| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812 |
- // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- /*
- Architecture:
- We can initialize a SPI driver, but we don't talk to the SPI driver itself, we address a device. A device essentially
- is a combination of SPI port and CS pin, plus some information about the specifics of communication to the device
- (timing, command/address length etc)
- The essence of the interface to a device is a set of queues; one per device. The idea is that to send something to a SPI
- device, you allocate a transaction descriptor. It contains some information about the transfer like the lenghth, address,
- command etc, plus pointers to transmit and receive buffer. The address of this block gets pushed into the transmit queue.
- The SPI driver does its magic, and sends and retrieves the data eventually. The data gets written to the receive buffers,
- if needed the transaction descriptor is modified to indicate returned parameters and the entire thing goes into the return
- queue, where whatever software initiated the transaction can retrieve it.
- The entire thing is run from the SPI interrupt handler. If SPI is done transmitting/receiving but nothing is in the queue,
- it will not clear the SPI interrupt but just disable it. This way, when a new thing is sent, pushing the packet into the send
- queue and re-enabling the interrupt will trigger the interrupt again, which can then take care of the sending.
- */
- #include <string.h>
- #include "driver/spi_common.h"
- #include "driver/spi_master.h"
- #include "soc/gpio_sig_map.h"
- #include "soc/spi_reg.h"
- #include "soc/dport_reg.h"
- #include "soc/spi_struct.h"
- #include "rom/ets_sys.h"
- #include "esp_types.h"
- #include "esp_attr.h"
- #include "esp_intr.h"
- #include "esp_intr_alloc.h"
- #include "esp_log.h"
- #include "esp_err.h"
- #include "esp_pm.h"
- #include "freertos/FreeRTOS.h"
- #include "freertos/semphr.h"
- #include "freertos/xtensa_api.h"
- #include "freertos/task.h"
- #include "freertos/ringbuf.h"
- #include "soc/soc.h"
- #include "soc/soc_memory_layout.h"
- #include "soc/dport_reg.h"
- #include "rom/lldesc.h"
- #include "driver/gpio.h"
- #include "driver/periph_ctrl.h"
- #include "esp_heap_caps.h"
- typedef struct spi_device_t spi_device_t;
- typedef typeof(SPI1.clock) spi_clock_reg_t;
- #define NO_CS 3 //Number of CS pins per SPI host
- /// struct to hold private transaction data (like tx and rx buffer for DMA).
- typedef struct {
- spi_transaction_t *trans;
- uint32_t *buffer_to_send; //equals to tx_data, if SPI_TRANS_USE_RXDATA is applied; otherwise if original buffer wasn't in DMA-capable memory, this gets the address of a temporary buffer that is;
- //otherwise sets to the original buffer or NULL if no buffer is assigned.
- uint32_t *buffer_to_rcv; // similar to buffer_to_send
- } spi_trans_priv;
- typedef struct {
- spi_device_t *device[NO_CS];
- intr_handle_t intr;
- spi_dev_t *hw;
- spi_trans_priv cur_trans_buf;
- int cur_cs;
- int prev_cs;
- lldesc_t *dmadesc_tx;
- lldesc_t *dmadesc_rx;
- bool no_gpio_matrix;
- int dma_chan;
- int max_transfer_sz;
- #ifdef CONFIG_PM_ENABLE
- esp_pm_lock_handle_t pm_lock;
- #endif
- } spi_host_t;
- typedef struct {
- spi_clock_reg_t reg;
- int eff_clk;
- int dummy_num;
- } clock_config_t;
- struct spi_device_t {
- QueueHandle_t trans_queue;
- QueueHandle_t ret_queue;
- spi_device_interface_config_t cfg;
- clock_config_t clk_cfg;
- spi_host_t *host;
- };
- static spi_host_t *spihost[3];
- static const char *SPI_TAG = "spi_master";
- #define SPI_CHECK(a, str, ret_val) \
- if (!(a)) { \
- ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
- return (ret_val); \
- }
- static void spi_intr(void *arg);
- esp_err_t spi_bus_initialize(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan)
- {
- bool native, spi_chan_claimed, dma_chan_claimed;
- /* ToDo: remove this when we have flash operations cooperating with this */
- SPI_CHECK(host!=SPI_HOST, "SPI1 is not supported", ESP_ERR_NOT_SUPPORTED);
- SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
- SPI_CHECK( dma_chan >= 0 && dma_chan <= 2, "invalid dma channel", ESP_ERR_INVALID_ARG );
