rmt.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <esp_types.h>
  14. #include <string.h>
  15. #include <stdlib.h>
  16. #include "freertos/FreeRTOS.h"
  17. #include "freertos/semphr.h"
  18. #include "freertos/xtensa_api.h"
  19. #include "freertos/ringbuf.h"
  20. #include "esp_intr.h"
  21. #include "esp_log.h"
  22. #include "esp_err.h"
  23. #include "esp_intr_alloc.h"
  24. #include "soc/gpio_sig_map.h"
  25. #include "soc/rmt_struct.h"
  26. #include "driver/periph_ctrl.h"
  27. #include "driver/rmt.h"
  28. #include <sys/lock.h>
  29. #define RMT_SOUCCE_CLK_APB (APB_CLK_FREQ) /*!< RMT source clock is APB_CLK */
  30. #define RMT_SOURCE_CLK_REF (1 * 1000000) /*!< not used yet */
  31. #define RMT_SOURCE_CLK(select) ((select == RMT_BASECLK_REF) ? (RMT_SOURCE_CLK_REF) : (RMT_SOUCCE_CLK_APB)) /*! RMT source clock frequency */
  32. #define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
  33. #define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
  34. #define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
  35. #define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
  36. #define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
  37. #define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
  38. #define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
  39. #define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
  40. #define RMT_MODE_ERROR_STR "RMT MODE ERROR"
  41. #define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
  42. #define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
  43. #define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
  44. static const char* RMT_TAG = "rmt";
  45. static uint8_t s_rmt_driver_channels; // Bitmask (bits 0-7) of installed drivers' channels
  46. static rmt_isr_handle_t s_rmt_driver_intr_handle;
  47. #define RMT_CHECK(a, str, ret_val) \
  48. if (!(a)) { \
  49. ESP_LOGE(RMT_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  50. return (ret_val); \
  51. }
  52. // Spinlock for protecting concurrent register-level access only
  53. static portMUX_TYPE rmt_spinlock = portMUX_INITIALIZER_UNLOCKED;
  54. // Mutex lock for protecting concurrent register/unregister of RMT channels' ISR
  55. static _lock_t rmt_driver_isr_lock;
  56. typedef struct {
  57. int tx_offset;
  58. int tx_len_rem;
  59. int tx_sub_len;
  60. rmt_channel_t channel;
  61. const rmt_item32_t* tx_data;
  62. xSemaphoreHandle tx_sem;
  63. RingbufHandle_t tx_buf;
  64. RingbufHandle_t rx_buf;
  65. } rmt_obj_t;
  66. rmt_obj_t* p_rmt_obj[RMT_CHANNEL_MAX] = {0};
  67. // Event called when transmission is ended
  68. static rmt_tx_end_callback_t rmt_tx_end_callback;
  69. static void rmt_set_tx_wrap_en(rmt_channel_t channel, bool en)
  70. {
  71. portENTER_CRITICAL(&rmt_spinlock);
  72. RMT.apb_conf.mem_tx_wrap_en = en;
  73. portEXIT_CRITICAL(&rmt_spinlock);
  74. }
  75. static void rmt_set_data_mode(rmt_data_mode_t data_mode)
  76. {
  77. portENTER_CRITICAL(&rmt_spinlock);
  78. RMT.apb_conf.fifo_mask = data_mode;
  79. portEXIT_CRITICAL(&rmt_spinlock);
  80. }
  81. esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
  82. {
  83. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  84. RMT.conf_ch[channel].conf0.div_cnt = div_cnt;
  85. return ESP_OK;
  86. }
  87. esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t* div_cnt)
  88. {
  89. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  90. RMT_CHECK(div_cnt != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  91. *div_cnt = RMT.conf_ch[channel].conf0.div_cnt;
  92. return ESP_OK;
  93. }
  94. esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
  95. {
  96. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  97. RMT.conf_ch[channel].conf0.idle_thres = thresh;
  98. return ESP_OK;
  99. }
  100. esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
  101. {
  102. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  103. RMT_CHECK(thresh != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  104. *thresh = RMT.conf_ch[channel].conf0.idle_thres;
  105. return ESP_OK;
  106. }
