pm_impl.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895
  1. /*
  2. * SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdlib.h>
  7. #include <stdbool.h>
  8. #include <string.h>
  9. #include <sys/param.h>
  10. #include "esp_attr.h"
  11. #include "esp_err.h"
  12. #include "esp_pm.h"
  13. #include "esp_log.h"
  14. #include "esp_private/crosscore_int.h"
  15. #include "soc/rtc.h"
  16. #include "hal/cpu_hal.h"
  17. #include "hal/uart_ll.h"
  18. #include "hal/uart_types.h"
  19. #include "freertos/FreeRTOS.h"
  20. #include "freertos/task.h"
  21. #if CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  22. #include "freertos/xtensa_timer.h"
  23. #include "xtensa/core-macros.h"
  24. #endif
  25. #include "esp_private/pm_impl.h"
  26. #include "esp_private/pm_trace.h"
  27. #include "esp_private/esp_timer_private.h"
  28. #include "esp_sleep.h"
  29. #include "sdkconfig.h"
  30. // [refactor-todo] opportunity for further refactor
  31. #if CONFIG_IDF_TARGET_ESP32
  32. #include "esp32/clk.h"
  33. #include "esp32/pm.h"
  34. #include "driver/gpio.h"
  35. #elif CONFIG_IDF_TARGET_ESP32S2
  36. #include "esp32s2/clk.h"
  37. #include "esp32s2/pm.h"
  38. #include "driver/gpio.h"
  39. #elif CONFIG_IDF_TARGET_ESP32S3
  40. #include "esp32s3/clk.h"
  41. #include "esp32s3/pm.h"
  42. #elif CONFIG_IDF_TARGET_ESP32C3
  43. #include "esp32c3/clk.h"
  44. #include "esp32c3/pm.h"
  45. #include "driver/gpio.h"
  46. #elif CONFIG_IDF_TARGET_ESP32H2
  47. #include "esp32h2/clk.h"
  48. #include "esp32h2/pm.h"
  49. #include "driver/gpio.h"
  50. #endif
  51. #define MHZ (1000000)
  52. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  53. /* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
  54. * for the purpose of detecting a deadlock.
  55. */
  56. #define CCOMPARE_UPDATE_TIMEOUT 1000000
  57. /* When changing CCOMPARE, don't allow changes if the difference is less
  58. * than this. This is to prevent setting CCOMPARE below CCOUNT.
  59. */
  60. #define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
  61. #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  62. /* When light sleep is used, wake this number of microseconds earlier than
  63. * the next tick.
  64. */
  65. #define LIGHT_SLEEP_EARLY_WAKEUP_US 100
  66. #if CONFIG_IDF_TARGET_ESP32
  67. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  68. #define REF_CLK_DIV_MIN 10
  69. #define DEFAULT_CPU_FREQ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ
  70. #elif CONFIG_IDF_TARGET_ESP32S2
  71. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  72. #define REF_CLK_DIV_MIN 2
  73. #define DEFAULT_CPU_FREQ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ
  74. #elif CONFIG_IDF_TARGET_ESP32S3
  75. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  76. #define REF_CLK_DIV_MIN 2
  77. #define DEFAULT_CPU_FREQ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ
  78. #elif CONFIG_IDF_TARGET_ESP32C3
  79. #define REF_CLK_DIV_MIN 2
  80. #define DEFAULT_CPU_FREQ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ
  81. #elif CONFIG_IDF_TARGET_ESP32H2
  82. #define REF_CLK_DIV_MIN 2
  83. #define DEFAULT_CPU_FREQ CONFIG_ESP32H2_DEFAULT_CPU_FREQ_MHZ
  84. #endif
  85. #ifdef CONFIG_PM_PROFILING
  86. #define WITH_PROFILING
  87. #endif
  88. static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
  89. /* The following state variables are protected using s_switch_lock: */
  90. /* Current sleep mode; When switching, contains old mode until switch is complete */
  91. static pm_mode_t s_mode = PM_MODE_CPU_MAX;
  92. /* True when switch is in progress */
  93. static volatile bool s_is_switching;
  94. /* Number of times each mode was locked */
  95. static size_t s_mode_lock_counts[PM_MODE_COUNT];
  96. /* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
  97. static uint32_t s_mode_mask;
  98. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  99. #define PERIPH_SKIP_LIGHT_SLEEP_NO 1
  100. /* Indicates if light sleep shoule be skipped by peripherals. */
  101. static skip_light_sleep_cb_t s_periph_skip_light_sleep_cb[PERIPH_SKIP_LIGHT_SLEEP_NO];
  102. /* Indicates if light sleep entry was skipped in vApplicationSleep for given CPU.