- spi_chan_claimed=spicommon_periph_claim(host);
- SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE);
- if ( dma_chan != 0 ) {
- dma_chan_claimed=spicommon_dma_chan_claim(dma_chan);
- if ( !dma_chan_claimed ) {
- spicommon_periph_free( host );
- SPI_CHECK(dma_chan_claimed, "dma channel already in use", ESP_ERR_INVALID_STATE);
- }
- }
- spihost[host]=malloc(sizeof(spi_host_t));
- if (spihost[host]==NULL) goto nomem;
- memset(spihost[host], 0, sizeof(spi_host_t));
- #ifdef CONFIG_PM_ENABLE
- esp_err_t err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master",
- &spihost[host]->pm_lock);
- if (err != ESP_OK) {
- goto nomem;
- }
- #endif //CONFIG_PM_ENABLE
-
- spicommon_bus_initialize_io(host, bus_config, dma_chan, SPICOMMON_BUSFLAG_MASTER|SPICOMMON_BUSFLAG_QUAD, &native);
- spihost[host]->no_gpio_matrix=native;
-
- spihost[host]->dma_chan=dma_chan;
- if (dma_chan == 0) {
- spihost[host]->max_transfer_sz = 32;
- } else {
- //See how many dma descriptors we need and allocate them
- int dma_desc_ct=(bus_config->max_transfer_sz+SPI_MAX_DMA_LEN-1)/SPI_MAX_DMA_LEN;
- if (dma_desc_ct==0) dma_desc_ct=1; //default to 4k when max is not given
- spihost[host]->max_transfer_sz = dma_desc_ct*SPI_MAX_DMA_LEN;
- spihost[host]->dmadesc_tx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
- spihost[host]->dmadesc_rx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
- if (!spihost[host]->dmadesc_tx || !spihost[host]->dmadesc_rx) goto nomem;
- }
- esp_intr_alloc(spicommon_irqsource_for_host(host), ESP_INTR_FLAG_INTRDISABLED, spi_intr, (void*)spihost[host], &spihost[host]->intr);
- spihost[host]->hw=spicommon_hw_for_host(host);
- spihost[host]->cur_cs = NO_CS;
- spihost[host]->prev_cs = NO_CS;
- //Reset DMA
- spihost[host]->hw->dma_conf.val|=SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
- spihost[host]->hw->dma_out_link.start=0;
- spihost[host]->hw->dma_in_link.start=0;
- spihost[host]->hw->dma_conf.val&=~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
- //Reset timing
- spihost[host]->hw->ctrl2.val=0;
- //Disable unneeded ints
- spihost[host]->hw->slave.rd_buf_done=0;
- spihost[host]->hw->slave.wr_buf_done=0;
- spihost[host]->hw->slave.rd_sta_done=0;
- spihost[host]->hw->slave.wr_sta_done=0;
- spihost[host]->hw->slave.rd_buf_inten=0;
- spihost[host]->hw->slave.wr_buf_inten=0;
- spihost[host]->hw->slave.rd_sta_inten=0;
- spihost[host]->hw->slave.wr_sta_inten=0;
- //Force a transaction done interrupt. This interrupt won't fire yet because we initialized the SPI interrupt as
- //disabled. This way, we can just enable the SPI interrupt and the interrupt handler will kick in, handling
- //any transactions that are queued.
- spihost[host]->hw->slave.trans_inten=1;
- spihost[host]->hw->slave.trans_done=1;
- return ESP_OK;
- nomem:
- if (spihost[host]) {
- free(spihost[host]->dmadesc_tx);
- free(spihost[host]->dmadesc_rx);
- #ifdef CONFIG_PM_ENABLE
- if (spihost[host]->pm_lock) {
- esp_pm_lock_delete(spihost[host]->pm_lock);
- }
- #endif
- }
- free(spihost[host]);
- spicommon_periph_free(host);
- spicommon_dma_chan_free(dma_chan);
- return ESP_ERR_NO_MEM;
- }
- esp_err_t spi_bus_free(spi_host_device_t host)
- {
- int x;
- SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
- SPI_CHECK(spihost[host]!=NULL, "host not in use", ESP_ERR_INVALID_STATE);
- for (x=0; x<NO_CS; x++) {
- SPI_CHECK(spihost[host]->device[x]==NULL, "not all CSses freed", ESP_ERR_INVALID_STATE);
- }
- if ( spihost[host]->dma_chan > 0 ) {
- spicommon_dma_chan_free ( spihost[host]->dma_chan );
- }
- #ifdef CONFIG_PM_ENABLE
- esp_pm_lock_delete(spihost[host]->pm_lock);
- #endif
- spihost[host]->hw->slave.trans_inten=0;
- spihost[host]->hw->slave.trans_done=0;
- esp_intr_free(spihost[host]->intr);
- spicommon_periph_free(host);
- free(spihost[host]->dmadesc_tx);
- free(spihost[host]->dmadesc_rx);
- free(spihost[host]);
- spihost[host]=NULL;
- return ESP_OK;
- }
- static inline uint32_t spi_dummy_limit(bool gpio_is_used)
- {
- const int apbclk=APB_CLK_FREQ;
- if (!gpio_is_used) {
- return apbclk; //dummy bit workaround is not used when native pins are used
- } else {
- return apbclk/2; //the dummy bit workaround is used when freq is 40MHz and GPIO matrix is used.