  107. esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
  108. {
  109. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  110. RMT_CHECK(rmt_mem_num < 16, RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  111. RMT.conf_ch[channel].conf0.mem_size = rmt_mem_num;
  112. return ESP_OK;
  113. }
  114. esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t* rmt_mem_num)
  115. {
  116. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  117. RMT_CHECK(rmt_mem_num != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  118. *rmt_mem_num = RMT.conf_ch[channel].conf0.mem_size;
  119. return ESP_OK;
  120. }
  121. esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
  122. rmt_carrier_level_t carrier_level)
  123. {
  124. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  125. RMT_CHECK(carrier_level < RMT_CARRIER_LEVEL_MAX, RMT_CARRIER_ERROR_STR, ESP_ERR_INVALID_ARG);
  126. RMT.carrier_duty_ch[channel].high = high_level;
  127. RMT.carrier_duty_ch[channel].low = low_level;
  128. RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
  129. RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
  130. return ESP_OK;
  131. }
  132. esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
  133. {
  134. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  135. RMT.conf_ch[channel].conf0.mem_pd = pd_en;
  136. return ESP_OK;
  137. }
  138. esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool* pd_en)
  139. {
  140. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  141. *pd_en = (bool) RMT.conf_ch[channel].conf0.mem_pd;
  142. return ESP_OK;
  143. }
  144. esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
  145. {
  146. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  147. portENTER_CRITICAL(&rmt_spinlock);
  148. if(tx_idx_rst) {
  149. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  150. }
  151. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  152. RMT.conf_ch[channel].conf1.tx_start = 1;
  153. portEXIT_CRITICAL(&rmt_spinlock);
  154. return ESP_OK;
  155. }
  156. esp_err_t rmt_tx_stop(rmt_channel_t channel)
  157. {
  158. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  159. portENTER_CRITICAL(&rmt_spinlock);
  160. RMT.conf_ch[channel].conf1.tx_start = 0;
  161. portEXIT_CRITICAL(&rmt_spinlock);
  162. return ESP_OK;
  163. }
  164. esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
  165. {
  166. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  167. portENTER_CRITICAL(&rmt_spinlock);
  168. if(rx_idx_rst) {
  169. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  170. }
  171. RMT.conf_ch[channel].conf1.rx_en = 0;
  172. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  173. RMT.conf_ch[channel].conf1.rx_en = 1;
  174. portEXIT_CRITICAL(&rmt_spinlock);
  175. return ESP_OK;
  176. }
  177. esp_err_t rmt_rx_stop(rmt_channel_t channel)
  178. {
  179. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  180. portENTER_CRITICAL(&rmt_spinlock);
  181. RMT.conf_ch[channel].conf1.rx_en = 0;
  182. portEXIT_CRITICAL(&rmt_spinlock);
  183. return ESP_OK;
  184. }
  185. esp_err_t rmt_memory_rw_rst(rmt_channel_t channel)
  186. {
  187. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  188. portENTER_CRITICAL(&rmt_spinlock);
  189. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  190. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  191. portEXIT_CRITICAL(&rmt_spinlock);
  192. return ESP_OK;
  193. }
  194. esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
  195. {
  196. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  197. RMT_CHECK(owner < RMT_MEM_OWNER_MAX, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  198. portENTER_CRITICAL(&rmt_spinlock);
  199. RMT.conf_ch[channel].conf1.mem_owner = owner;
  200. portEXIT_CRITICAL(&rmt_spinlock);
  201. return ESP_OK;
  202. }
  203. esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t* owner)
  204. {
  205. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  206. RMT_CHECK(owner != NULL, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  207. *owner = (rmt_mem_owner_t) RMT.conf_ch[channel].conf1.mem_owner;
