Kconfig 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107
  1. menu "ESP32-specific"
  2. choice ESP32_DEFAULT_CPU_FREQ_MHZ
  3. prompt "CPU frequency"
  4. default ESP32_DEFAULT_CPU_FREQ_160
  5. help
  6. CPU frequency to be set on application startup.
  7. config ESP32_DEFAULT_CPU_FREQ_80
  8. bool "80 MHz"
  9. config ESP32_DEFAULT_CPU_FREQ_160
  10. bool "160 MHz"
  11. config ESP32_DEFAULT_CPU_FREQ_240
  12. bool "240 MHz"
  13. endchoice
  14. config ESP32_DEFAULT_CPU_FREQ_MHZ
  15. int
  16. default 80 if ESP32_DEFAULT_CPU_FREQ_80
  17. default 160 if ESP32_DEFAULT_CPU_FREQ_160
  18. default 240 if ESP32_DEFAULT_CPU_FREQ_240
  19. config SPIRAM_SUPPORT
  20. bool "Support for external, SPI-connected RAM"
  21. default "n"
  22. help
  23. This enables support for an external SPI RAM chip, connected in parallel with the
  24. main SPI flash chip.
  25. menu "SPI RAM config"
  26. depends on SPIRAM_SUPPORT
  27. config SPIRAM_BOOT_INIT
  28. bool "Initialize SPI RAM when booting the ESP32"
  29. default "y"
  30. help
  31. If this is enabled, the SPI RAM will be enabled during initial boot. Unless you
  32. have specific requirements, you'll want to leave this enabled so memory allocated
  33. during boot-up can also be placed in SPI RAM.
  34. config SPIRAM_IGNORE_NOTFOUND
  35. bool "Ignore PSRAM when not found"
  36. default "n"
  37. depends on SPIRAM_BOOT_INIT
  38. help
  39. Normally, if psram initialization is enabled during compile time but not found at runtime, it
  40. is seen as an error making the ESP32 panic. If this is enabled, the ESP32 will keep on
  41. running but will not add the (non-existing) RAM to any allocator.
  42. choice SPIRAM_USE
  43. prompt "SPI RAM access method"
  44. default SPIRAM_USE_MALLOC
  45. help
  46. The SPI RAM can be accessed in multiple methods: by just having it available as an unmanaged
  47. memory region in the ESP32 memory map, by integrating it in the ESP32s heap as 'special' memory
  48. needing heap_caps_malloc to allocate, or by fully integrating it making malloc() also able to
  49. return SPI RAM pointers.
  50. config SPIRAM_USE_MEMMAP
  51. bool "Integrate RAM into ESP32 memory map"
  52. config SPIRAM_USE_CAPS_ALLOC
  53. bool "Make RAM allocatable using heap_caps_malloc(..., MALLOC_CAP_SPIRAM)"
  54. config SPIRAM_USE_MALLOC
  55. bool "Make RAM allocatable using malloc() as well"
  56. endchoice
  57. choice SPIRAM_TYPE
  58. prompt "Type of SPI RAM chip in use"
  59. default SPIRAM_TYPE_ESPPSRAM32
  60. config SPIRAM_TYPE_ESPPSRAM32
  61. bool "ESP-PSRAM32 or IS25WP032"
  62. endchoice
  63. config SPIRAM_SIZE
  64. int
  65. default 4194304 if SPIRAM_TYPE_ESPPSRAM32
  66. default 0
  67. choice SPIRAM_SPEED
  68. prompt "Set RAM clock speed"