  103. * This in turn gets used in IDLE hook to decide if `waiti` needs
  104. * to be invoked or not.
  105. */
  106. static bool s_skipped_light_sleep[portNUM_PROCESSORS];
  107. #if portNUM_PROCESSORS == 2
  108. /* When light sleep is finished on one CPU, it is possible that the other CPU
  109. * will enter light sleep again very soon, before interrupts on the first CPU
  110. * get a chance to run. To avoid such situation, set a flag for the other CPU to
  111. * skip light sleep attempt.
  112. */
  113. static bool s_skip_light_sleep[portNUM_PROCESSORS];
  114. #endif // portNUM_PROCESSORS == 2
  115. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  116. /* A flag indicating that Idle hook has run on a given CPU;
  117. * Next interrupt on the same CPU will take s_rtos_lock_handle.
  118. */
  119. static bool s_core_idle[portNUM_PROCESSORS];
  120. /* When no RTOS tasks are active, these locks are released to allow going into
  121. * a lower power mode. Used by ISR hook and idle hook.
  122. */
  123. static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
  124. /* Lookup table of CPU frequency configs to be used in each mode.
  125. * Initialized by esp_pm_impl_init and modified by esp_pm_configure.
  126. */
  127. static rtc_cpu_freq_config_t s_cpu_freq_by_mode[PM_MODE_COUNT];
  128. /* Whether automatic light sleep is enabled */
  129. static bool s_light_sleep_en = false;
  130. /* When configuration is changed, current frequency may not match the
  131. * newly configured frequency for the current mode. This is an indicator
  132. * to the mode switch code to get the actual current frequency instead of
  133. * relying on the current mode.
  134. */
  135. static bool s_config_changed = false;
  136. #ifdef WITH_PROFILING
  137. /* Time, in microseconds, spent so far in each mode */
  138. static pm_time_t s_time_in_mode[PM_MODE_COUNT];
  139. /* Timestamp, in microseconds, when the mode switch last happened */
  140. static pm_time_t s_last_mode_change_time;
  141. /* User-readable mode names, used by esp_pm_impl_dump_stats */
  142. static const char* s_mode_names[] = {
  143. "SLEEP",
  144. "APB_MIN",
  145. "APB_MAX",
  146. "CPU_MAX"
  147. };
  148. #endif // WITH_PROFILING
  149. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  150. /* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
  151. * Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
  152. */
  153. static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
  154. /* Divider and multiplier used to adjust (ccompare - ccount) duration.
  155. * Only set to non-zero values when switch is in progress.
  156. */
  157. static uint32_t s_ccount_div;
  158. static uint32_t s_ccount_mul;
  159. static void update_ccompare(void);
  160. #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  161. static const char* TAG = "pm";
  162. static void do_switch(pm_mode_t new_mode);
  163. static void leave_idle(void);
  164. static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
  165. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  166. static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz);
  167. #endif
  168. pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
  169. {
  170. (void) arg;
  171. if (type == ESP_PM_CPU_FREQ_MAX) {
  172. return PM_MODE_CPU_MAX;
  173. } else if (type == ESP_PM_APB_FREQ_MAX) {
  174. return PM_MODE_APB_MAX;
  175. } else if (type == ESP_PM_NO_LIGHT_SLEEP) {
  176. return PM_MODE_APB_MIN;
  177. } else {
  178. // unsupported mode
  179. abort();
  180. }
  181. }
  182. esp_err_t esp_pm_configure(const void* vconfig)
  183. {
  184. #ifndef CONFIG_PM_ENABLE
  185. return ESP_ERR_NOT_SUPPORTED;
  186. #endif
  187. #if CONFIG_IDF_TARGET_ESP32
  188. const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
