosscore_int.h"
  17. #include "soc/rtc.h"
  18. #include "hal/uart_ll.h"
  19. #include "hal/uart_types.h"
  20. #include "driver/uart.h"
  21. #include "freertos/FreeRTOS.h"
  22. #include "freertos/task.h"
  23. #if CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  24. #include "freertos/xtensa_timer.h"
  25. #include "xtensa/core-macros.h"
  26. #endif
  27. #include "esp_private/pm_impl.h"
  28. #include "esp_private/pm_trace.h"
  29. #include "esp_private/esp_timer_private.h"
  30. #include "esp_private/esp_clk.h"
  31. #include "esp_sleep.h"
  32. #include "sdkconfig.h"
  33. // [refactor-todo] opportunity for further refactor
  34. #if CONFIG_IDF_TARGET_ESP32
  35. #include "esp32/pm.h"
  36. #include "driver/gpio.h"
  37. #elif CONFIG_IDF_TARGET_ESP32S2
  38. #include "esp32s2/pm.h"
  39. #include "driver/gpio.h"
  40. #elif CONFIG_IDF_TARGET_ESP32S3
  41. #include "esp32s3/pm.h"
  42. #elif CONFIG_IDF_TARGET_ESP32C3
  43. #include "esp32c3/pm.h"
  44. #include "driver/gpio.h"
  45. #elif CONFIG_IDF_TARGET_ESP32H4
  46. #include "esp32h4/pm.h"
  47. #include "driver/gpio.h"
  48. #elif CONFIG_IDF_TARGET_ESP32C2
  49. #include "esp32c2/pm.h"
  50. #include "driver/gpio.h"
  51. #elif CONFIG_IDF_TARGET_ESP32C6
  52. #include "esp32c6/pm.h"
  53. #include "driver/gpio.h"
  54. #elif CONFIG_IDF_TARGET_ESP32H2
  55. #include "esp32h2/pm.h"
  56. #include "driver/gpio.h"
  57. #endif
  58. #define MHZ (1000000)
  59. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  60. /* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
  61. * for the purpose of detecting a deadlock.
  62. */
  63. #define CCOMPARE_UPDATE_TIMEOUT 1000000
  64. /* When changing CCOMPARE, don't allow changes if the difference is less
  65. * than this. This is to prevent setting CCOMPARE below CCOUNT.
  66. */
  67. #define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
  68. #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  69. /* When light sleep is used, wake this number of microseconds earlier than
  70. * the next tick.
  71. */
  72. #define LIGHT_SLEEP_EARLY_WAKEUP_US 100
  73. #if CONFIG_IDF_TARGET_ESP32
  74. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  75. #define REF_CLK_DIV_MIN 10
  76. #elif CONFIG_IDF_TARGET_ESP32S2
  77. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  78. #define REF_CLK_DIV_MIN 2
  79. #elif CONFIG_IDF_TARGET_ESP32S3
  80. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  81. #define REF_CLK_DIV_MIN 2 // TODO: IDF-5660
  82. #elif CONFIG_IDF_TARGET_ESP32C3
  83. #define REF_CLK_DIV_MIN 2
  84. #elif CONFIG_IDF_TARGET_ESP32H4
  85. #define REF_CLK_DIV_MIN 2
  86. #elif CONFIG_IDF_TARGET_ESP32C2
  87. #define REF_CLK_DIV_MIN 2
  88. #elif CONFIG_IDF_TARGET_ESP32C6
  89. #define REF_CLK_DIV_MIN 2
  90. #elif CONFIG_IDF_TARGET_ESP32H2
  91. #define REF_CLK_DIV_MIN 2
  92. #endif
  93. #ifdef CONFIG_PM_PROFILING
  94. #define WITH_PROFILING
  95. #endif
  96. static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
  97. /* The following state variables are protected using s_switch_lock: */
  98. /* Current sleep mode; When switching, contains old mode until switch is complete */
  99. static pm_mode_t s_mode = PM_MODE_CPU_MAX;
  100. /* True when switch is in progress */
  101. static volatile bool s_is_switching;
  102. /* Number of times each mode was locked */
  103. static size_t s_mode_lock_counts[PM_MODE_COUNT];
  104. /* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
  105. static uint32_t s_mode_mask;
  106. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  107. #define PERIPH_SKIP_LIGHT_SLEEP_NO 1
  108. /* Indicates if light sleep shoule be skipped by peripherals. */
  109. static skip_light_sleep_cb_t s_periph_skip_light_sleep_cb[PERIPH_SKIP_LIGHT_SLEEP_NO];
  110. /* Indicates if light sleep entry was skipped in vApplicationSleep for given CPU.
  111. * This in turn gets used in IDLE hook to decide if `waiti` needs
  112. * to be invoked or not.