  69. default SPIRAM_CACHE_SPEED_40M
  70. help
  71. Select the speed for the SPI RAM chip.
  72. If SPI RAM is enabled, we only support three combinations of SPI speed mode we supported now:
  73. 1. Flash SPI running at 40Mhz and RAM SPI running at 40Mhz
  74. 2. Flash SPI running at 80Mhz and RAM SPI running at 40Mhz
  75. 3. Flash SPI running at 80Mhz and RAM SPI running at 80Mhz
  76. Note: If the third mode(80Mhz+80Mhz) is enabled, the VSPI port will be occupied by the system.
  77. Application code should never touch VSPI hardware in this case. The option to select
  78. 80MHz will only be visible if the flash SPI speed is also 80MHz. (ESPTOOLPY_FLASHFREQ_80M is true)
  79. config SPIRAM_SPEED_40M
  80. bool "40MHz clock speed"
  81. config SPIRAM_SPEED_80M
  82. depends on ESPTOOLPY_FLASHFREQ_80M
  83. bool "80MHz clock speed"
  84. endchoice
  85. config SPIRAM_MEMTEST
  86. bool "Run memory test on SPI RAM initialization"
  87. default "y"
  88. depends on SPIRAM_BOOT_INIT
  89. help
  90. Runs a rudimentary memory test on initialization. Aborts when memory test fails. Disable this for
  91. slightly faster startop.
  92. config SPIRAM_CACHE_WORKAROUND
  93. bool "Enable workaround for bug in SPI RAM cache for Rev1 ESP32s"
  94. depends on SPIRAM_USE_MEMMAP || SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC
  95. default "y"
  96. help
  97. Revision 1 of the ESP32 has a bug that can cause a write to PSRAM not to take place in some situations
  98. when the cache line needs to be fetched from external RAM and an interrupt occurs. This enables a
  99. fix in the compiler that makes sure the specific code that is vulnerable to this will not be emitted.
  100. This will also not use any bits of newlib that are located in ROM, opting for a version that is compiled
  101. with the workaround and located in flash instead.
  102. config SPIRAM_MALLOC_ALWAYSINTERNAL
  103. int "Maximum malloc() size, in bytes, to always put in internal memory"
  104. depends on SPIRAM_USE_MALLOC
  105. default 16384
  106. range 0 131072
  107. help
  108. If malloc() is capable of also allocating SPI-connected ram, its allocation strategy will prefer to allocate chunks less
  109. than this size in internal memory, while allocations larger than this will be done from external RAM.
  110. If allocation from the preferred region fails, an attempt is made to allocate from the non-preferred
  111. region instead, so malloc() will not suddenly fail when either internal or external memory is full.
  112. config WIFI_LWIP_ALLOCATION_FROM_SPIRAM_FIRST
  113. bool "Try to allocate memories of WiFi and LWIP in SPIRAM firstly. If failed, allocate internal memory"
  114. depends on SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC
  115. default "n"
  116. help
  117. Try to allocate memories of WiFi and LWIP in SPIRAM firstly. If failed, try to allocate internal memory then.
  118. config SPIRAM_MALLOC_RESERVE_INTERNAL
  119. int "Reserve this amount of bytes for data that specifically needs to be in DMA or internal memory"
  120. depends on SPIRAM_USE_MALLOC
  121. default 32768
  122. range 0 131072
  123. help
  124. Because the external/internal RAM allocation strategy is not always perfect, it sometimes may happen
  125. that the internal memory is entirely filled up. This causes allocations that are specifically done in
  126. internal memory, for example the stack for new tasks or memory to service DMA or have memory that's
  127. also available when SPI cache is down, to fail. This option reserves a pool specifically for requests
  128. like that; the memory in this pool is not given out when a normal malloc() is called.
  129. Set this to 0 to disable this feature.
  130. Note that because FreeRTOS stacks are forced to internal memory, they will also use this memory pool;
  131. be sure to keep this in mind when adjusting this value.
  132. config SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY
  133. bool "Allow external memory as an argument to xTaskCreateStatic"
  134. default n
  135. depends on SPIRAM_USE_MALLOC
  136. help
  137. Because some bits of the ESP32 code environment cannot be recompiled with the cache workaround, normally
  138. tasks cannot be safely run with their stack residing in external memory; for this reason xTaskCreate and
  139. friends always allocate stack in internal memory and xTaskCreateStatic will check if the memory passed
  140. to it is in internal memory. If you have a task that needs a large amount of stack and does not call on
  141. ROM code in any way (no direct calls, but also no Bluetooth/WiFi), you can try to disable this and use
  142. xTaskCreateStatic to create the tasks stack in external memory.