  189. #elif CONFIG_IDF_TARGET_ESP32S2
  190. const esp_pm_config_esp32s2_t* config = (const esp_pm_config_esp32s2_t*) vconfig;
  191. #elif CONFIG_IDF_TARGET_ESP32S3
  192. const esp_pm_config_esp32s3_t* config = (const esp_pm_config_esp32s3_t*) vconfig;
  193. #elif CONFIG_IDF_TARGET_ESP32C3
  194. const esp_pm_config_esp32c3_t* config = (const esp_pm_config_esp32c3_t*) vconfig;
  195. #elif CONFIG_IDF_TARGET_ESP32H2
  196. const esp_pm_config_esp32h2_t* config = (const esp_pm_config_esp32h2_t*) vconfig;
  197. #endif
  198. #ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  199. if (config->light_sleep_enable) {
  200. return ESP_ERR_NOT_SUPPORTED;
  201. }
  202. #endif
  203. int min_freq_mhz = config->min_freq_mhz;
  204. int max_freq_mhz = config->max_freq_mhz;
  205. if (min_freq_mhz > max_freq_mhz) {
  206. return ESP_ERR_INVALID_ARG;
  207. }
  208. rtc_cpu_freq_config_t freq_config;
  209. if (!rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &freq_config)) {
  210. ESP_LOGW(TAG, "invalid min_freq_mhz value (%d)", min_freq_mhz);
  211. return ESP_ERR_INVALID_ARG;
  212. }
  213. int xtal_freq_mhz = (int) rtc_clk_xtal_freq_get();
  214. if (min_freq_mhz < xtal_freq_mhz && min_freq_mhz * MHZ / REF_CLK_FREQ < REF_CLK_DIV_MIN) {
  215. ESP_LOGW(TAG, "min_freq_mhz should be >= %d", REF_CLK_FREQ * REF_CLK_DIV_MIN / MHZ);
  216. return ESP_ERR_INVALID_ARG;
  217. }
  218. if (!rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &freq_config)) {
  219. ESP_LOGW(TAG, "invalid max_freq_mhz value (%d)", max_freq_mhz);
  220. return ESP_ERR_INVALID_ARG;
  221. }
  222. #if CONFIG_IDF_TARGET_ESP32
  223. int apb_max_freq = max_freq_mhz; /* CPU frequency in APB_MAX mode */
  224. if (max_freq_mhz == 240) {
  225. /* We can't switch between 240 and 80/160 without disabling PLL,
  226. * so use 240MHz CPU frequency when 80MHz APB frequency is requested.
  227. */
  228. apb_max_freq = 240;
  229. } else if (max_freq_mhz == 160 || max_freq_mhz == 80) {
  230. /* Otherwise, can use 80MHz
  231. * CPU frequency when 80MHz APB frequency is requested.
  232. */
  233. apb_max_freq = 80;
  234. }
  235. #else
  236. int apb_max_freq = MIN(max_freq_mhz, 80); /* CPU frequency in APB_MAX mode */
  237. #endif
  238. apb_max_freq = MAX(apb_max_freq, min_freq_mhz);
  239. ESP_LOGI(TAG, "Frequency switching config: "
  240. "CPU_MAX: %d, APB_MAX: %d, APB_MIN: %d, Light sleep: %s",
  241. max_freq_mhz,
  242. apb_max_freq,
  243. min_freq_mhz,
  244. config->light_sleep_enable ? "ENABLED" : "DISABLED");
  245. portENTER_CRITICAL(&s_switch_lock);
  246. bool res __attribute__((unused));
  247. res = rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_CPU_MAX]);
  248. assert(res);
  249. res = rtc_clk_cpu_freq_mhz_to_config(apb_max_freq, &s_cpu_freq_by_mode[PM_MODE_APB_MAX]);
  250. assert(res);
  251. res = rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_APB_MIN]);
  252. assert(res);
  253. s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = s_cpu_freq_by_mode[PM_MODE_APB_MIN];
  254. s_light_sleep_en = config->light_sleep_enable;
  255. s_config_changed = true;
  256. portEXIT_CRITICAL(&s_switch_lock);
  257. #if CONFIG_PM_SLP_DISABLE_GPIO && SOC_GPIO_SUPPORT_SLP_SWITCH
  258. esp_sleep_enable_gpio_switch(config->light_sleep_enable);
  259. #endif
  260. #if CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP && SOC_PM_SUPPORT_CPU_PD
  261. esp_err_t ret = esp_sleep_cpu_pd_low_init(config->light_sleep_enable);
  262. if (config->light_sleep_enable && ret != ESP_OK) {
  263. ESP_LOGW(TAG, "Failed to enable CPU power down during light sleep.");
  264. }
  265. #endif
  266. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  267. if (config->light_sleep_enable) {