  208. return ESP_OK;
  209. }
  210. esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
  211. {
  212. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  213. portENTER_CRITICAL(&rmt_spinlock);
  214. RMT.conf_ch[channel].conf1.tx_conti_mode = loop_en;
  215. portEXIT_CRITICAL(&rmt_spinlock);
  216. return ESP_OK;
  217. }
  218. esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool* loop_en)
  219. {
  220. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  221. *loop_en = (bool) RMT.conf_ch[channel].conf1.tx_conti_mode;
  222. return ESP_OK;
  223. }
  224. esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
  225. {
  226. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  227. portENTER_CRITICAL(&rmt_spinlock);
  228. RMT.conf_ch[channel].conf1.rx_filter_en = rx_filter_en;
  229. RMT.conf_ch[channel].conf1.rx_filter_thres = thresh;
  230. portEXIT_CRITICAL(&rmt_spinlock);
  231. return ESP_OK;
  232. }
  233. esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
  234. {
  235. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  236. RMT_CHECK(base_clk < RMT_BASECLK_MAX, RMT_BASECLK_ERROR_STR, ESP_ERR_INVALID_ARG);
  237. portENTER_CRITICAL(&rmt_spinlock);
  238. RMT.conf_ch[channel].conf1.ref_always_on = base_clk;
  239. portEXIT_CRITICAL(&rmt_spinlock);
  240. return ESP_OK;
  241. }
  242. esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t* src_clk)
  243. {
  244. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  245. *src_clk = (rmt_source_clk_t) (RMT.conf_ch[channel].conf1.ref_always_on);
  246. return ESP_OK;
  247. }
  248. esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
  249. {
  250. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  251. RMT_CHECK(level < RMT_IDLE_LEVEL_MAX, "RMT IDLE LEVEL ERR", ESP_ERR_INVALID_ARG);
  252. portENTER_CRITICAL(&rmt_spinlock);
  253. RMT.conf_ch[channel].conf1.idle_out_en = idle_out_en;
  254. RMT.conf_ch[channel].conf1.idle_out_lv = level;
  255. portEXIT_CRITICAL(&rmt_spinlock);
  256. return ESP_OK;
  257. }
  258. esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t* status)
  259. {
  260. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  261. *status = RMT.status_ch[channel];
  262. return ESP_OK;
  263. }
  264. rmt_data_mode_t rmt_get_data_mode()
  265. {
  266. return (rmt_data_mode_t) (RMT.apb_conf.fifo_mask);
  267. }
  268. void rmt_set_intr_enable_mask(uint32_t mask)
  269. {
  270. portENTER_CRITICAL(&rmt_spinlock);
  271. RMT.int_ena.val |= mask;
  272. portEXIT_CRITICAL(&rmt_spinlock);
  273. }
  274. void rmt_clr_intr_enable_mask(uint32_t mask)
  275. {
  276. portENTER_CRITICAL(&rmt_spinlock);
  277. RMT.int_ena.val &= (~mask);
  278. portEXIT_CRITICAL(&rmt_spinlock);
  279. }
  280. esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
  281. {
  282. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  283. if(en) {
  284. rmt_set_intr_enable_mask(BIT(channel * 3 + 1));
  285. } else {
  286. rmt_clr_intr_enable_mask(BIT(channel * 3 + 1));
  287. }
  288. return ESP_OK;
  289. }
  290. esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
  291. {
  292. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  293. if(en) {
  294. rmt_set_intr_enable_mask(BIT(channel * 3 + 2));
  295. } else {
  296. rmt_clr_intr_enable_mask(BIT(channel * 3 + 2));
  297. }
  298. return ESP_OK;
  299. }
  300. esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
  301. {
  302. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  303. if(en) {
  304. rmt_set_intr_enable_mask(BIT(channel * 3));
  305. } else {
  306. rmt_clr_intr_enable_mask(BIT(channel * 3));
  307. }
  308. return ESP_OK;
  309. }
  310. esp_err_t rmt_set_tx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  311. {
  312. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  313. if(en) {
  314. RMT_CHECK(evt_thresh <= 256, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
  315. portENTER_CRITICAL(&rmt_spinlock);
  316. RMT.tx_lim_ch[channel].limit = evt_thresh;
  317. portEXIT_CRITICAL(&rmt_spinlock);
  318. rmt_set_tx_wrap_en(channel, true);
  319. rmt_set_intr_enable_mask(BIT(channel + 24));