- }
- }
- /*
- Add a device. This allocates a CS line for the device, allocates memory for the device structure and hooks
- up the CS pin to whatever is specified.
- */
- esp_err_t spi_bus_add_device(spi_host_device_t host, const spi_device_interface_config_t *dev_config, spi_device_handle_t *handle)
- {
- int freecs;
- int apbclk=APB_CLK_FREQ;
- int eff_clk;
- int duty_cycle;
- spi_clock_reg_t clk_reg;
- SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
- SPI_CHECK(spihost[host]!=NULL, "host not initialized", ESP_ERR_INVALID_STATE);
- SPI_CHECK(dev_config->spics_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(dev_config->spics_io_num), "spics pin invalid", ESP_ERR_INVALID_ARG);
- SPI_CHECK(dev_config->clock_speed_hz > 0, "invalid sclk speed", ESP_ERR_INVALID_ARG);
- for (freecs=0; freecs<NO_CS; freecs++) {
- //See if this slot is free; reserve if it is by putting a dummy pointer in the slot. We use an atomic compare&swap to make this thread-safe.
- if (__sync_bool_compare_and_swap(&spihost[host]->device[freecs], NULL, (spi_device_t *)1)) break;
- }
- SPI_CHECK(freecs!=NO_CS, "no free cs pins for host", ESP_ERR_NOT_FOUND);
- //The hardware looks like it would support this, but actually setting cs_ena_pretrans when transferring in full
- //duplex mode does absolutely nothing on the ESP32.
- SPI_CHECK(dev_config->cs_ena_pretrans==0 || (dev_config->flags & SPI_DEVICE_HALFDUPLEX), "cs pretrans delay incompatible with full-duplex", ESP_ERR_INVALID_ARG);
-
- //Speeds >=40MHz over GPIO matrix needs a dummy cycle, but these don't work for full-duplex connections.
- duty_cycle = (dev_config->duty_cycle_pos==0? 128: dev_config->duty_cycle_pos);
- eff_clk = spi_cal_clock(apbclk, dev_config->clock_speed_hz, duty_cycle, (uint32_t*)&clk_reg);
- uint32_t dummy_limit = spi_dummy_limit(!spihost[host]->no_gpio_matrix);
- SPI_CHECK( dev_config->flags & SPI_DEVICE_HALFDUPLEX || (eff_clk/1000/1000) < (dummy_limit/1000/1000) ||
- dev_config->flags & SPI_DEVICE_NO_DUMMY,
- "When GPIO matrix is used in full-duplex mode at frequency > 26MHz, device cannot read correct data.\n\
- Please note the SPI can only work at divisors of 80MHz, and the driver always tries to find the closest frequency to your configuration.\n\
- Specify ``SPI_DEVICE_NO_DUMMY`` to ignore this checking. Then you can output data at higher speed, or read data at your own risk.",
- ESP_ERR_INVALID_ARG );
- //Allocate memory for device
- spi_device_t *dev=malloc(sizeof(spi_device_t));
- if (dev==NULL) goto nomem;
- memset(dev, 0, sizeof(spi_device_t));
- spihost[host]->device[freecs]=dev;
- //Allocate queues, set defaults
- dev->trans_queue=xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv));
- dev->ret_queue=xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv));
- if (!dev->trans_queue || !dev->ret_queue) goto nomem;
- dev->host=spihost[host];
- //We want to save a copy of the dev config in the dev struct.
- memcpy(&dev->cfg, dev_config, sizeof(spi_device_interface_config_t));
- dev->cfg.duty_cycle_pos = duty_cycle;
- // TODO: if we have to change the apb clock among transactions, re-calculate this each time the apb clock lock is acquired.
- dev->clk_cfg= (clock_config_t) {
- .eff_clk = eff_clk,
- .dummy_num = (dev->clk_cfg.eff_clk >= dummy_limit? 1: 0),
- .reg = clk_reg,
- };
- //Set CS pin, CS options
- if (dev_config->spics_io_num >= 0) {
- gpio_set_direction(dev_config->spics_io_num, GPIO_MODE_OUTPUT);
- spicommon_cs_initialize(host, dev_config->spics_io_num, freecs, spihost[host]->no_gpio_matrix == false);
- }
- if (dev_config->flags&SPI_DEVICE_CLK_AS_CS) {
- spihost[host]->hw->pin.master_ck_sel |= (1<<freecs);
- } else {
- spihost[host]->hw->pin.master_ck_sel &= (1<<freecs);
- }
- if (dev_config->flags&SPI_DEVICE_POSITIVE_CS) {
- spihost[host]->hw->pin.master_cs_pol |= (1<<freecs);
- } else {
- spihost[host]->hw->pin.master_cs_pol &= (1<<freecs);
- }
- *handle=dev;
- ESP_LOGD(SPI_TAG, "SPI%d: New device added to CS%d, effective clock: %dkHz", host, freecs, dev->clk_cfg.eff_clk/1000);
- return ESP_OK;
- nomem:
- if (dev) {
- if (dev->trans_queue) vQueueDelete(dev->trans_queue);
- if (dev->ret_queue) vQueueDelete(dev->ret_queue);
- }
- free(dev);
- return ESP_ERR_NO_MEM;
- }
- esp_err_t spi_bus_remove_device(spi_device_handle_t handle)
- {
- int x;
- SPI_CHECK(handle!=NULL, "invalid handle", ESP_ERR_INVALID_ARG);
- //These checks aren't exhaustive; another thread could sneak in a transaction inbetween. These are only here to
- //catch design errors and aren't meant to be triggered during normal operation.