  113. */
  114. static bool s_skipped_light_sleep[portNUM_PROCESSORS];
  115. #if portNUM_PROCESSORS == 2
  116. /* When light sleep is finished on one CPU, it is possible that the other CPU
  117. * will enter light sleep again very soon, before interrupts on the first CPU
  118. * get a chance to run. To avoid such situation, set a flag for the other CPU to
  119. * skip light sleep attempt.
  120. */
  121. static bool s_skip_light_sleep[portNUM_PROCESSORS];
  122. #endif // portNUM_PROCESSORS == 2
  123. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  124. /* A flag indicating that Idle hook has run on a given CPU;
  125. * Next interrupt on the same CPU will take s_rtos_lock_handle.
  126. */
  127. static bool s_core_idle[portNUM_PROCESSORS];
  128. /* When no RTOS tasks are active, these locks are released to allow going into
  129. * a lower power mode. Used by ISR hook and idle hook.
  130. */
  131. static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
  132. /* Lookup table of CPU frequency configs to be used in each mode.
  133. * Initialized by esp_pm_impl_init and modified by esp_pm_configure.
  134. */
  135. static rtc_cpu_freq_config_t s_cpu_freq_by_mode[PM_MODE_COUNT];
  136. /* Whether automatic light sleep is enabled */
  137. static bool s_light_sleep_en = false;
  138. /* When configuration is changed, current frequency may not match the
  139. * newly configured frequency for the current mode. This is an indicator
  140. * to the mode switch code to get the actual current frequency instead of
  141. * relying on the current mode.
  142. */
  143. static bool s_config_changed = false;
  144. #ifdef WITH_PROFILING
  145. /* Time, in microseconds, spent so far in each mode */
  146. static pm_time_t s_time_in_mode[PM_MODE_COUNT];
  147. /* Timestamp, in microseconds, when the mode switch last happened */
  148. static pm_time_t s_last_mode_change_time;
  149. /* User-readable mode names, used by esp_pm_impl_dump_stats */
  150. static const char* s_mode_names[] = {
  151. "SLEEP",
  152. "APB_MIN",
  153. "APB_MAX",
  154. "CPU_MAX"
  155. };
  156. #endif // WITH_PROFILING
  157. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  158. /* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
  159. * Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
  160. */
  161. static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
  162. /* Divider and multiplier used to adjust (ccompare - ccount) duration.
  163. * Only set to non-zero values when switch is in progress.
  164. */
  165. static uint32_t s_ccount_div;
  166. static uint32_t s_ccount_mul;
  167. static void update_ccompare(void);
  168. #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  169. static const char* TAG = "pm";
  170. static void do_switch(pm_mode_t new_mode);
  171. static void leave_idle(void);
  172. static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
  173. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  174. static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz);
  175. #endif
  176. pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
  177. {
  178. (void) arg;
  179. if (type == ESP_PM_CPU_FREQ_MAX) {
  180. return PM_MODE_CPU_MAX;
  181. } else if (type == ESP_PM_APB_FREQ_MAX) {
  182. return PM_MODE_APB_MAX;
  183. } else if (type == ESP_PM_NO_LIGHT_SLEEP) {
  184. return PM_MODE_APB_MIN;
  185. } else {
  186. // unsupported mode
  187. abort();
  188. }
  189. }
  190. esp_err_t esp_pm_configure(const void* vconfig)
  191. {
  192. #ifndef CONFIG_PM_ENABLE
  193. return ESP_ERR_NOT_SUPPORTED;
  194. #endif
  195. #if CONFIG_IDF_TARGET_ESP32
  196. const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
  197. #elif CONFIG_IDF_TARGET_ESP32S2
  198. const esp_pm_config_esp32s2_t* config = (const esp_pm_config_esp32s2_t*) vconfig;
  199. #elif CONFIG_IDF_TARGET_ESP32S3
  200. const esp_pm_config_esp32s3_t* config = (const esp_pm_config_esp32s3_t*) vconfig;
  201. #elif CONFIG_IDF_TARGET_ESP32C3
  202. const esp_pm_config_esp32c3_t* config = (const esp_pm_config_esp32c3_t*) vconfig;