  268. esp_pm_light_sleep_default_params_config(min_freq_mhz, max_freq_mhz);
  269. }
  270. #endif
  271. return ESP_OK;
  272. }
  273. esp_err_t esp_pm_get_configuration(void* vconfig)
  274. {
  275. if (vconfig == NULL) {
  276. return ESP_ERR_INVALID_ARG;
  277. }
  278. #if CONFIG_IDF_TARGET_ESP32
  279. esp_pm_config_esp32_t* config = (esp_pm_config_esp32_t*) vconfig;
  280. #elif CONFIG_IDF_TARGET_ESP32S2
  281. esp_pm_config_esp32s2_t* config = (esp_pm_config_esp32s2_t*) vconfig;
  282. #elif CONFIG_IDF_TARGET_ESP32S3
  283. esp_pm_config_esp32s3_t* config = (esp_pm_config_esp32s3_t*) vconfig;
  284. #elif CONFIG_IDF_TARGET_ESP32C3
  285. esp_pm_config_esp32c3_t* config = (esp_pm_config_esp32c3_t*) vconfig;
  286. #elif CONFIG_IDF_TARGET_ESP32H2
  287. esp_pm_config_esp32h2_t* config = (esp_pm_config_esp32h2_t*) vconfig;
  288. #endif
  289. portENTER_CRITICAL(&s_switch_lock);
  290. config->light_sleep_enable = s_light_sleep_en;
  291. config->max_freq_mhz = s_cpu_freq_by_mode[PM_MODE_CPU_MAX].freq_mhz;
  292. config->min_freq_mhz = s_cpu_freq_by_mode[PM_MODE_APB_MIN].freq_mhz;
  293. portEXIT_CRITICAL(&s_switch_lock);
  294. return ESP_OK;
  295. }
  296. static pm_mode_t IRAM_ATTR get_lowest_allowed_mode(void)
  297. {
  298. /* TODO: optimize using ffs/clz */
  299. if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
  300. return PM_MODE_CPU_MAX;
  301. } else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
  302. return PM_MODE_APB_MAX;
  303. } else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
  304. return PM_MODE_APB_MIN;
  305. } else {
  306. return PM_MODE_LIGHT_SLEEP;
  307. }
  308. }
  309. void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
  310. pm_mode_switch_t lock_or_unlock, pm_time_t now)
  311. {
  312. bool need_switch = false;
  313. uint32_t mode_mask = BIT(mode);
  314. portENTER_CRITICAL_SAFE(&s_switch_lock);
  315. uint32_t count;
  316. if (lock_or_unlock == MODE_LOCK) {
  317. count = ++s_mode_lock_counts[mode];
  318. } else {
  319. count = s_mode_lock_counts[mode]--;
  320. }
  321. if (count == 1) {
  322. if (lock_or_unlock == MODE_LOCK) {
  323. s_mode_mask |= mode_mask;
  324. } else {
  325. s_mode_mask &= ~mode_mask;
  326. }
  327. need_switch = true;
  328. }
  329. pm_mode_t new_mode = s_mode;
  330. if (need_switch) {
  331. new_mode = get_lowest_allowed_mode();
  332. #ifdef WITH_PROFILING
  333. if (s_last_mode_change_time != 0) {
  334. pm_time_t diff = now - s_last_mode_change_time;
  335. s_time_in_mode[s_mode] += diff;
  336. }
  337. s_last_mode_change_time = now;
  338. #endif // WITH_PROFILING
  339. }
  340. portEXIT_CRITICAL_SAFE(&s_switch_lock);
  341. if (need_switch) {
  342. do_switch(new_mode);
  343. }
  344. }
  345. /**
  346. * @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
  347. * values on both CPUs.
  348. * @param old_ticks_per_us old CPU frequency
  349. * @param ticks_per_us new CPU frequency
  350. */
  351. static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
  352. {
  353. uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
  354. uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
  355. /* Update APB frequency value used by the timer */
  356. if (old_apb_ticks_per_us != apb_ticks_per_us) {
  357. esp_timer_private_update_apb_freq(apb_ticks_per_us);
  358. }
  359. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  360. #ifdef XT_RTOS_TIMER_INT
  361. /* Calculate new tick divisor */
  362. _xt_tick_divisor = ticks_per_us * MHZ / XT_TICK_PER_SEC;
  363. #endif
  364. int core_id = xPortGetCoreID();
  365. if (s_rtos_lock_handle[core_id] != NULL) {
  366. ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
  367. /* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
  368. * to calculate new CCOMPARE value.