- SPI_CHECK(uxQueueMessagesWaiting(handle->trans_queue)==0, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
- SPI_CHECK(handle->host->cur_cs == NO_CS || handle->host->device[handle->host->cur_cs]!=handle, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
- SPI_CHECK(uxQueueMessagesWaiting(handle->ret_queue)==0, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
- //Kill queues
- vQueueDelete(handle->trans_queue);
- vQueueDelete(handle->ret_queue);
- //Remove device from list of csses and free memory
- for (x=0; x<NO_CS; x++) {
- if (handle->host->device[x] == handle){
- handle->host->device[x]=NULL;
- if ( x == handle->host->prev_cs ) handle->host->prev_cs = NO_CS;
- }
- }
- free(handle);
- return ESP_OK;
- }
- static int spi_freq_for_pre_n(int fapb, int pre, int n) {
- return (fapb / (pre * n));
- }
- int spi_cal_clock(int fapb, int hz, int duty_cycle, uint32_t *reg_o)
- {
- spi_clock_reg_t reg;
- int eff_clk;
- //In hw, n, h and l are 1-64, pre is 1-8K. Value written to register is one lower than used value.
- if (hz>((fapb/4)*3)) {
- //Using Fapb directly will give us the best result here.
- reg.clkcnt_l=0;
- reg.clkcnt_h=0;
- reg.clkcnt_n=0;
- reg.clkdiv_pre=0;
- reg.clk_equ_sysclk=1;
- eff_clk=fapb;
- } else {
- //For best duty cycle resolution, we want n to be as close to 32 as possible, but
- //we also need a pre/n combo that gets us as close as possible to the intended freq.
- //To do this, we bruteforce n and calculate the best pre to go along with that.
- //If there's a choice between pre/n combos that give the same result, use the one
- //with the higher n.
- int pre, n, h, l;
- int bestn=-1;
- int bestpre=-1;
- int besterr=0;
- int errval;
- for (n=2; n<=64; n++) { //Start at 2: we need to be able to set h/l so we have at least one high and one low pulse.
- //Effectively, this does pre=round((fapb/n)/hz).
- pre=((fapb/n)+(hz/2))/hz;
- if (pre<=0) pre=1;
- if (pre>8192) pre=8192;
- errval=abs(spi_freq_for_pre_n(fapb, pre, n)-hz);
- if (bestn==-1 || errval<=besterr) {
- besterr=errval;
- bestn=n;
- bestpre=pre;
- }
- }
- n=bestn;
- pre=bestpre;
- l=n;
- //This effectively does round((duty_cycle*n)/256)
- h=(duty_cycle*n+127)/256;
- if (h<=0) h=1;
- reg.clk_equ_sysclk=0;
- reg.clkcnt_n=n-1;
- reg.clkdiv_pre=pre-1;
- reg.clkcnt_h=h-1;
- reg.clkcnt_l=l-1;
- eff_clk=spi_freq_for_pre_n(fapb, pre, n);
- }
- if ( reg_o != NULL ) *reg_o = reg.val;
- return eff_clk;
- }
- /*
- * Set the spi clock according to pre-calculated register value.
- */
- static inline void spi_set_clock(spi_dev_t *hw, spi_clock_reg_t reg) {
- hw->clock.val = reg.val;
- }
- //This is run in interrupt context and apart from initialization and destruction, this is the only code
- //touching the host (=spihost[x]) variable. The rest of the data arrives in queues. That is why there are
- //no muxes in this code.
- static void IRAM_ATTR spi_intr(void *arg)
- {
- int i;
- BaseType_t r;
- BaseType_t do_yield=pdFALSE;
- spi_trans_priv *trans_buf=NULL;
- spi_transaction_t *trans=NULL;
- spi_host_t *host=(spi_host_t*)arg;
- //Ignore all but the trans_done int.
- if (!host->hw->slave.trans_done) return;
- /*------------ deal with the in-flight transaction -----------------*/
- if (host->cur_cs != NO_CS) {
- spi_transaction_t *cur_trans = host->cur_trans_buf.trans;
- //Okay, transaction is done.