  203. #elif CONFIG_IDF_TARGET_ESP32H4
  204. const esp_pm_config_esp32h4_t* config = (const esp_pm_config_esp32h4_t*) vconfig;
  205. #elif CONFIG_IDF_TARGET_ESP32C2
  206. const esp_pm_config_esp32c2_t* config = (const esp_pm_config_esp32c2_t*) vconfig;
  207. #elif CONFIG_IDF_TARGET_ESP32C6
  208. const esp_pm_config_esp32c6_t* config = (const esp_pm_config_esp32c6_t*) vconfig;
  209. #elif CONFIG_IDF_TARGET_ESP32H2
  210. const esp_pm_config_esp32h2_t* config = (const esp_pm_config_esp32h2_t*) vconfig;
  211. #endif
  212. #ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  213. if (config->light_sleep_enable) {
  214. return ESP_ERR_NOT_SUPPORTED;
  215. }
  216. #endif
  217. int min_freq_mhz = config->min_freq_mhz;
  218. int max_freq_mhz = config->max_freq_mhz;
  219. if (min_freq_mhz > max_freq_mhz) {
  220. return ESP_ERR_INVALID_ARG;
  221. }
  222. rtc_cpu_freq_config_t freq_config;
  223. if (!rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &freq_config)) {
  224. ESP_LOGW(TAG, "invalid min_freq_mhz value (%d)", min_freq_mhz);
  225. return ESP_ERR_INVALID_ARG;
  226. }
  227. int xtal_freq_mhz = esp_clk_xtal_freq() / MHZ;
  228. if (min_freq_mhz < xtal_freq_mhz && min_freq_mhz * MHZ / REF_CLK_FREQ < REF_CLK_DIV_MIN) {
  229. ESP_LOGW(TAG, "min_freq_mhz should be >= %d", REF_CLK_FREQ * REF_CLK_DIV_MIN / MHZ);
  230. return ESP_ERR_INVALID_ARG;
  231. }
  232. if (!rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &freq_config)) {
  233. ESP_LOGW(TAG, "invalid max_freq_mhz value (%d)", max_freq_mhz);
  234. return ESP_ERR_INVALID_ARG;
  235. }
  236. #if CONFIG_IDF_TARGET_ESP32
  237. int apb_max_freq = max_freq_mhz; /* CPU frequency in APB_MAX mode */
  238. if (max_freq_mhz == 240) {
  239. /* We can't switch between 240 and 80/160 without disabling PLL,
  240. * so use 240MHz CPU frequency when 80MHz APB frequency is requested.
  241. */
  242. apb_max_freq = 240;
  243. } else if (max_freq_mhz == 160 || max_freq_mhz == 80) {
  244. /* Otherwise, can use 80MHz
  245. * CPU frequency when 80MHz APB frequency is requested.
  246. */
  247. apb_max_freq = 80;
  248. }
  249. #elif CONFIG_IDF_TARGET_ESP32C6
  250. /* Maximum SOC APB clock frequency is 40 MHz, maximum Modem (WiFi,
  251. * Bluetooth, etc..) APB clock frequency is 80 MHz */
  252. const int soc_apb_clk_freq = esp_clk_apb_freq() / MHZ;
  253. const int modem_apb_clk_freq = MODEM_APB_CLK_FREQ / MHZ;
  254. const int apb_clk_freq = MAX(soc_apb_clk_freq, modem_apb_clk_freq);
  255. int apb_max_freq = MIN(max_freq_mhz, apb_clk_freq); /* CPU frequency in APB_MAX mode */
  256. #else
  257. int apb_max_freq = MIN(max_freq_mhz, 80); /* CPU frequency in APB_MAX mode */
  258. #endif
  259. apb_max_freq = MAX(apb_max_freq, min_freq_mhz);
  260. ESP_LOGI(TAG, "Frequency switching config: "
  261. "CPU_MAX: %d, APB_MAX: %d, APB_MIN: %d, Light sleep: %s",
  262. max_freq_mhz,
  263. apb_max_freq,
  264. min_freq_mhz,
  265. config->light_sleep_enable ? "ENABLED" : "DISABLED");
  266. portENTER_CRITICAL(&s_switch_lock);
  267. bool res __attribute__((unused));
  268. res = rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_CPU_MAX]);
  269. assert(res);
  270. res = rtc_clk_cpu_freq_mhz_to_config(apb_max_freq, &s_cpu_freq_by_mode[PM_MODE_APB_MAX]);
  271. assert(res);
  272. res = rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_APB_MIN]);
  273. assert(res);
  274. s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = s_cpu_freq_by_mode[PM_MODE_APB_MIN];
  275. s_light_sleep_en = config->light_sleep_enable;
  276. s_config_changed = true;
  277. portEXIT_CRITICAL(&s_switch_lock);
  278. #if CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP && SOC_PM_SUPPORT_CPU_PD
  279. if (config->light_sleep_enable) {
  280. if (esp_sleep_cpu_retention_init() != ESP_OK) {
  281. ESP_LOGW(TAG, "Failed to enable CPU power down during light sleep.");
  282. }
  283. } else {
  284. esp_sleep_cpu_retention_deinit();
  285. }
  286. #endif
  287. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  288. if (config->light_sleep_enable) {
  289. esp_pm_light_sleep_default_params_config(min_freq_mhz, max_freq_mhz);