  369. */
  370. s_ccount_div = old_ticks_per_us;
  371. s_ccount_mul = ticks_per_us;
  372. /* Update CCOMPARE value on this CPU */
  373. update_ccompare();
  374. #if portNUM_PROCESSORS == 2
  375. /* Send interrupt to the other CPU to update CCOMPARE value */
  376. int other_core_id = (core_id == 0) ? 1 : 0;
  377. s_need_update_ccompare[other_core_id] = true;
  378. esp_crosscore_int_send_freq_switch(other_core_id);
  379. int timeout = 0;
  380. while (s_need_update_ccompare[other_core_id]) {
  381. if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
  382. assert(false && "failed to update CCOMPARE, possible deadlock");
  383. }
  384. }
  385. #endif // portNUM_PROCESSORS == 2
  386. s_ccount_mul = 0;
  387. s_ccount_div = 0;
  388. ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
  389. }
  390. #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  391. }
  392. /**
  393. * Perform the switch to new power mode.
  394. * Currently only changes the CPU frequency and adjusts clock dividers.
  395. * No light sleep yet.
  396. * @param new_mode mode to switch to
  397. */
  398. static void IRAM_ATTR do_switch(pm_mode_t new_mode)
  399. {
  400. const int core_id = xPortGetCoreID();
  401. do {
  402. portENTER_CRITICAL_ISR(&s_switch_lock);
  403. if (!s_is_switching) {
  404. break;
  405. }
  406. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  407. if (s_need_update_ccompare[core_id]) {
  408. s_need_update_ccompare[core_id] = false;
  409. }
  410. #endif
  411. portEXIT_CRITICAL_ISR(&s_switch_lock);
  412. } while (true);
  413. if (new_mode == s_mode) {
  414. portEXIT_CRITICAL_ISR(&s_switch_lock);
  415. return;
  416. }
  417. s_is_switching = true;
  418. bool config_changed = s_config_changed;
  419. s_config_changed = false;
  420. portEXIT_CRITICAL_ISR(&s_switch_lock);
  421. rtc_cpu_freq_config_t new_config = s_cpu_freq_by_mode[new_mode];
  422. rtc_cpu_freq_config_t old_config;
  423. if (!config_changed) {
  424. old_config = s_cpu_freq_by_mode[s_mode];
  425. } else {
  426. rtc_clk_cpu_freq_get_config(&old_config);
  427. }
  428. if (new_config.freq_mhz != old_config.freq_mhz) {
  429. uint32_t old_ticks_per_us = old_config.freq_mhz;
  430. uint32_t new_ticks_per_us = new_config.freq_mhz;
  431. bool switch_down = new_ticks_per_us < old_ticks_per_us;
  432. ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
  433. if (switch_down) {
  434. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  435. }
  436. rtc_clk_cpu_freq_set_config_fast(&new_config);
  437. if (!switch_down) {
  438. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  439. }
  440. ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
  441. }
  442. portENTER_CRITICAL_ISR(&s_switch_lock);
  443. s_mode = new_mode;
  444. s_is_switching = false;
  445. portEXIT_CRITICAL_ISR(&s_switch_lock);
  446. }
  447. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  448. /**
  449. * @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
  450. *
  451. * Adjusts CCOMPARE value so that the interrupt happens at the same time as it
  452. * would happen without the frequency change.