  143. endmenu
  144. config MEMMAP_TRACEMEM
  145. bool
  146. default "n"
  147. config MEMMAP_TRACEMEM_TWOBANKS
  148. bool
  149. default "n"
  150. config ESP32_TRAX
  151. bool "Use TRAX tracing feature"
  152. default "n"
  153. select MEMMAP_TRACEMEM
  154. help
  155. The ESP32 contains a feature which allows you to trace the execution path the processor
  156. has taken through the program. This is stored in a chunk of 32K (16K for single-processor)
  157. of memory that can't be used for general purposes anymore. Disable this if you do not know
  158. what this is.
  159. config ESP32_TRAX_TWOBANKS
  160. bool "Reserve memory for tracing both pro as well as app cpu execution"
  161. default "n"
  162. depends on ESP32_TRAX && !FREERTOS_UNICORE
  163. select MEMMAP_TRACEMEM_TWOBANKS
  164. help
  165. The ESP32 contains a feature which allows you to trace the execution path the processor
  166. has taken through the program. This is stored in a chunk of 32K (16K for single-processor)
  167. of memory that can't be used for general purposes anymore. Disable this if you do not know
  168. what this is.
  169. # Memory to reverse for trace, used in linker script
  170. config TRACEMEM_RESERVE_DRAM
  171. hex
  172. default 0x8000 if MEMMAP_TRACEMEM && MEMMAP_TRACEMEM_TWOBANKS
  173. default 0x4000 if MEMMAP_TRACEMEM && !MEMMAP_TRACEMEM_TWOBANKS
  174. default 0x0
  175. choice ESP32_COREDUMP_TO_FLASH_OR_UART
  176. prompt "Core dump destination"
  177. default ESP32_ENABLE_COREDUMP_TO_NONE
  178. help
  179. Select place to store core dump: flash, uart or none (to disable core dumps generation).
  180. If core dump is configured to be stored in flash and custom partition table is used add
  181. corresponding entry to your CSV. For examples, please see predefined partition table CSV descriptions
  182. in the components/partition_table directory.
  183. config ESP32_ENABLE_COREDUMP_TO_FLASH
  184. bool "Flash"
  185. select ESP32_ENABLE_COREDUMP
  186. config ESP32_ENABLE_COREDUMP_TO_UART
  187. bool "UART"
  188. select ESP32_ENABLE_COREDUMP
  189. config ESP32_ENABLE_COREDUMP_TO_NONE
  190. bool "None"
  191. endchoice
  192. config ESP32_ENABLE_COREDUMP
  193. bool
  194. default F
  195. help
  196. Enables/disable core dump module.
  197. config ESP32_CORE_DUMP_UART_DELAY
  198. int "Core dump print to UART delay"
  199. depends on ESP32_ENABLE_COREDUMP_TO_UART
  200. default 0
  201. help
  202. Config delay (in ms) before printing core dump to UART.
  203. Delay can be interrupted by pressing Enter key.
  204. config ESP32_CORE_DUMP_LOG_LEVEL
  205. int "Core dump module logging level"
  206. depends on ESP32_ENABLE_COREDUMP
  207. default 1
  208. help
  209. Config core dump module logging level (0-5).
  210. choice NUMBER_OF_UNIVERSAL_MAC_ADDRESS
  211. bool "Number of universally administered (by IEEE) MAC address"
  212. default FOUR_UNIVERSAL_MAC_ADDRESS
  213. help
  214. Configure the number of universally administered (by IEEE) MAC addresses.
  215. During initialisation, MAC addresses for each network interface are generated or derived from a
  216. single base MAC address.
  217. If the number of universal MAC addresses is four, all four interfaces (WiFi station, WiFi softap,
  218. Bluetooth and Ethernet) receive a universally administered MAC address. These are generated
  219. sequentially by adding 0, 1, 2 and 3 (respectively) to the final octet of the base MAC address.
  220. If the number of universal MAC addresses is two, only two interfaces (WiFi station and Bluetooth)
  221. receive a universally administered MAC address. These are generated sequentially by adding 0
  222. and 1 (respectively) to the base MAC address. The remaining two interfaces (WiFi softap and Ethernet)
  223. receive local MAC addresses. These are derived from the universal WiFi station and Bluetooth MAC
  224. addresses, respectively.
  225. When using the default (Espressif-assigned) base MAC address, either setting can be used. When using
  226. a custom universal MAC address range, the correct setting will depend on the allocation of MAC
  227. addresses in this range (either 2 or 4 per device.)