  290. }
  291. #endif
  292. return ESP_OK;
  293. }
  294. esp_err_t esp_pm_get_configuration(void* vconfig)
  295. {
  296. if (vconfig == NULL) {
  297. return ESP_ERR_INVALID_ARG;
  298. }
  299. #if CONFIG_IDF_TARGET_ESP32
  300. esp_pm_config_esp32_t* config = (esp_pm_config_esp32_t*) vconfig;
  301. #elif CONFIG_IDF_TARGET_ESP32S2
  302. esp_pm_config_esp32s2_t* config = (esp_pm_config_esp32s2_t*) vconfig;
  303. #elif CONFIG_IDF_TARGET_ESP32S3
  304. esp_pm_config_esp32s3_t* config = (esp_pm_config_esp32s3_t*) vconfig;
  305. #elif CONFIG_IDF_TARGET_ESP32C3
  306. esp_pm_config_esp32c3_t* config = (esp_pm_config_esp32c3_t*) vconfig;
  307. #elif CONFIG_IDF_TARGET_ESP32H4
  308. esp_pm_config_esp32h4_t* config = (esp_pm_config_esp32h4_t*) vconfig;
  309. #elif CONFIG_IDF_TARGET_ESP32C2
  310. esp_pm_config_esp32c2_t* config = (esp_pm_config_esp32c2_t*) vconfig;
  311. #elif CONFIG_IDF_TARGET_ESP32C6
  312. esp_pm_config_esp32c6_t* config = (esp_pm_config_esp32c6_t*) vconfig;
  313. #elif CONFIG_IDF_TARGET_ESP32H2
  314. esp_pm_config_esp32h2_t* config = (esp_pm_config_esp32h2_t*) vconfig;
  315. #endif
  316. portENTER_CRITICAL(&s_switch_lock);
  317. config->light_sleep_enable = s_light_sleep_en;
  318. config->max_freq_mhz = s_cpu_freq_by_mode[PM_MODE_CPU_MAX].freq_mhz;
  319. config->min_freq_mhz = s_cpu_freq_by_mode[PM_MODE_APB_MIN].freq_mhz;
  320. portEXIT_CRITICAL(&s_switch_lock);
  321. return ESP_OK;
  322. }
  323. static pm_mode_t IRAM_ATTR get_lowest_allowed_mode(void)
  324. {
  325. /* TODO: optimize using ffs/clz */
  326. if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
  327. return PM_MODE_CPU_MAX;
  328. } else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
  329. return PM_MODE_APB_MAX;
  330. } else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
  331. return PM_MODE_APB_MIN;
  332. } else {
  333. return PM_MODE_LIGHT_SLEEP;
  334. }
  335. }
  336. void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
  337. pm_mode_switch_t lock_or_unlock, pm_time_t now)
  338. {
  339. bool need_switch = false;
  340. uint32_t mode_mask = BIT(mode);
  341. portENTER_CRITICAL_SAFE(&s_switch_lock);
  342. uint32_t count;
  343. if (lock_or_unlock == MODE_LOCK) {
  344. count = ++s_mode_lock_counts[mode];
  345. } else {
  346. count = s_mode_lock_counts[mode]--;
  347. }
  348. if (count == 1) {
  349. if (lock_or_unlock == MODE_LOCK) {
  350. s_mode_mask |= mode_mask;
  351. } else {
  352. s_mode_mask &= ~mode_mask;
  353. }
  354. need_switch = true;
  355. }
  356. pm_mode_t new_mode = s_mode;
  357. if (need_switch) {
  358. new_mode = get_lowest_allowed_mode();
  359. #ifdef WITH_PROFILING
  360. if (s_last_mode_change_time != 0) {
  361. pm_time_t diff = now - s_last_mode_change_time;
  362. s_time_in_mode[s_mode] += diff;
  363. }
  364. s_last_mode_change_time = now;
  365. #endif // WITH_PROFILING
  366. }
  367. portEXIT_CRITICAL_SAFE(&s_switch_lock);
  368. if (need_switch) {
  369. do_switch(new_mode);
  370. }
  371. }
  372. /**
  373. * @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
  374. * values on both CPUs.
  375. * @param old_ticks_per_us old CPU frequency
  376. * @param ticks_per_us new CPU frequency
  377. */
  378. static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
  379. {
  380. uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
  381. uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
  382. /* Update APB frequency value used by the timer */
  383. if (old_apb_ticks_per_us != apb_ticks_per_us) {
  384. esp_timer_private_update_apb_freq(apb_ticks_per_us);
  385. }
  386. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  387. #ifdef XT_RTOS_TIMER_INT
  388. /* Calculate new tick divisor */
  389. _xt_tick_divisor = ticks_per_us * MHZ / XT_TICK_PER_SEC;
  390. #endif
  391. int core_id = xPortGetCoreID();
  392. if (s_rtos_lock_handle[core_id] != NULL) {
  393. ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
  394. /* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
  395. * to calculate new CCOMPARE value.