  453. * Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
  454. */
  455. static void IRAM_ATTR update_ccompare(void)
  456. {
  457. uint32_t ccount = cpu_hal_get_cycle_count();
  458. uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
  459. if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
  460. uint32_t diff = ccompare - ccount;
  461. uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
  462. if (diff_scaled < _xt_tick_divisor) {
  463. uint32_t new_ccompare = ccount + diff_scaled;
  464. XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
  465. }
  466. }
  467. }
  468. #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  469. static void IRAM_ATTR leave_idle(void)
  470. {
  471. int core_id = xPortGetCoreID();
  472. if (s_core_idle[core_id]) {
  473. // TODO: possible optimization: raise frequency here first
  474. esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
  475. s_core_idle[core_id] = false;
  476. }
  477. }
  478. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  479. esp_err_t esp_pm_register_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
  480. {
  481. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  482. if (s_periph_skip_light_sleep_cb[i] == cb) {
  483. return ESP_OK;
  484. } else if (s_periph_skip_light_sleep_cb[i] == NULL) {
  485. s_periph_skip_light_sleep_cb[i] = cb;
  486. return ESP_OK;
  487. }
  488. }
  489. return ESP_ERR_NO_MEM;
  490. }
  491. esp_err_t esp_pm_unregister_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
  492. {
  493. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  494. if (s_periph_skip_light_sleep_cb[i] == cb) {
  495. s_periph_skip_light_sleep_cb[i] = NULL;
  496. return ESP_OK;
  497. }
  498. }
  499. return ESP_ERR_INVALID_STATE;
  500. }
  501. static inline bool IRAM_ATTR periph_should_skip_light_sleep(void)
  502. {
  503. if (s_light_sleep_en) {
  504. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  505. if (s_periph_skip_light_sleep_cb[i]) {
  506. if (s_periph_skip_light_sleep_cb[i]() == true) {
  507. return true;
  508. }
  509. }
  510. }
  511. }
  512. return false;
  513. }
  514. static inline bool IRAM_ATTR should_skip_light_sleep(int core_id)
  515. {
  516. #if portNUM_PROCESSORS == 2
  517. if (s_skip_light_sleep[core_id]) {
  518. s_skip_light_sleep[core_id] = false;
  519. s_skipped_light_sleep[core_id] = true;
  520. return true;
  521. }
  522. #endif // portNUM_PROCESSORS == 2
  523. if (s_mode != PM_MODE_LIGHT_SLEEP || s_is_switching || periph_should_skip_light_sleep()) {
  524. s_skipped_light_sleep[core_id] = true;
  525. } else {
  526. s_skipped_light_sleep[core_id] = false;
  527. }
  528. return s_skipped_light_sleep[core_id];
  529. }
  530. static inline void IRAM_ATTR other_core_should_skip_light_sleep(int core_id)
  531. {
  532. #if portNUM_PROCESSORS == 2
  533. s_skip_light_sleep[!core_id] = true;
  534. #endif
  535. }
  536. void IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
  537. {
  538. portENTER_CRITICAL(&s_switch_lock);
  539. int core_id = xPortGetCoreID();
  540. if (!should_skip_light_sleep(core_id)) {
  541. /* Calculate how much we can sleep */
  542. int64_t next_esp_timer_alarm = esp_timer_get_next_alarm_for_wake_up();
  543. int64_t now = esp_timer_get_time();
  544. int64_t time_until_next_alarm = next_esp_timer_alarm - now;
  545. int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
  546. int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
  547. if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
  548. esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
  549. #ifdef CONFIG_PM_TRACE
  550. /* to force tracing GPIOs to keep state */
  551. esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
  552. #endif
  553. /* Enter sleep */
  554. ESP_PM_TRACE_ENTER(SLEEP, core_id);
  555. int64_t sleep_start = esp_timer_get_time();
  556. esp_light_sleep_start();
  557. int64_t slept_us = esp_timer_get_time() - sleep_start;
  558. ESP_PM_TRACE_EXIT(SLEEP, core_id);
  559. uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
  560. if (slept_ticks > 0) {
  561. /* Adjust RTOS tick count based on the amount of time spent in sleep */
  562. vTaskStepTick(slept_ticks);
  563. #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
  564. /* Trigger tick interrupt, since sleep time was longer
  565. * than portTICK_PERIOD_MS. Note that setting INTSET does not
  566. * work for timer interrupt, and changing CCOMPARE would clear
  567. * the interrupt flag.