  228. config TWO_UNIVERSAL_MAC_ADDRESS
  229. bool "Two"
  230. config FOUR_UNIVERSAL_MAC_ADDRESS
  231. bool "Four"
  232. endchoice
  233. config NUMBER_OF_UNIVERSAL_MAC_ADDRESS
  234. int
  235. default 2 if TWO_UNIVERSAL_MAC_ADDRESS
  236. default 4 if FOUR_UNIVERSAL_MAC_ADDRESS
  237. config SYSTEM_EVENT_QUEUE_SIZE
  238. int "System event queue size"
  239. default 32
  240. help
  241. Config system event queue size in different application.
  242. config SYSTEM_EVENT_TASK_STACK_SIZE
  243. int "Event loop task stack size"
  244. default 2304
  245. help
  246. Config system event task stack size in different application.
  247. config MAIN_TASK_STACK_SIZE
  248. int "Main task stack size"
  249. default 3584
  250. help
  251. Configure the "main task" stack size. This is the stack of the task
  252. which calls app_main(). If app_main() returns then this task is deleted
  253. and its stack memory is freed.
  254. config IPC_TASK_STACK_SIZE
  255. int "Inter-Processor Call (IPC) task stack size"
  256. default 1024
  257. range 512 65536 if !ESP32_APPTRACE_ENABLE
  258. range 2048 65536 if ESP32_APPTRACE_ENABLE
  259. help
  260. Configure the IPC tasks stack size. One IPC task runs on each core
  261. (in dual core mode), and allows for cross-core function calls.
  262. See IPC documentation for more details.
  263. The default stack size should be enough for most common use cases.
  264. It can be shrunk if you are sure that you do not use any custom
  265. IPC functionality.
  266. config TIMER_TASK_STACK_SIZE
  267. int "High-resolution timer task stack size"
  268. default 3584
  269. range 2048 65536
  270. help
  271. Configure the stack size of esp_timer/ets_timer task. This task is used
  272. to dispatch callbacks of timers created using ets_timer and esp_timer
  273. APIs. If you are seing stack overflow errors in timer task, increase
  274. this value.
  275. Note that this is not the same as FreeRTOS timer task. To configure
  276. FreeRTOS timer task size, see "FreeRTOS timer task stack size" option
  277. in "FreeRTOS" menu.
  278. choice NEWLIB_STDOUT_LINE_ENDING
  279. prompt "Line ending for UART output"
  280. default NEWLIB_STDOUT_LINE_ENDING_CRLF
  281. help
  282. This option allows configuring the desired line endings sent to UART
  283. when a newline ('\n', LF) appears on stdout.
  284. Three options are possible:
  285. CRLF: whenever LF is encountered, prepend it with CR
  286. LF: no modification is applied, stdout is sent as is
  287. CR: each occurence of LF is replaced with CR
  288. This option doesn't affect behavior of the UART driver (drivers/uart.h).
  289. config NEWLIB_STDOUT_LINE_ENDING_CRLF
  290. bool "CRLF"
  291. config NEWLIB_STDOUT_LINE_ENDING_LF
  292. bool "LF"
  293. config NEWLIB_STDOUT_LINE_ENDING_CR
  294. bool "CR"
  295. endchoice
  296. choice NEWLIB_STDIN_LINE_ENDING
  297. prompt "Line ending for UART input"
  298. default NEWLIB_STDIN_LINE_ENDING_CR
  299. help
  300. This option allows configuring which input sequence on UART produces
  301. a newline ('\n', LF) on stdin.
  302. Three options are possible:
  303. CRLF: CRLF is converted to LF
  304. LF: no modification is applied, input is sent to stdin as is
  305. CR: each occurence of CR is replaced with LF
  306. This option doesn't affect behavior of the UART driver (drivers/uart.h).
  307. config NEWLIB_STDIN_LINE_ENDING_CRLF
  308. bool "CRLF"
  309. config NEWLIB_STDIN_LINE_ENDING_LF
  310. bool "LF"
  311. config NEWLIB_STDIN_LINE_ENDING_CR
  312. bool "CR"
  313. endchoice
  314. config NEWLIB_NANO_FORMAT
  315. bool "Enable 'nano' formatting options for printf/scanf family"
  316. default n
  317. help
  318. ESP32 ROM contains parts of newlib C library, including printf/scanf family
  319. of functions. These functions have been compiled with so-called "nano"
  320. formatting option. This option doesn't support 64-bit integer formats and C99
  321. features, such as positional arguments.