  396. */
  397. s_ccount_div = old_ticks_per_us;
  398. s_ccount_mul = ticks_per_us;
  399. /* Update CCOMPARE value on this CPU */
  400. update_ccompare();
  401. #if portNUM_PROCESSORS == 2
  402. /* Send interrupt to the other CPU to update CCOMPARE value */
  403. int other_core_id = (core_id == 0) ? 1 : 0;
  404. s_need_update_ccompare[other_core_id] = true;
  405. esp_crosscore_int_send_freq_switch(other_core_id);
  406. int timeout = 0;
  407. while (s_need_update_ccompare[other_core_id]) {
  408. if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
  409. assert(false && "failed to update CCOMPARE, possible deadlock");
  410. }
  411. }
  412. #endif // portNUM_PROCESSORS == 2
  413. s_ccount_mul = 0;
  414. s_ccount_div = 0;
  415. ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
  416. }
  417. #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  418. }
  419. /**
  420. * Perform the switch to new power mode.
  421. * Currently only changes the CPU frequency and adjusts clock dividers.
  422. * No light sleep yet.
  423. * @param new_mode mode to switch to
  424. */
  425. static void IRAM_ATTR do_switch(pm_mode_t new_mode)
  426. {
  427. const int core_id = xPortGetCoreID();
  428. do {
  429. portENTER_CRITICAL_ISR(&s_switch_lock);
  430. if (!s_is_switching) {
  431. break;
  432. }
  433. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  434. if (s_need_update_ccompare[core_id]) {
  435. s_need_update_ccompare[core_id] = false;
  436. }
  437. #endif
  438. portEXIT_CRITICAL_ISR(&s_switch_lock);
  439. } while (true);
  440. if (new_mode == s_mode) {
  441. portEXIT_CRITICAL_ISR(&s_switch_lock);
  442. return;
  443. }
  444. s_is_switching = true;
  445. bool config_changed = s_config_changed;
  446. s_config_changed = false;
  447. portEXIT_CRITICAL_ISR(&s_switch_lock);
  448. rtc_cpu_freq_config_t new_config = s_cpu_freq_by_mode[new_mode];
  449. rtc_cpu_freq_config_t old_config;
  450. if (!config_changed) {
  451. old_config = s_cpu_freq_by_mode[s_mode];
  452. } else {
  453. rtc_clk_cpu_freq_get_config(&old_config);
  454. }
  455. if (new_config.freq_mhz != old_config.freq_mhz) {
  456. uint32_t old_ticks_per_us = old_config.freq_mhz;
  457. uint32_t new_ticks_per_us = new_config.freq_mhz;
  458. bool switch_down = new_ticks_per_us < old_ticks_per_us;
  459. ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
  460. if (switch_down) {
  461. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  462. }
  463. rtc_clk_cpu_freq_set_config_fast(&new_config);
  464. if (!switch_down) {
  465. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  466. }
  467. ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
  468. }
  469. portENTER_CRITICAL_ISR(&s_switch_lock);
  470. s_mode = new_mode;
  471. s_is_switching = false;
  472. portEXIT_CRITICAL_ISR(&s_switch_lock);
  473. }
  474. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  475. /**
  476. * @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
  477. *
  478. * Adjusts CCOMPARE value so that the interrupt happens at the same time as it
  479. * would happen without the frequency change.