  320. } else {
  321. rmt_clr_intr_enable_mask(BIT(channel + 24));
  322. }
  323. return ESP_OK;
  324. }
  325. esp_err_t rmt_set_pin(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num)
  326. {
  327. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  328. RMT_CHECK(mode < RMT_MODE_MAX, RMT_MODE_ERROR_STR, ESP_ERR_INVALID_ARG);
  329. RMT_CHECK(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) || (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))),
  330. RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
  331. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], 2);
  332. if(mode == RMT_MODE_TX) {
  333. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  334. gpio_matrix_out(gpio_num, RMT_SIG_OUT0_IDX + channel, 0, 0);
  335. } else {
  336. gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
  337. gpio_matrix_in(gpio_num, RMT_SIG_IN0_IDX + channel, 0);
  338. }
  339. return ESP_OK;
  340. }
  341. esp_err_t rmt_config(const rmt_config_t* rmt_param)
  342. {
  343. uint8_t mode = rmt_param->rmt_mode;
  344. uint8_t channel = rmt_param->channel;
  345. uint8_t gpio_num = rmt_param->gpio_num;
  346. uint8_t mem_cnt = rmt_param->mem_block_num;
  347. int clk_div = rmt_param->clk_div;
  348. uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
  349. bool carrier_en = rmt_param->tx_config.carrier_en;
  350. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  351. RMT_CHECK(GPIO_IS_VALID_GPIO(gpio_num), RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
  352. RMT_CHECK((mem_cnt + channel <= 8 && mem_cnt > 0), RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  353. RMT_CHECK((clk_div > 0), RMT_CLK_DIV_ERROR_STR, ESP_ERR_INVALID_ARG);
  354. if (mode == RMT_MODE_TX) {
  355. RMT_CHECK((!carrier_en || carrier_freq_hz > 0), "RMT carrier frequency can't be zero", ESP_ERR_INVALID_ARG);
  356. }
  357. periph_module_enable(PERIPH_RMT_MODULE);
  358. RMT.conf_ch[channel].conf0.div_cnt = clk_div;
  359. /*Visit data use memory not FIFO*/
  360. rmt_set_data_mode(RMT_DATA_MODE_MEM);
  361. /*Reset tx/rx memory index */
  362. portENTER_CRITICAL(&rmt_spinlock);
  363. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  364. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  365. portEXIT_CRITICAL(&rmt_spinlock);
  366. if(mode == RMT_MODE_TX) {
  367. uint32_t rmt_source_clk_hz = 0;
  368. uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
  369. uint8_t carrier_level = rmt_param->tx_config.carrier_level;
  370. uint8_t idle_level = rmt_param->tx_config.idle_level;
  371. portENTER_CRITICAL(&rmt_spinlock);
  372. RMT.conf_ch[channel].conf1.tx_conti_mode = rmt_param->tx_config.loop_en;
  373. /*Memory set block number*/
  374. RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
  375. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  376. /*We use APB clock in this version, which is 80Mhz, later we will release system reference clock*/
  377. RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
  378. rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
  379. /*Set idle level */
  380. RMT.conf_ch[channel].conf1.idle_out_en = rmt_param->tx_config.idle_output_en;
  381. RMT.conf_ch[channel].conf1.idle_out_lv = idle_level;
  382. /*Set carrier*/
  383. RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
  384. if (carrier_en) {
  385. uint32_t duty_div, duty_h, duty_l;
  386. duty_div = rmt_source_clk_hz / carrier_freq_hz;
  387. duty_h = duty_div * carrier_duty_percent / 100;
  388. duty_l = duty_div - duty_h;
  389. RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
  390. RMT.carrier_duty_ch[channel].high = duty_h;
  391. RMT.carrier_duty_ch[channel].low = duty_l;
  392. } else {
  393. RMT.conf_ch[channel].conf0.carrier_out_lv = 0;
  394. RMT.carrier_duty_ch[channel].high = 0;
  395. RMT.carrier_duty_ch[channel].low = 0;
  396. }
  397. portEXIT_CRITICAL(&rmt_spinlock);
  398. ESP_LOGD(RMT_TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Carrier_Hz %u|Duty %u",
  399. channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
  400. }
  401. else if(RMT_MODE_RX == mode) {