  322. For more details about "nano" formatting option, please see newlib readme file,
  323. search for '--enable-newlib-nano-formatted-io':
  324. https://sourceware.org/newlib/README
  325. If this option is enabled, build system will use functions available in
  326. ROM, reducing the application binary size. Functions available in ROM run
  327. faster than functions which run from flash. Functions available in ROM can
  328. also run when flash instruction cache is disabled.
  329. If you need 64-bit integer formatting support or C99 features, keep this
  330. option disabled.
  331. choice CONSOLE_UART
  332. prompt "UART for console output"
  333. default CONSOLE_UART_DEFAULT
  334. help
  335. Select whether to use UART for console output (through stdout and stderr).
  336. - Default is to use UART0 on pins GPIO1(TX) and GPIO3(RX).
  337. - If "Custom" is selected, UART0 or UART1 can be chosen,
  338. and any pins can be selected.
  339. - If "None" is selected, there will be no console output on any UART, except
  340. for initial output from ROM bootloader. This output can be further suppressed by
  341. bootstrapping GPIO13 pin to low logic level.
  342. config CONSOLE_UART_DEFAULT
  343. bool "Default: UART0, TX=GPIO1, RX=GPIO3"
  344. config CONSOLE_UART_CUSTOM
  345. bool "Custom"
  346. config CONSOLE_UART_NONE
  347. bool "None"
  348. endchoice
  349. choice CONSOLE_UART_NUM
  350. prompt "UART peripheral to use for console output (0-1)"
  351. depends on CONSOLE_UART_CUSTOM
  352. default CONSOLE_UART_CUSTOM_NUM_0
  353. help
  354. Due of a ROM bug, UART2 is not supported for console output
  355. via ets_printf.
  356. config CONSOLE_UART_CUSTOM_NUM_0
  357. bool "UART0"
  358. config CONSOLE_UART_CUSTOM_NUM_1
  359. bool "UART1"
  360. endchoice
  361. config CONSOLE_UART_NUM
  362. int
  363. default 0 if CONSOLE_UART_DEFAULT || CONSOLE_UART_NONE
  364. default 0 if CONSOLE_UART_CUSTOM_NUM_0
  365. default 1 if CONSOLE_UART_CUSTOM_NUM_1
  366. config CONSOLE_UART_TX_GPIO
  367. int "UART TX on GPIO#"
  368. depends on CONSOLE_UART_CUSTOM
  369. range 0 33
  370. default 19
  371. config CONSOLE_UART_RX_GPIO
  372. int "UART RX on GPIO#"
  373. depends on CONSOLE_UART_CUSTOM
  374. range 0 39
  375. default 21
  376. config CONSOLE_UART_BAUDRATE
  377. int "UART console baud rate"
  378. depends on !CONSOLE_UART_NONE
  379. default 115200
  380. range 1200 4000000
  381. config ULP_COPROC_ENABLED
  382. bool "Enable Ultra Low Power (ULP) Coprocessor"
  383. default "n"
  384. help
  385. Set to 'y' if you plan to load a firmware for the coprocessor.
  386. If this option is enabled, further coprocessor configuration will appear in the Components menu.
  387. config ULP_COPROC_RESERVE_MEM
  388. int
  389. prompt "RTC slow memory reserved for coprocessor" if ULP_COPROC_ENABLED
  390. default 512 if ULP_COPROC_ENABLED
  391. range 32 8192 if ULP_COPROC_ENABLED
  392. default 0 if !ULP_COPROC_ENABLED
  393. range 0 0 if !ULP_COPROC_ENABLED
  394. help
  395. Bytes of memory to reserve for ULP coprocessor firmware & data.
  396. Data is reserved at the beginning of RTC slow memory.
  397. choice ESP32_PANIC
  398. prompt "Panic handler behaviour"
  399. default ESP32_PANIC_PRINT_REBOOT
  400. help
  401. If FreeRTOS detects unexpected behaviour or an unhandled exception, the panic handler is
  402. invoked. Configure the panic handlers action here.