- if (host->cur_trans_buf.buffer_to_rcv && host->dma_chan == 0 ) {
- //Need to copy from SPI regs to result buffer.
- for (int x=0; x < cur_trans->rxlength; x+=32) {
- //Do a memcpy to get around possible alignment issues in rx_buffer
- uint32_t word=host->hw->data_buf[x/32];
- int len=cur_trans->rxlength-x;
- if (len>32) len=32;
- memcpy(&host->cur_trans_buf.buffer_to_rcv[x/32], &word, (len+7)/8);
- }
- }
- //Call post-transaction callback, if any
- if (host->device[host->cur_cs]->cfg.post_cb) host->device[host->cur_cs]->cfg.post_cb(cur_trans);
- //Return transaction descriptor.
- xQueueSendFromISR(host->device[host->cur_cs]->ret_queue, &host->cur_trans_buf, &do_yield);
- host->cur_cs = NO_CS;
- }
- //Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset.
- if (host->dma_chan) spicommon_dmaworkaround_idle(host->dma_chan);
- /*------------ new transaction starts here ------------------*/
- //ToDo: This is a stupidly simple low-cs-first priority scheme. Make this configurable somehow. - JD
- for (i=0; i<NO_CS; i++) {
- if (host->device[i]) {
- r=xQueueReceiveFromISR(host->device[i]->trans_queue, &host->cur_trans_buf, &do_yield);
- trans_buf = &host->cur_trans_buf;
- //Stop looking if we have a transaction to send.
- if (r) break;
- }
- }
- if (i==NO_CS) {
- //No packet waiting. Disable interrupt.
- esp_intr_disable(host->intr);
- #ifdef CONFIG_PM_ENABLE
- //Release APB frequency lock
- esp_pm_lock_release(host->pm_lock);
- #endif
- } else {
- host->hw->slave.trans_done=0; //clear int bit
- //We have a transaction. Send it.
- spi_device_t *dev=host->device[i];
- trans = trans_buf->trans;
- host->cur_cs=i;
- //We should be done with the transmission.
- assert(host->hw->cmd.usr == 0);
-
- //Reconfigure according to device settings, but only if we change CSses.
- if (i!=host->prev_cs) {
- const int apbclk=APB_CLK_FREQ;
- int effclk=dev->clk_cfg.eff_clk;
- spi_set_clock(host->hw, dev->clk_cfg.reg);
- //Configure bit order
- host->hw->ctrl.rd_bit_order=(dev->cfg.flags & SPI_DEVICE_RXBIT_LSBFIRST)?1:0;
- host->hw->ctrl.wr_bit_order=(dev->cfg.flags & SPI_DEVICE_TXBIT_LSBFIRST)?1:0;
-
- //Configure polarity
- //SPI iface needs to be configured for a delay in some cases.
- int nodelay=0;
- if (host->no_gpio_matrix) {
- if (effclk >= apbclk/2) {
- nodelay=1;
- }
- } else {
- uint32_t delay_limit = apbclk/4;
- if (effclk >= delay_limit) {
- nodelay=1;
- }
- }
- if (dev->cfg.mode==0) {
- host->hw->pin.ck_idle_edge=0;
- host->hw->user.ck_out_edge=0;
- host->hw->ctrl2.miso_delay_mode=nodelay?0:2;
- } else if (dev->cfg.mode==1) {
- host->hw->pin.ck_idle_edge=0;
- host->hw->user.ck_out_edge=1;
- host->hw->ctrl2.miso_delay_mode=nodelay?0:1;
- } else if (dev->cfg.mode==2) {
- host->hw->pin.ck_idle_edge=1;
- host->hw->user.ck_out_edge=1;
- host->hw->ctrl2.miso_delay_mode=nodelay?0:1;
- } else if (dev->cfg.mode==3) {
- host->hw->pin.ck_idle_edge=1;
- host->hw->user.ck_out_edge=0;
- host->hw->ctrl2.miso_delay_mode=nodelay?0:2;
- }
- //Configure misc stuff
- host->hw->user.doutdin=(dev->cfg.flags & SPI_DEVICE_HALFDUPLEX)?0:1;
- host->hw->user.sio=(dev->cfg.flags & SPI_DEVICE_3WIRE)?1:0;
- host->hw->ctrl2.setup_time=dev->cfg.cs_ena_pretrans-1;
- host->hw->user.cs_setup=dev->cfg.cs_ena_pretrans?1:0;
- host->hw->ctrl2.hold_time=dev->cfg.cs_ena_posttrans-1;
- host->hw->user.cs_hold=(dev->cfg.cs_ena_posttrans)?1:0;
- //Configure CS pin
- host->hw->pin.cs0_dis=(i==0)?0:1;
- host->hw->pin.cs1_dis=(i==1)?0:1;
- host->hw->pin.cs2_dis=(i==2)?0:1;
- }
- host->prev_cs = i;
- //Reset SPI peripheral
- host->hw->dma_conf.val |= SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
- host->hw->dma_out_link.start=0;
- host->hw->dma_in_link.start=0;