  402. uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
  403. uint16_t threshold = rmt_param->rx_config.idle_threshold;
  404. portENTER_CRITICAL(&rmt_spinlock);
  405. /*clock init*/
  406. RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
  407. uint32_t rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
  408. /*memory set block number and owner*/
  409. RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
  410. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  411. /*Set idle threshold*/
  412. RMT.conf_ch[channel].conf0.idle_thres = threshold;
  413. /* Set RX filter */
  414. RMT.conf_ch[channel].conf1.rx_filter_thres = filter_cnt;
  415. RMT.conf_ch[channel].conf1.rx_filter_en = rmt_param->rx_config.filter_en;
  416. portEXIT_CRITICAL(&rmt_spinlock);
  417. ESP_LOGD(RMT_TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Thresold %u|Filter %u",
  418. channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
  419. }
  420. rmt_set_pin(channel, mode, gpio_num);
  421. return ESP_OK;
  422. }
  423. static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, const rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
  424. {
  425. portENTER_CRITICAL(&rmt_spinlock);
  426. RMT.apb_conf.fifo_mask = RMT_DATA_MODE_MEM;
  427. portEXIT_CRITICAL(&rmt_spinlock);
  428. int i;
  429. for(i = 0; i < item_num; i++) {
  430. RMTMEM.chan[channel].data32[i + mem_offset].val = item[i].val;
  431. }
  432. }
  433. esp_err_t rmt_fill_tx_items(rmt_channel_t channel, const rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
  434. {
  435. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, (0));
  436. RMT_CHECK((item != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  437. RMT_CHECK((item_num > 0), RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  438. /*Each block has 64 x 32 bits of data*/
  439. uint8_t mem_cnt = RMT.conf_ch[channel].conf0.mem_size;
  440. RMT_CHECK((mem_cnt * RMT_MEM_ITEM_NUM >= item_num), RMT_WR_MEM_OVF_ERROR_STR, ESP_ERR_INVALID_ARG);
  441. rmt_fill_memory(channel, item, item_num, mem_offset);
  442. return ESP_OK;
  443. }
  444. esp_err_t rmt_isr_register(void (*fn)(void*), void * arg, int intr_alloc_flags, rmt_isr_handle_t *handle)
  445. {
  446. RMT_CHECK((fn != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  447. RMT_CHECK(s_rmt_driver_channels == 0, "RMT driver installed, can not install generic ISR handler", ESP_FAIL);
  448. return esp_intr_alloc(ETS_RMT_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  449. }
  450. esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)
  451. {
  452. return esp_intr_free(handle);
  453. }
  454. static int IRAM_ATTR rmt_get_mem_len(rmt_channel_t channel)
  455. {
  456. int block_num = RMT.conf_ch[channel].conf0.mem_size;
  457. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  458. volatile rmt_item32_t* data = RMTMEM.chan[channel].data32;
  459. int idx;
  460. for(idx = 0; idx < item_block_len; idx++) {
  461. if(data[idx].duration0 == 0) {
  462. return idx;
  463. } else if(data[idx].duration1 == 0) {
  464. return idx + 1;
  465. }
  466. }
  467. return idx;
  468. }
  469. static void IRAM_ATTR rmt_driver_isr_default(void* arg)
  470. {
  471. uint32_t intr_st = RMT.int_st.val;
  472. uint32_t i = 0;
  473. uint8_t channel;
  474. portBASE_TYPE HPTaskAwoken = 0;
  475. for(i = 0; i < 32; i++) {
  476. if(i < 24) {
  477. if(intr_st & BIT(i)) {
  478. channel = i / 3;
  479. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  480. switch(i % 3) {
  481. //TX END
  482. case 0:
  483. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  484. if(HPTaskAwoken == pdTRUE) {
  485. portYIELD_FROM_ISR();
  486. }
  487. p_rmt->tx_data = NULL;
  488. p_rmt->tx_len_rem = 0;
  489. p_rmt->tx_offset = 0;
  490. p_rmt->tx_sub_len = 0;
  491. if(rmt_tx_end_callback.function != NULL) {
  492. rmt_tx_end_callback.function(channel, rmt_tx_end_callback.arg);
  493. }
  494. break;
  495. //RX_END
  496. case 1:
  497. RMT.conf_ch[channel].conf1.rx_en = 0;
  498. int item_len = rmt_get_mem_len(channel);
  499. //change memory owner to protect data.