  403. config ESP32_PANIC_PRINT_HALT
  404. bool "Print registers and halt"
  405. help
  406. Outputs the relevant registers over the serial port and halt the
  407. processor. Needs a manual reset to restart.
  408. config ESP32_PANIC_PRINT_REBOOT
  409. bool "Print registers and reboot"
  410. help
  411. Outputs the relevant registers over the serial port and immediately
  412. reset the processor.
  413. config ESP32_PANIC_SILENT_REBOOT
  414. bool "Silent reboot"
  415. help
  416. Just resets the processor without outputting anything
  417. config ESP32_PANIC_GDBSTUB
  418. bool "Invoke GDBStub"
  419. help
  420. Invoke gdbstub on the serial port, allowing for gdb to attach to it to do a postmortem
  421. of the crash.
  422. endchoice
  423. config ESP32_DEBUG_OCDAWARE
  424. bool "Make exception and panic handlers JTAG/OCD aware"
  425. default y
  426. help
  427. The FreeRTOS panic and unhandled exception handers can detect a JTAG OCD debugger and
  428. instead of panicking, have the debugger stop on the offending instruction.
  429. config INT_WDT
  430. bool "Interrupt watchdog"
  431. default y
  432. help
  433. This watchdog timer can detect if the FreeRTOS tick interrupt has not been called for a certain time,
  434. either because a task turned off interrupts and did not turn them on for a long time, or because an
  435. interrupt handler did not return. It will try to invoke the panic handler first and failing that
  436. reset the SoC.
  437. config INT_WDT_TIMEOUT_MS
  438. int "Interrupt watchdog timeout (ms)"
  439. depends on INT_WDT
  440. default 300 if !SPIRAM_SUPPORT
  441. default 800 if SPIRAM_SUPPORT
  442. range 10 10000
  443. help
  444. The timeout of the watchdog, in miliseconds. Make this higher than the FreeRTOS tick rate.
  445. config INT_WDT_CHECK_CPU1
  446. bool "Also watch CPU1 tick interrupt"
  447. depends on INT_WDT && !FREERTOS_UNICORE
  448. default y
  449. help
  450. Also detect if interrupts on CPU 1 are disabled for too long.
  451. config TASK_WDT
  452. bool "Initialize Task Watchdog Timer on startup"
  453. default y
  454. help
  455. The Task Watchdog Timer can be used to make sure individual tasks are still
  456. running. Enabling this option will cause the Task Watchdog Timer to be
  457. initialized automatically at startup. The Task Watchdog timer can be
  458. initialized after startup as well (see Task Watchdog Timer API Reference)
  459. config TASK_WDT_PANIC
  460. bool "Invoke panic handler on Task Watchdog timeout"
  461. depends on TASK_WDT
  462. default n
  463. help
  464. If this option is enabled, the Task Watchdog Timer will be configured to
  465. trigger the panic handler when it times out. This can also be configured
  466. at run time (see Task Watchdog Timer API Reference)
  467. config TASK_WDT_TIMEOUT_S
  468. int "Task Watchdog timeout period (seconds)"
  469. depends on TASK_WDT
  470. range 1 60
  471. default 5
  472. help
  473. Timeout period configuration for the Task Watchdog Timer in seconds.
  474. This is also configurable at run time (see Task Watchdog Timer API Reference)
  475. config TASK_WDT_CHECK_IDLE_TASK_CPU0
  476. bool "Watch CPU0 Idle Task"
  477. depends on TASK_WDT
  478. default y
  479. help
  480. If this option is enabled, the Task Watchdog Timer will watch the CPU0
  481. Idle Task. Having the Task Watchdog watch the Idle Task allows for detection
  482. of CPU starvation as the Idle Task not being called is usually a symptom of
  483. CPU starvation. Starvation of the Idle Task is detrimental as FreeRTOS household
  484. tasks depend on the Idle Task getting some runtime every now and then.