  480. * Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
  481. */
  482. static void IRAM_ATTR update_ccompare(void)
  483. {
  484. #if CONFIG_PM_UPDATE_CCOMPARE_HLI_WORKAROUND
  485. /* disable level 4 and below */
  486. uint32_t irq_status = XTOS_SET_INTLEVEL(XCHAL_DEBUGLEVEL - 2);
  487. #endif
  488. uint32_t ccount = esp_cpu_get_cycle_count();
  489. uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
  490. if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
  491. uint32_t diff = ccompare - ccount;
  492. uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
  493. if (diff_scaled < _xt_tick_divisor) {
  494. uint32_t new_ccompare = ccount + diff_scaled;
  495. XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
  496. }
  497. }
  498. #if CONFIG_PM_UPDATE_CCOMPARE_HLI_WORKAROUND
  499. XTOS_RESTORE_INTLEVEL(irq_status);
  500. #endif
  501. }
  502. #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  503. static void IRAM_ATTR leave_idle(void)
  504. {
  505. int core_id = xPortGetCoreID();
  506. if (s_core_idle[core_id]) {
  507. // TODO: possible optimization: raise frequency here first
  508. esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
  509. s_core_idle[core_id] = false;
  510. }
  511. }
  512. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  513. esp_err_t esp_pm_register_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
  514. {
  515. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  516. if (s_periph_skip_light_sleep_cb[i] == cb) {
  517. return ESP_OK;
  518. } else if (s_periph_skip_light_sleep_cb[i] == NULL) {
  519. s_periph_skip_light_sleep_cb[i] = cb;
  520. return ESP_OK;
  521. }
  522. }
  523. return ESP_ERR_NO_MEM;
  524. }
  525. esp_err_t esp_pm_unregister_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
  526. {
  527. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  528. if (s_periph_skip_light_sleep_cb[i] == cb) {
  529. s_periph_skip_light_sleep_cb[i] = NULL;
  530. return ESP_OK;
  531. }
  532. }
  533. return ESP_ERR_INVALID_STATE;
  534. }
  535. static inline bool IRAM_ATTR periph_should_skip_light_sleep(void)
  536. {
  537. if (s_light_sleep_en) {
  538. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  539. if (s_periph_skip_light_sleep_cb[i]) {
  540. if (s_periph_skip_light_sleep_cb[i]() == true) {
  541. return true;
  542. }
  543. }
  544. }
  545. }
  546. return false;
  547. }
  548. static inline bool IRAM_ATTR should_skip_light_sleep(int core_id)
  549. {
  550. #if portNUM_PROCESSORS == 2
  551. if (s_skip_light_sleep[core_id]) {
  552. s_skip_light_sleep[core_id] = false;
  553. s_skipped_light_sleep[core_id] = true;
  554. return true;
  555. }
  556. #endif // portNUM_PROCESSORS == 2
  557. if (s_mode != PM_MODE_LIGHT_SLEEP || s_is_switching || periph_should_skip_light_sleep()) {
  558. s_skipped_light_sleep[core_id] = true;
  559. } else {
  560. s_skipped_light_sleep[core_id] = false;
  561. }
  562. return s_skipped_light_sleep[core_id];
  563. }
  564. static inline void IRAM_ATTR other_core_should_skip_light_sleep(int core_id)
  565. {
  566. #if portNUM_PROCESSORS == 2
  567. s_skip_light_sleep[!core_id] = true;
  568. #endif
  569. }
  570. void IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
  571. {
  572. portENTER_CRITICAL(&s_switch_lock);
  573. int core_id = xPortGetCoreID();
  574. if (!should_skip_light_sleep(core_id)) {
  575. /* Calculate how much we can sleep */
  576. int64_t next_esp_timer_alarm = esp_timer_get_next_alarm_for_wake_up();
  577. int64_t now = esp_timer_get_time();
  578. int64_t time_until_next_alarm = next_esp_timer_alarm - now;
  579. int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
  580. int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
  581. if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
  582. esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
  583. #if CONFIG_PM_TRACE && SOC_PM_SUPPORT_RTC_PERIPH_PD
  584. /* to force tracing GPIOs to keep state */
  585. esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
  586. #endif
  587. /* Enter sleep */
  588. ESP_PM_TRACE_ENTER(SLEEP, core_id);
  589. int64_t sleep_start = esp_timer_get_time();
  590. esp_light_sleep_start();
  591. int64_t slept_us = esp_timer_get_time() - sleep_start;
  592. ESP_PM_TRACE_EXIT(SLEEP, core_id);
  593. uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
  594. if (slept_ticks > 0) {
  595. /* Adjust RTOS tick count based on the amount of time spent in sleep */
  596. vTaskStepTick(slept_ticks);
  597. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  598. /* Trigger tick interrupt, since sleep time was longer
  599. * than portTICK_PERIOD_MS. Note that setting INTSET does not
  600. * work for timer interrupt, and changing CCOMPARE would clear
  601. * the interrupt flag.