  500. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  501. if(p_rmt->rx_buf) {
  502. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void*) RMTMEM.chan[channel].data32, item_len * 4, &HPTaskAwoken);
  503. if(res == pdFALSE) {
  504. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER FULL");
  505. } else {
  506. }
  507. if(HPTaskAwoken == pdTRUE) {
  508. portYIELD_FROM_ISR();
  509. }
  510. } else {
  511. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER ERROR\n");
  512. }
  513. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  514. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  515. RMT.conf_ch[channel].conf1.rx_en = 1;
  516. break;
  517. //ERR
  518. case 2:
  519. ESP_EARLY_LOGE(RMT_TAG, "RMT[%d] ERR", channel);
  520. ESP_EARLY_LOGE(RMT_TAG, "status: 0x%08x", RMT.status_ch[channel]);
  521. RMT.int_ena.val &= (~(BIT(i)));
  522. break;
  523. default:
  524. break;
  525. }
  526. RMT.int_clr.val = BIT(i);
  527. }
  528. } else {
  529. if(intr_st & (BIT(i))) {
  530. channel = i - 24;
  531. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  532. RMT.int_clr.val = BIT(i);
  533. if(p_rmt->tx_data == NULL) {
  534. //skip
  535. } else {
  536. const rmt_item32_t* pdata = p_rmt->tx_data;
  537. int len_rem = p_rmt->tx_len_rem;
  538. if(len_rem >= p_rmt->tx_sub_len) {
  539. rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
  540. p_rmt->tx_data += p_rmt->tx_sub_len;
  541. p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
  542. } else if(len_rem == 0) {
  543. RMTMEM.chan[channel].data32[p_rmt->tx_offset].val = 0;
  544. } else {
  545. rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
  546. RMTMEM.chan[channel].data32[p_rmt->tx_offset + len_rem].val = 0;
  547. p_rmt->tx_data += len_rem;
  548. p_rmt->tx_len_rem -= len_rem;
  549. }
  550. if(p_rmt->tx_offset == 0) {
  551. p_rmt->tx_offset = p_rmt->tx_sub_len;
  552. } else {
  553. p_rmt->tx_offset = 0;
  554. }
  555. }
  556. }
  557. }
  558. }
  559. }
  560. esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
  561. {
  562. esp_err_t err = ESP_OK;
  563. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  564. RMT_CHECK((s_rmt_driver_channels & BIT(channel)) != 0, "No RMT driver for this channel", ESP_ERR_INVALID_STATE);
  565. if(p_rmt_obj[channel] == NULL) {
  566. return ESP_OK;
  567. }
  568. xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
  569. rmt_set_rx_intr_en(channel, 0);
  570. rmt_set_err_intr_en(channel, 0);
  571. rmt_set_tx_intr_en(channel, 0);
  572. rmt_set_tx_thr_intr_en(channel, 0, 0xffff);
  573. _lock_acquire_recursive(&rmt_driver_isr_lock);
  574. s_rmt_driver_channels &= ~BIT(channel);
  575. if (s_rmt_driver_channels == 0) { // all channels have driver disabled
  576. err = rmt_isr_deregister(s_rmt_driver_intr_handle);
  577. s_rmt_driver_intr_handle = NULL;
  578. }
  579. _lock_release_recursive(&rmt_driver_isr_lock);
  580. if (err != ESP_OK) {
  581. return err;
  582. }
  583. if(p_rmt_obj[channel]->tx_sem) {
  584. vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
  585. p_rmt_obj[channel]->tx_sem = NULL;
  586. }
  587. if(p_rmt_obj[channel]->rx_buf) {
  588. vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
  589. p_rmt_obj[channel]->rx_buf = NULL;
  590. }
  591. free(p_rmt_obj[channel]);
  592. p_rmt_obj[channel] = NULL;
  593. return ESP_OK;
  594. }
  595. esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags)
  596. {
  597. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  598. RMT_CHECK((s_rmt_driver_channels & BIT(channel)) == 0, "RMT driver already installed for channel", ESP_ERR_INVALID_STATE);
  599. esp_err_t err = ESP_OK;
  600. if(p_rmt_obj[channel] != NULL) {
  601. ESP_LOGD(RMT_TAG, "RMT driver already installed");
  602. return ESP_ERR_INVALID_STATE;
  603. }
  604. p_rmt_obj[channel] = (rmt_obj_t*) malloc(sizeof(rmt_obj_t));
  605. if(p_rmt_obj[channel] == NULL) {