  568. */
  569. cpu_hal_set_cycle_count(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
  570. while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
  571. ;
  572. }
  573. #else
  574. portYIELD_WITHIN_API();
  575. #endif
  576. }
  577. other_core_should_skip_light_sleep(core_id);
  578. }
  579. }
  580. portEXIT_CRITICAL(&s_switch_lock);
  581. }
  582. #endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
  583. #ifdef WITH_PROFILING
  584. void esp_pm_impl_dump_stats(FILE* out)
  585. {
  586. pm_time_t time_in_mode[PM_MODE_COUNT];
  587. portENTER_CRITICAL_ISR(&s_switch_lock);
  588. memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
  589. pm_time_t last_mode_change_time = s_last_mode_change_time;
  590. pm_mode_t cur_mode = s_mode;
  591. pm_time_t now = pm_get_time();
  592. portEXIT_CRITICAL_ISR(&s_switch_lock);
  593. time_in_mode[cur_mode] += now - last_mode_change_time;
  594. fprintf(out, "\nMode stats:\n");
  595. fprintf(out, "%-8s %-10s %-10s %-10s\n", "Mode", "CPU_freq", "Time(us)", "Time(%)");
  596. for (int i = 0; i < PM_MODE_COUNT; ++i) {
  597. if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
  598. /* don't display light sleep mode if it's not enabled */
  599. continue;
  600. }
  601. fprintf(out, "%-8s %-3dM%-7s %-10lld %-2d%%\n",
  602. s_mode_names[i],
  603. s_cpu_freq_by_mode[i].freq_mhz,
  604. "", //Empty space to align columns
  605. time_in_mode[i],
  606. (int) (time_in_mode[i] * 100 / now));
  607. }
  608. }
  609. #endif // WITH_PROFILING
  610. int esp_pm_impl_get_cpu_freq(pm_mode_t mode)
  611. {
  612. int freq_mhz;
  613. if (mode >= PM_MODE_LIGHT_SLEEP && mode < PM_MODE_COUNT) {
  614. portENTER_CRITICAL(&s_switch_lock);
  615. freq_mhz = s_cpu_freq_by_mode[mode].freq_mhz;
  616. portEXIT_CRITICAL(&s_switch_lock);
  617. } else {
  618. abort();
  619. }
  620. return freq_mhz;
  621. }
  622. void esp_pm_impl_init(void)
  623. {
  624. #if defined(CONFIG_ESP_CONSOLE_UART)
  625. //This clock source should be a source which won't be affected by DFS
  626. uint32_t clk_source;
  627. #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
  628. clk_source = UART_SCLK_REF_TICK;
  629. #else
  630. clk_source = UART_SCLK_XTAL;
  631. #endif
  632. while(!uart_ll_is_tx_idle(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM)));
  633. /* When DFS is enabled, override system setting and use REFTICK as UART clock source */
  634. uart_ll_set_sclk(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), clk_source);
  635. uart_ll_set_baudrate(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), CONFIG_ESP_CONSOLE_UART_BAUDRATE);
  636. #endif // CONFIG_ESP_CONSOLE_UART
  637. #ifdef CONFIG_PM_TRACE
  638. esp_pm_trace_init();
  639. #endif
  640. #if CONFIG_PM_SLP_DISABLE_GPIO && SOC_GPIO_SUPPORT_SLP_SWITCH
  641. esp_sleep_config_gpio_isolate();
  642. #endif
  643. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
  644. &s_rtos_lock_handle[0]));
  645. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
  646. #if portNUM_PROCESSORS == 2
  647. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
  648. &s_rtos_lock_handle[1]));
  649. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
  650. #endif // portNUM_PROCESSORS == 2
  651. /* Configure all modes to use the default CPU frequency.
  652. * This will be modified later by a call to esp_pm_configure.
  653. */
  654. rtc_cpu_freq_config_t default_config;
  655. if (!rtc_clk_cpu_freq_mhz_to_config(DEFAULT_CPU_FREQ, &default_config)) {
  656. assert(false && "unsupported frequency");
  657. }
  658. for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
  659. s_cpu_freq_by_mode[i] = default_config;
  660. }
  661. #ifdef CONFIG_PM_DFS_INIT_AUTO
  662. int xtal_freq = (int) rtc_clk_xtal_freq_get();
  663. #if CONFIG_IDF_TARGET_ESP32
  664. esp_pm_config_esp32_t cfg = {
  665. #elif CONFIG_IDF_TARGET_ESP32S2
  666. esp_pm_config_esp32s2_t cfg = {
  667. #elif CONFIG_IDF_TARGET_ESP32S3
  668. esp_pm_config_esp32s3_t cfg = {
  669. #elif CONFIG_IDF_TARGET_ESP32C3
  670. esp_pm_config_esp32c3_t cfg = {
  671. #elif CONFIG_IDF_TARGET_ESP32H2
  672. esp_pm_config_esp32h2_t cfg = {
  673. #endif
  674. .max_freq_mhz = DEFAULT_CPU_FREQ,
  675. .min_freq_mhz = xtal_freq,
  676. };
  677. esp_pm_configure(&cfg);
  678. #endif //CONFIG_PM_DFS_INIT_AUTO
  679. }
  680. void esp_pm_impl_idle_hook(void)
  681. {
  682. int core_id = xPortGetCoreID();
  683. uint32_t state = portSET_INTERRUPT_MASK_FROM_ISR();
  684. if (!s_core_idle[core_id]
  685. #ifdef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  686. && !periph_should_skip_light_sleep()
  687. #endif
  688. ) {
  689. esp_pm_lock_release(s_rtos_lock_handle[core_id]);
  690. s_core_idle[core_id] = true;
  691. }
  692. portCLEAR_INTERRUPT_MASK_FROM_ISR(state);
  693. ESP_PM_TRACE_ENTER(IDLE, core_id);
  694. }
  695. void IRAM_ATTR esp_pm_impl_isr_hook(void)
  696. {
  697. int core_id = xPortGetCoreID();
  698. ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
  699. /* Prevent higher level interrupts (than the one this function was called from)
  700. * from happening in this section, since they will also call into esp_pm_impl_isr_hook.