  602. */
  603. esp_cpu_set_cycle_count(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
  604. while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
  605. ;
  606. }
  607. #else
  608. portYIELD_WITHIN_API();
  609. #endif
  610. }
  611. other_core_should_skip_light_sleep(core_id);
  612. }
  613. }
  614. portEXIT_CRITICAL(&s_switch_lock);
  615. }
  616. #endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
  617. #ifdef WITH_PROFILING
  618. void esp_pm_impl_dump_stats(FILE* out)
  619. {
  620. pm_time_t time_in_mode[PM_MODE_COUNT];
  621. portENTER_CRITICAL_ISR(&s_switch_lock);
  622. memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
  623. pm_time_t last_mode_change_time = s_last_mode_change_time;
  624. pm_mode_t cur_mode = s_mode;
  625. pm_time_t now = pm_get_time();
  626. portEXIT_CRITICAL_ISR(&s_switch_lock);
  627. time_in_mode[cur_mode] += now - last_mode_change_time;
  628. fprintf(out, "\nMode stats:\n");
  629. fprintf(out, "%-8s %-10s %-10s %-10s\n", "Mode", "CPU_freq", "Time(us)", "Time(%)");
  630. for (int i = 0; i < PM_MODE_COUNT; ++i) {
  631. if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
  632. /* don't display light sleep mode if it's not enabled */
  633. continue;
  634. }
  635. fprintf(out, "%-8s %-3"PRIu32"M%-7s %-10lld %-2d%%\n",
  636. s_mode_names[i],
  637. s_cpu_freq_by_mode[i].freq_mhz,
  638. "", //Empty space to align columns
  639. time_in_mode[i],
  640. (int) (time_in_mode[i] * 100 / now));
  641. }
  642. }
  643. #endif // WITH_PROFILING
  644. int esp_pm_impl_get_cpu_freq(pm_mode_t mode)
  645. {
  646. int freq_mhz;
  647. if (mode >= PM_MODE_LIGHT_SLEEP && mode < PM_MODE_COUNT) {
  648. portENTER_CRITICAL(&s_switch_lock);
  649. freq_mhz = s_cpu_freq_by_mode[mode].freq_mhz;
  650. portEXIT_CRITICAL(&s_switch_lock);
  651. } else {
  652. abort();
  653. }
  654. return freq_mhz;
  655. }
  656. void esp_pm_impl_init(void)
  657. {
  658. #if defined(CONFIG_ESP_CONSOLE_UART)
  659. //This clock source should be a source which won't be affected by DFS
  660. uart_sclk_t clk_source = UART_SCLK_DEFAULT;
  661. #if SOC_UART_SUPPORT_REF_TICK
  662. clk_source = UART_SCLK_REF_TICK;
  663. #elif SOC_UART_SUPPORT_XTAL_CLK
  664. clk_source = UART_SCLK_XTAL;
  665. #else
  666. #error "No UART clock source is aware of DFS"
  667. #endif // SOC_UART_SUPPORT_xxx
  668. while(!uart_ll_is_tx_idle(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM)));
  669. /* When DFS is enabled, override system setting and use REFTICK as UART clock source */
  670. uart_ll_set_sclk(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), clk_source);
  671. uint32_t sclk_freq;
  672. esp_err_t err = uart_get_sclk_freq(clk_source, &sclk_freq);
  673. assert(err == ESP_OK);
  674. uart_ll_set_baudrate(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), CONFIG_ESP_CONSOLE_UART_BAUDRATE, sclk_freq);
  675. #endif // CONFIG_ESP_CONSOLE_UART
  676. #ifdef CONFIG_PM_TRACE
  677. esp_pm_trace_init();
  678. #endif
  679. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
  680. &s_rtos_lock_handle[0]));
  681. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
  682. #if portNUM_PROCESSORS == 2
  683. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
  684. &s_rtos_lock_handle[1]));
  685. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
  686. #endif // portNUM_PROCESSORS == 2
  687. /* Configure all modes to use the default CPU frequency.
  688. * This will be modified later by a call to esp_pm_configure.
  689. */
  690. rtc_cpu_freq_config_t default_config;
  691. if (!rtc_clk_cpu_freq_mhz_to_config(CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ, &default_config)) {
  692. assert(false && "unsupported frequency");
  693. }
  694. for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
  695. s_cpu_freq_by_mode[i] = default_config;
  696. }
  697. #ifdef CONFIG_PM_DFS_INIT_AUTO
  698. int xtal_freq_mhz = esp_clk_xtal_freq() / MHZ;
  699. #if CONFIG_IDF_TARGET_ESP32
  700. esp_pm_config_esp32_t cfg = {
  701. #elif CONFIG_IDF_TARGET_ESP32S2
  702. esp_pm_config_esp32s2_t cfg = {
  703. #elif CONFIG_IDF_TARGET_ESP32S3
  704. esp_pm_config_esp32s3_t cfg = {
  705. #elif CONFIG_IDF_TARGET_ESP32C3
  706. esp_pm_config_esp32c3_t cfg = {
  707. #elif CONFIG_IDF_TARGET_ESP32H4
  708. esp_pm_config_esp32h4_t cfg = {
  709. #elif CONFIG_IDF_TARGET_ESP32C2
  710. esp_pm_config_esp32c2_t cfg = {
  711. #elif CONFIG_IDF_TARGET_ESP32C6
  712. esp_pm_config_esp32c6_t cfg = {
  713. #elif CONFIG_IDF_TARGET_ESP32H2
  714. esp_pm_config_esp32h2_t cfg = {
  715. #endif
  716. .max_freq_mhz = CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ,
  717. .min_freq_mhz = xtal_freq_mhz,
  718. };
  719. esp_pm_configure(&cfg);
  720. #endif //CONFIG_PM_DFS_INIT_AUTO
  721. }
  722. void esp_pm_impl_idle_hook(void)
  723. {
  724. int core_id = xPortGetCoreID();
  725. #if CONFIG_FREERTOS_SMP
  726. uint32_t state = portDISABLE_INTERRUPTS();
  727. #else
  728. uint32_t state = portSET_INTERRUPT_MASK_FROM_ISR();
  729. #endif
  730. if (!s_core_idle[core_id]
  731. #ifdef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  732. && !periph_should_skip_light_sleep()
  733. #endif
  734. ) {
  735. esp_pm_lock_release(s_rtos_lock_handle[core_id]);
  736. s_core_idle[core_id] = true;
  737. }
  738. #if CONFIG_FREERTOS_SMP
  739. portRESTORE_INTERRUPTS(state);
  740. #else
  741. portCLEAR_INTERRUPT_MASK_FROM_ISR(state);
  742. #endif
  743. ESP_PM_TRACE_ENTER(IDLE, core_id);
  744. }
  745. void IRAM_ATTR esp_pm_impl_isr_hook(void)
  746. {
  747. int core_id = xPortGetCoreID();
  748. ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
  749. /* Prevent higher level interrupts (than the one this function was called from)
  750. * from happening in this section, since they will also call into esp_pm_impl_isr_hook.