  485. config TASK_WDT_CHECK_IDLE_TASK_CPU1
  486. bool "Watch CPU1 Idle Task"
  487. depends on TASK_WDT && !FREERTOS_UNICORE
  488. default y
  489. help
  490. If this option is enabled, the Task Wtachdog Timer will wach the CPU1
  491. Idle Task.
  492. #The brownout detector code is disabled (by making it depend on a nonexisting symbol) because the current revision of ESP32
  493. #silicon has a bug in the brown-out detector, rendering it unusable for resetting the CPU.
  494. config BROWNOUT_DET
  495. bool "Hardware brownout detect & reset"
  496. default y
  497. help
  498. The ESP32 has a built-in brownout detector which can detect if the voltage is lower than
  499. a specific value. If this happens, it will reset the chip in order to prevent unintended
  500. behaviour.
  501. choice BROWNOUT_DET_LVL_SEL
  502. prompt "Brownout voltage level"
  503. depends on BROWNOUT_DET
  504. default BROWNOUT_DET_LVL_SEL_25
  505. help
  506. The brownout detector will reset the chip when the supply voltage is approximately
  507. below this level. Note that there may be some variation of brownout voltage level
  508. between each ESP32 chip.
  509. #The voltage levels here are estimates, more work needs to be done to figure out the exact voltages
  510. #of the brownout threshold levels.
  511. config BROWNOUT_DET_LVL_SEL_0
  512. bool "2.43V +/- 0.05"
  513. config BROWNOUT_DET_LVL_SEL_1
  514. bool "2.48V +/- 0.05"
  515. config BROWNOUT_DET_LVL_SEL_2
  516. bool "2.58V +/- 0.05"
  517. config BROWNOUT_DET_LVL_SEL_3
  518. bool "2.62V +/- 0.05"
  519. config BROWNOUT_DET_LVL_SEL_4
  520. bool "2.67V +/- 0.05"
  521. config BROWNOUT_DET_LVL_SEL_5
  522. bool "2.70V +/- 0.05"
  523. config BROWNOUT_DET_LVL_SEL_6
  524. bool "2.77V +/- 0.05"
  525. config BROWNOUT_DET_LVL_SEL_7
  526. bool "2.80V +/- 0.05"
  527. endchoice
  528. config BROWNOUT_DET_LVL
  529. int
  530. default 0 if BROWNOUT_DET_LVL_SEL_0
  531. default 1 if BROWNOUT_DET_LVL_SEL_1
  532. default 2 if BROWNOUT_DET_LVL_SEL_2
  533. default 3 if BROWNOUT_DET_LVL_SEL_3
  534. default 4 if BROWNOUT_DET_LVL_SEL_4
  535. default 5 if BROWNOUT_DET_LVL_SEL_5
  536. default 6 if BROWNOUT_DET_LVL_SEL_6
  537. default 7 if BROWNOUT_DET_LVL_SEL_7
  538. # Note about the use of "FRC1" name: currently FRC1 timer is not used for
  539. # high resolution timekeeping anymore. Instead the esp_timer API, implemented
  540. # using FRC2 timer, is used.
  541. # FRC1 name in the option name is kept for compatibility.
  542. choice ESP32_TIME_SYSCALL
  543. prompt "Timers used for gettimeofday function"
  544. default ESP32_TIME_SYSCALL_USE_RTC_FRC1
  545. help
  546. This setting defines which hardware timers are used to
  547. implement 'gettimeofday' and 'time' functions in C library.
  548. - If both high-resolution and RTC timers are used, timekeeping will
  549. continue in deep sleep. Time will be reported at 1 microsecond
  550. resolution. This is the default, and the recommended option.
  551. - If only high-resolution timer is used, gettimeofday will
  552. provide time at microsecond resolution.
  553. Time will not be preserved when going into deep sleep mode.
  554. - If only RTC timer is used, timekeeping will continue in
  555. deep sleep, but time will be measured at 6.(6) microsecond
  556. resolution. Also the gettimeofday function itself may take
  557. longer to run.
  558. - If no timers are used, gettimeofday and time functions
  559. return -1 and set errno to ENOSYS.
  560. - When RTC is used for timekeeping, two RTC_STORE registers are
  561. used to keep time in deep sleep mode.