  606. ESP_LOGE(RMT_TAG, "RMT driver malloc error");
  607. return ESP_ERR_NO_MEM;
  608. }
  609. memset(p_rmt_obj[channel], 0, sizeof(rmt_obj_t));
  610. p_rmt_obj[channel]->tx_len_rem = 0;
  611. p_rmt_obj[channel]->tx_data = NULL;
  612. p_rmt_obj[channel]->channel = channel;
  613. p_rmt_obj[channel]->tx_offset = 0;
  614. p_rmt_obj[channel]->tx_sub_len = 0;
  615. if(p_rmt_obj[channel]->tx_sem == NULL) {
  616. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  617. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  618. }
  619. if(p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
  620. p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
  621. rmt_set_rx_intr_en(channel, 1);
  622. rmt_set_err_intr_en(channel, 1);
  623. }
  624. _lock_acquire_recursive(&rmt_driver_isr_lock);
  625. if(s_rmt_driver_channels == 0) { // first RMT channel using driver
  626. err = rmt_isr_register(rmt_driver_isr_default, NULL, intr_alloc_flags, &s_rmt_driver_intr_handle);
  627. }
  628. if (err == ESP_OK) {
  629. s_rmt_driver_channels |= BIT(channel);
  630. rmt_set_tx_intr_en(channel, 1);
  631. }
  632. _lock_release_recursive(&rmt_driver_isr_lock);
  633. return err;
  634. }
  635. esp_err_t rmt_write_items(rmt_channel_t channel, const rmt_item32_t* rmt_item, int item_num, bool wait_tx_done)
  636. {
  637. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  638. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  639. RMT_CHECK(rmt_item != NULL, RMT_ADDR_ERROR_STR, ESP_FAIL);
  640. RMT_CHECK(item_num > 0, RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  641. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  642. int block_num = RMT.conf_ch[channel].conf0.mem_size;
  643. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  644. int item_sub_len = block_num * RMT_MEM_ITEM_NUM / 2;
  645. int len_rem = item_num;
  646. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  647. // fill the memory block first
  648. if(item_num >= item_block_len) {
  649. rmt_fill_memory(channel, rmt_item, item_block_len, 0);
  650. RMT.tx_lim_ch[channel].limit = item_sub_len;
  651. RMT.apb_conf.mem_tx_wrap_en = 1;
  652. len_rem -= item_block_len;
  653. RMT.conf_ch[channel].conf1.tx_conti_mode = 0;
  654. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  655. p_rmt->tx_data = rmt_item + item_block_len;
  656. p_rmt->tx_len_rem = len_rem;
  657. p_rmt->tx_offset = 0;
  658. p_rmt->tx_sub_len = item_sub_len;
  659. } else {
  660. rmt_fill_memory(channel, rmt_item, len_rem, 0);
  661. RMTMEM.chan[channel].data32[len_rem].val = 0;
  662. len_rem = 0;
  663. }
  664. rmt_tx_start(channel, true);
  665. if(wait_tx_done) {
  666. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  667. xSemaphoreGive(p_rmt->tx_sem);
  668. }
  669. return ESP_OK;
  670. }
  671. esp_err_t rmt_wait_tx_done(rmt_channel_t channel, TickType_t wait_time)
  672. {
  673. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  674. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  675. if(xSemaphoreTake(p_rmt_obj[channel]->tx_sem, wait_time) == pdTRUE) {
  676. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  677. return ESP_OK;
  678. }
  679. else {
  680. ESP_LOGE(RMT_TAG, "Timeout on wait_tx_done");
  681. return ESP_ERR_TIMEOUT;
  682. }
  683. }
  684. esp_err_t rmt_get_ringbuf_handle(rmt_channel_t channel, RingbufHandle_t* buf_handle)
  685. {
  686. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  687. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  688. RMT_CHECK(buf_handle != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  689. *buf_handle = p_rmt_obj[channel]->rx_buf;
  690. return ESP_OK;
  691. }
  692. rmt_tx_end_callback_t rmt_register_tx_end_callback(rmt_tx_end_fn_t function, void *arg)
  693. {
  694. rmt_tx_end_callback_t previous = rmt_tx_end_callback;
  695. rmt_tx_end_callback.function = function;
  696. rmt_tx_end_callback.arg = arg;
  697. return previous;
  698. }