  751. */
  752. #if CONFIG_FREERTOS_SMP
  753. uint32_t state = portDISABLE_INTERRUPTS();
  754. #else
  755. uint32_t state = portSET_INTERRUPT_MASK_FROM_ISR();
  756. #endif
  757. #if defined(CONFIG_FREERTOS_SYSTICK_USES_CCOUNT) && (portNUM_PROCESSORS == 2)
  758. if (s_need_update_ccompare[core_id]) {
  759. update_ccompare();
  760. s_need_update_ccompare[core_id] = false;
  761. } else {
  762. leave_idle();
  763. }
  764. #else
  765. leave_idle();
  766. #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT && portNUM_PROCESSORS == 2
  767. #if CONFIG_FREERTOS_SMP
  768. portRESTORE_INTERRUPTS(state);
  769. #else
  770. portCLEAR_INTERRUPT_MASK_FROM_ISR(state);
  771. #endif
  772. ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
  773. }
  774. void esp_pm_impl_waiti(void)
  775. {
  776. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  777. int core_id = xPortGetCoreID();
  778. if (s_skipped_light_sleep[core_id]) {
  779. esp_cpu_wait_for_intr();
  780. /* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id]
  781. * is now taken. However since we are back to idle task, we can release
  782. * the lock so that vApplicationSleep can attempt to enter light sleep.
  783. */
  784. esp_pm_impl_idle_hook();
  785. }
  786. s_skipped_light_sleep[core_id] = true;
  787. #else
  788. esp_cpu_wait_for_intr();
  789. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  790. }
  791. #define PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO 1
  792. /* Inform peripherals of light sleep wakeup overhead time */
  793. static inform_out_light_sleep_overhead_cb_t s_periph_inform_out_light_sleep_overhead_cb[PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO];
  794. esp_err_t esp_pm_register_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
  795. {
  796. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  797. if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
  798. return ESP_OK;
  799. } else if (s_periph_inform_out_light_sleep_overhead_cb[i] == NULL) {
  800. s_periph_inform_out_light_sleep_overhead_cb[i] = cb;
  801. return ESP_OK;
  802. }
  803. }
  804. return ESP_ERR_NO_MEM;
  805. }
  806. esp_err_t esp_pm_unregister_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
  807. {
  808. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  809. if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
  810. s_periph_inform_out_light_sleep_overhead_cb[i] = NULL;
  811. return ESP_OK;
  812. }
  813. }
  814. return ESP_ERR_INVALID_STATE;
  815. }
  816. void periph_inform_out_light_sleep_overhead(uint32_t out_light_sleep_time)
  817. {
  818. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  819. if (s_periph_inform_out_light_sleep_overhead_cb[i]) {
  820. s_periph_inform_out_light_sleep_overhead_cb[i](out_light_sleep_time);
  821. }
  822. }
  823. }
  824. static update_light_sleep_default_params_config_cb_t s_light_sleep_default_params_config_cb = NULL;
  825. void esp_pm_register_light_sleep_default_params_config_callback(update_light_sleep_default_params_config_cb_t cb)
  826. {
  827. if (s_light_sleep_default_params_config_cb == NULL) {
  828. s_light_sleep_default_params_config_cb = cb;
  829. }
  830. }
  831. void esp_pm_unregister_light_sleep_default_params_config_callback(void)
  832. {
  833. if (s_light_sleep_default_params_config_cb) {
  834. s_light_sleep_default_params_config_cb = NULL;
  835. }
  836. }
  837. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  838. static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz)
  839. {
  840. if (s_light_sleep_default_params_config_cb) {
  841. (*s_light_sleep_default_params_config_cb)(min_freq_mhz, max_freq_mhz);
  842. }
  843. }
  844. #endif