- host->hw->dma_conf.val &= ~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
- host->hw->dma_conf.out_data_burst_en=1;
- //Set up QIO/DIO if needed
- host->hw->ctrl.val &= ~(SPI_FREAD_DUAL|SPI_FREAD_QUAD|SPI_FREAD_DIO|SPI_FREAD_QIO);
- host->hw->user.val &= ~(SPI_FWRITE_DUAL|SPI_FWRITE_QUAD|SPI_FWRITE_DIO|SPI_FWRITE_QIO);
- if (trans->flags & SPI_TRANS_MODE_DIO) {
- if (trans->flags & SPI_TRANS_MODE_DIOQIO_ADDR) {
- host->hw->ctrl.fread_dio=1;
- host->hw->user.fwrite_dio=1;
- } else {
- host->hw->ctrl.fread_dual=1;
- host->hw->user.fwrite_dual=1;
- }
- host->hw->ctrl.fastrd_mode=1;
- } else if (trans->flags & SPI_TRANS_MODE_QIO) {
- if (trans->flags & SPI_TRANS_MODE_DIOQIO_ADDR) {
- host->hw->ctrl.fread_qio=1;
- host->hw->user.fwrite_qio=1;
- } else {
- host->hw->ctrl.fread_quad=1;
- host->hw->user.fwrite_quad=1;
- }
- host->hw->ctrl.fastrd_mode=1;
- }
- //Fill DMA descriptors
- int extra_dummy=0;
- if (trans_buf->buffer_to_rcv) {
- host->hw->user.usr_miso_highpart=0;
- if (host->dma_chan == 0) {
- //No need to setup anything; we'll copy the result out of the work registers directly later.
- } else {
- spicommon_dmaworkaround_transfer_active(host->dma_chan); //mark channel as active
- spicommon_setup_dma_desc_links(host->dmadesc_rx, ((trans->rxlength+7)/8), (uint8_t*)trans_buf->buffer_to_rcv, true);
- host->hw->dma_in_link.addr=(int)(&host->dmadesc_rx[0]) & 0xFFFFF;
- host->hw->dma_in_link.start=1;
- }
- //when no_dummy is not set and in half-duplex mode, sets the dummy bit if RX phase exist
- if (((dev->cfg.flags&SPI_DEVICE_NO_DUMMY)==0) && (dev->cfg.flags&SPI_DEVICE_HALFDUPLEX)) {
- extra_dummy=dev->clk_cfg.dummy_num;
- }
- } else {
- //DMA temporary workaround: let RX DMA work somehow to avoid the issue in ESP32 v0/v1 silicon
- if (host->dma_chan != 0 ) {
- host->hw->dma_in_link.addr=0;
- host->hw->dma_in_link.start=1;
- }
- }
- if (trans_buf->buffer_to_send) {
- if (host->dma_chan == 0) {
- //Need to copy data to registers manually
- for (int x=0; x < trans->length; x+=32) {
- //Use memcpy to get around alignment issues for txdata
- uint32_t word;
- memcpy(&word, &trans_buf->buffer_to_send[x/32], 4);
- host->hw->data_buf[(x/32)+8]=word;
- }
- host->hw->user.usr_mosi_highpart=1;
- } else {
- spicommon_dmaworkaround_transfer_active(host->dma_chan); //mark channel as active
- spicommon_setup_dma_desc_links(host->dmadesc_tx, (trans->length+7)/8, (uint8_t*)trans_buf->buffer_to_send, false);
- host->hw->user.usr_mosi_highpart=0;
- host->hw->dma_out_link.addr=(int)(&host->dmadesc_tx[0]) & 0xFFFFF;
- host->hw->dma_out_link.start=1;
- host->hw->user.usr_mosi_highpart=0;
- }
- }
- //configure dummy bits
- host->hw->user.usr_dummy=(dev->cfg.dummy_bits+extra_dummy)?1:0;
- host->hw->user1.usr_dummy_cyclelen=dev->cfg.dummy_bits+extra_dummy-1;
- host->hw->mosi_dlen.usr_mosi_dbitlen=trans->length-1;
- if ( dev->cfg.flags & SPI_DEVICE_HALFDUPLEX ) {
- host->hw->miso_dlen.usr_miso_dbitlen=trans->rxlength-1;
- } else {
- //rxlength is not used in full-duplex mode
- host->hw->miso_dlen.usr_miso_dbitlen=trans->length-1;
- }
- //Configure bit sizes, load addr and command
- int cmdlen;
- if ( trans->flags & SPI_TRANS_VARIABLE_CMD ) {
- cmdlen = ((spi_transaction_ext_t*)trans)->command_bits;
- } else {
- cmdlen = dev->cfg.command_bits;
- }
- int addrlen;
- if ( trans->flags & SPI_TRANS_VARIABLE_ADDR ) {
- addrlen = ((spi_transaction_ext_t*)trans)->address_bits;
- } else {
- addrlen = dev->cfg.address_bits;
- }
- host->hw->user1.usr_addr_bitlen=addrlen-1;
- host->hw->user2.usr_command_bitlen=cmdlen-1;
- host->hw->user.usr_addr=addrlen?1:0;
- host->hw->user.usr_command=cmdlen?1:0;
- // output command will be sent from bit 7 to 0 of command_value, and then bit 15 to 8 of the same register field.