  701. */
  702. uint32_t state = portSET_INTERRUPT_MASK_FROM_ISR();
  703. #if defined(CONFIG_FREERTOS_SYSTICK_USES_CCOUNT) && (portNUM_PROCESSORS == 2)
  704. if (s_need_update_ccompare[core_id]) {
  705. update_ccompare();
  706. s_need_update_ccompare[core_id] = false;
  707. } else {
  708. leave_idle();
  709. }
  710. #else
  711. leave_idle();
  712. #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT && portNUM_PROCESSORS == 2
  713. portCLEAR_INTERRUPT_MASK_FROM_ISR(state);
  714. ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
  715. }
  716. void esp_pm_impl_waiti(void)
  717. {
  718. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  719. int core_id = xPortGetCoreID();
  720. if (s_skipped_light_sleep[core_id]) {
  721. cpu_hal_waiti();
  722. /* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id]
  723. * is now taken. However since we are back to idle task, we can release
  724. * the lock so that vApplicationSleep can attempt to enter light sleep.
  725. */
  726. esp_pm_impl_idle_hook();
  727. s_skipped_light_sleep[core_id] = false;
  728. }
  729. #else
  730. cpu_hal_waiti();
  731. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  732. }
  733. #define PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO 1
  734. /* Inform peripherals of light sleep wakeup overhead time */
  735. static inform_out_light_sleep_overhead_cb_t s_periph_inform_out_light_sleep_overhead_cb[PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO];
  736. esp_err_t esp_pm_register_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
  737. {
  738. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  739. if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
  740. return ESP_OK;
  741. } else if (s_periph_inform_out_light_sleep_overhead_cb[i] == NULL) {
  742. s_periph_inform_out_light_sleep_overhead_cb[i] = cb;
  743. return ESP_OK;
  744. }
  745. }
  746. return ESP_ERR_NO_MEM;
  747. }
  748. esp_err_t esp_pm_unregister_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
  749. {
  750. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  751. if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
  752. s_periph_inform_out_light_sleep_overhead_cb[i] = NULL;
  753. return ESP_OK;
  754. }
  755. }
  756. return ESP_ERR_INVALID_STATE;
  757. }
  758. void periph_inform_out_light_sleep_overhead(uint32_t out_light_sleep_time)
  759. {
  760. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  761. if (s_periph_inform_out_light_sleep_overhead_cb[i]) {
  762. s_periph_inform_out_light_sleep_overhead_cb[i](out_light_sleep_time);
  763. }
  764. }
  765. }
  766. static update_light_sleep_default_params_config_cb_t s_light_sleep_default_params_config_cb = NULL;
  767. void esp_pm_register_light_sleep_default_params_config_callback(update_light_sleep_default_params_config_cb_t cb)
  768. {
  769. if (s_light_sleep_default_params_config_cb == NULL) {
  770. s_light_sleep_default_params_config_cb = cb;
  771. }
  772. }
  773. void esp_pm_unregister_light_sleep_default_params_config_callback(void)
  774. {
  775. if (s_light_sleep_default_params_config_cb) {
  776. s_light_sleep_default_params_config_cb = NULL;
  777. }
  778. }
  779. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  780. static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz)
  781. {
  782. if (s_light_sleep_default_params_config_cb) {
  783. (*s_light_sleep_default_params_config_cb)(min_freq_mhz, max_freq_mhz);
  784. }
  785. }
  786. #endif