- uint16_t command = trans->cmd << (16-cmdlen); //shift to MSB
- host->hw->user2.usr_command_value = (command>>8)|(command<<8); //swap the first and second byte
- // shift the address to MSB of addr (and maybe slv_wr_status) register.
- // output address will be sent from MSB to LSB of addr register, then comes the MSB to LSB of slv_wr_status register.
- if (addrlen>32) {
- host->hw->addr = trans->addr >> (addrlen- 32);
- host->hw->slv_wr_status = trans->addr << (64 - addrlen);
- } else {
- host->hw->addr = trans->addr << (32 - addrlen);
- }
- host->hw->user.usr_mosi=( (!(dev->cfg.flags & SPI_DEVICE_HALFDUPLEX) && trans_buf->buffer_to_rcv) || trans_buf->buffer_to_send)?1:0;
- host->hw->user.usr_miso=(trans_buf->buffer_to_rcv)?1:0;
- //Call pre-transmission callback, if any
- if (dev->cfg.pre_cb) dev->cfg.pre_cb(trans);
- //Kick off transfer
- host->hw->cmd.usr=1;
- }
- if (do_yield) portYIELD_FROM_ISR();
- }
- esp_err_t spi_device_queue_trans(spi_device_handle_t handle, spi_transaction_t *trans_desc, TickType_t ticks_to_wait)
- {
- esp_err_t ret = ESP_OK;
- BaseType_t r;
- SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
- //check transmission length
- SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_RXDATA)==0 ||trans_desc->rxlength <= 32, "rxdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
- SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_TXDATA)==0 ||trans_desc->length <= 32, "txdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
- SPI_CHECK(trans_desc->length <= handle->host->max_transfer_sz*8, "txdata transfer > host maximum", ESP_ERR_INVALID_ARG);
- SPI_CHECK(trans_desc->rxlength <= handle->host->max_transfer_sz*8, "rxdata transfer > host maximum", ESP_ERR_INVALID_ARG);
- SPI_CHECK((handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || trans_desc->rxlength <= trans_desc->length, "rx length > tx length in full duplex mode", ESP_ERR_INVALID_ARG);
- //check working mode
- SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (handle->cfg.flags & SPI_DEVICE_3WIRE)), "incompatible iface params", ESP_ERR_INVALID_ARG);
- SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (!(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX))), "incompatible iface params", ESP_ERR_INVALID_ARG);
- SPI_CHECK( !(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || handle->host->dma_chan == 0 || !(trans_desc->flags & SPI_TRANS_USE_RXDATA || trans_desc->rx_buffer != NULL)
- || !(trans_desc->flags & SPI_TRANS_USE_TXDATA || trans_desc->tx_buffer!=NULL), "SPI half duplex mode does not support using DMA with both MOSI and MISO phases.", ESP_ERR_INVALID_ARG );
- //In Full duplex mode, default rxlength to be the same as length, if not filled in.
- // set rxlength to length is ok, even when rx buffer=NULL
- if (trans_desc->rxlength==0 && !(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX)) {
- trans_desc->rxlength=trans_desc->length;
- }
- spi_trans_priv trans_buf;
- memset( &trans_buf, 0, sizeof(spi_trans_priv) );
- trans_buf.trans = trans_desc;
- // rx memory assign
- if ( trans_desc->flags & SPI_TRANS_USE_RXDATA ) {
- trans_buf.buffer_to_rcv = (uint32_t*)&trans_desc->rx_data[0];
- } else {
- //if not use RXDATA neither rx_buffer, buffer_to_rcv assigned to NULL
- trans_buf.buffer_to_rcv = trans_desc->rx_buffer;
- }
- if ( trans_buf.buffer_to_rcv && handle->host->dma_chan && (!esp_ptr_dma_capable( trans_buf.buffer_to_rcv ) || ((int)trans_buf.buffer_to_rcv%4!=0)) ) {
- //if rxbuf in the desc not DMA-capable, malloc a new one. The rx buffer need to be length of multiples of 32 bits to avoid heap corruption.
- ESP_LOGV( SPI_TAG, "Allocate RX buffer for DMA" );
- trans_buf.buffer_to_rcv = heap_caps_malloc((trans_desc->rxlength+31)/8, MALLOC_CAP_DMA);
- if ( trans_buf.buffer_to_rcv==NULL ) {
- ret = ESP_ERR_NO_MEM;
- goto clean_up;
- }
- }
-
- const uint32_t *txdata;
- // tx memory assign
- if ( trans_desc->flags & SPI_TRANS_USE_TXDATA ) {
- txdata = (uint32_t*)&trans_desc->tx_data[0];
- } else {
- //if not use TXDATA neither tx_buffer, tx data assigned to NULL
- txdata = trans_desc->tx_buffer ;
- }
- if ( txdata && handle->host->dma_chan && !esp_ptr_dma_capable( txdata )) {
- //if txbuf in the desc not DMA-capable, malloc a new one
- ESP_LOGV( SPI_TAG, "Allocate TX buffer for DMA" );
- trans_buf.buffer_to_send = heap_caps_malloc((trans_desc->length+7)/8, MALLOC_CAP_DMA);
- if ( trans_buf.buffer_to_send==NULL ) {
- ret = ESP_ERR_NO_MEM;
- goto clean_up;
- }
- memcpy( trans_buf.buffer_to_send, txdata, (trans_desc->length+7)/8 );
- } else {
- // else use the original buffer (forced-conversion) or assign to NULL
- trans_buf.buffer_to_send = (uint32_t*)txdata;
- }
-
- #ifdef CONFIG_PM_ENABLE
- esp_pm_lock_acquire(handle->host->pm_lock);
- #endif
- r=xQueueSend(handle->trans_queue, (void*)&trans_buf, ticks_to_wait);
- if (!r) {
- ret = ESP_ERR_TIMEOUT;
- #ifdef CONFIG_PM_ENABLE
- //Release APB frequency lock
- esp_pm_lock_release(handle->host->pm_lock);
- #endif
- goto clean_up;
- }
- esp_intr_enable(handle->host->intr);
- return ESP_OK;
- clean_up:
- // free malloc-ed buffer (if needed) before return.
- if ( (void*)trans_buf.buffer_to_rcv != trans_desc->rx_buffer && (void*)trans_buf.buffer_to_rcv != &trans_desc->rx_data[0] ) {
- free( trans_buf.buffer_to_rcv );
- }
- if ( (void*)trans_buf.buffer_to_send!= trans_desc->tx_buffer && (void*)trans_buf.buffer_to_send != &trans_desc->tx_data[0] ) {
- free( trans_buf.buffer_to_send );
- }
- assert( ret != ESP_OK );
- return ret;
- }
- esp_err_t spi_device_get_trans_result(spi_device_handle_t handle, spi_transaction_t **trans_desc, TickType_t ticks_to_wait)
- {
- BaseType_t r;
- spi_trans_priv trans_buf;
-
- SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
- r=xQueueReceive(handle->ret_queue, (void*)&trans_buf, ticks_to_wait);
- if (!r) {
- // The memory occupied by rx and tx DMA buffer destroyed only when receiving from the queue (transaction finished).
- // If timeout, wait and retry.
- // Every on-flight transaction request occupies internal memory as DMA buffer if needed.
- return ESP_ERR_TIMEOUT;
- }
- (*trans_desc) = trans_buf.trans;
- if ( (void*)trans_buf.buffer_to_send != &(*trans_desc)->tx_data[0] && trans_buf.buffer_to_send != (*trans_desc)->tx_buffer ) {
- free( trans_buf.buffer_to_send );
- }
- //copy data from temporary DMA-capable buffer back to IRAM buffer and free the temporary one.
- if ( (void*)trans_buf.buffer_to_rcv != &(*trans_desc)->rx_data[0] && trans_buf.buffer_to_rcv != (*trans_desc)->rx_buffer ) {
- if ( (*trans_desc)->flags & SPI_TRANS_USE_RXDATA ) {
- memcpy( (uint8_t*)&(*trans_desc)->rx_data[0], trans_buf.buffer_to_rcv, ((*trans_desc)->rxlength+7)/8 );
- } else {
- memcpy( (*trans_desc)->rx_buffer, trans_buf.buffer_to_rcv, ((*trans_desc)->rxlength+7)/8 );
- }
- free( trans_buf.buffer_to_rcv );
- }
- return ESP_OK;
- }
- //Porcelain to do one blocking transmission.
- esp_err_t spi_device_transmit(spi_device_handle_t handle, spi_transaction_t *trans_desc)
- {
- esp_err_t ret;
- spi_transaction_t *ret_trans;
- //ToDo: check if any spi transfers in flight
- ret=spi_device_queue_trans(handle, trans_desc, portMAX_DELAY);
- if (ret!=ESP_OK) return ret;
- ret=spi_device_get_trans_result(handle, &ret_trans, portMAX_DELAY);
- if (ret!=ESP_OK) return ret;
- assert(ret_trans==trans_desc);
- return ESP_OK;
- }
|