  562. config ESP32_TIME_SYSCALL_USE_RTC_FRC1
  563. bool "RTC and high-resolution timer"
  564. config ESP32_TIME_SYSCALL_USE_RTC
  565. bool "RTC"
  566. config ESP32_TIME_SYSCALL_USE_FRC1
  567. bool "High-resolution timer"
  568. config ESP32_TIME_SYSCALL_USE_NONE
  569. bool "None"
  570. endchoice
  571. choice ESP32_RTC_CLOCK_SOURCE
  572. prompt "RTC clock source"
  573. default ESP32_RTC_CLOCK_SOURCE_INTERNAL_RC
  574. help
  575. Choose which clock is used as RTC clock source.
  576. config ESP32_RTC_CLOCK_SOURCE_INTERNAL_RC
  577. bool "Internal 150kHz RC oscillator"
  578. config ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
  579. bool "External 32kHz crystal"
  580. endchoice
  581. config ESP32_RTC_CLK_CAL_CYCLES
  582. int "Number of cycles for RTC_SLOW_CLK calibration"
  583. default 1024
  584. range 0 125000
  585. help
  586. When the startup code initializes RTC_SLOW_CLK, it can perform
  587. calibration by comparing the RTC_SLOW_CLK frequency with main XTAL
  588. frequency. This option sets the number of RTC_SLOW_CLK cycles measured
  589. by the calibration routine. Higher numbers increase calibration
  590. precision, which may be important for applications which spend a lot of
  591. time in deep sleep. Lower numbers reduce startup time.
  592. When this option is set to 0, clock calibration will not be performed at
  593. startup, and approximate clock frequencies will be assumed:
  594. - 150000 Hz if internal RC oscillator is used as clock source
  595. - 32768 Hz if the 32k crystal oscillator is used
  596. config ESP32_RTC_XTAL_BOOTSTRAP_CYCLES
  597. int "Bootstrap cycles for external 32kHz crystal"
  598. default 100
  599. range 0 32768
  600. help
  601. To reduce the startup time of an external RTC crystal,
  602. we bootstrap it with a 32kHz square wave for a fixed number of cycles.
  603. Setting 0 will disable bootstrapping (if disabled, the crystal may take
  604. longer to start up or fail to oscillate under some conditions).
  605. config ESP32_DEEP_SLEEP_WAKEUP_DELAY
  606. int "Extra delay in deep sleep wake stub (in us)"
  607. default 2000
  608. range 0 5000
  609. help
  610. When ESP32 exits deep sleep, the CPU and the flash chip are powered on
  611. at the same time. CPU will run deep sleep stub first, and then
  612. proceed to load code from flash. Some flash chips need sufficient
  613. time to pass between power on and first read operation. By default,
  614. without any extra delay, this time is approximately 900us, although
  615. some flash chip types need more than that.
  616. By default extra delay is set to 2000us. When optimizing startup time
  617. for applications which require it, this value may be reduced.
  618. If you are seeing "flash read err, 1000" message printed to the
  619. console after deep sleep reset, try increasing this value.
  620. choice ESP32_XTAL_FREQ_SEL
  621. prompt "Main XTAL frequency"
  622. default ESP32_XTAL_FREQ_40
  623. help
  624. ESP32 currently supports the following XTAL frequencies:
  625. - 26 MHz
  626. - 40 MHz
  627. Startup code can automatically estimate XTAL frequency. This feature
  628. uses the internal 8MHz oscillator as a reference. Because the internal
  629. oscillator frequency is temperature dependent, it is not recommended
  630. to use automatic XTAL frequency detection in applications which need
  631. to work at high ambient temperatures and use high-temperature
  632. qualified chips and modules.
  633. config ESP32_XTAL_FREQ_40
  634. bool "40 MHz"
  635. config ESP32_XTAL_FREQ_26
  636. bool "26 MHz"
  637. config ESP32_XTAL_FREQ_AUTO
  638. bool "Autodetect"
  639. endchoice
  640. # Keep these values in sync with rtc_xtal_freq_t enum in soc/rtc.h
  641. config ESP32_XTAL_FREQ
  642. int
  643. default 0 if ESP32_XTAL_FREQ_AUTO
  644. default 40 if ESP32_XTAL_FREQ_40
  645. default 26 if ESP32_XTAL_FREQ_26
  646. config DISABLE_BASIC_ROM_CONSOLE
  647. bool "Permanently disable BASIC ROM Console"
  648. default n
  649. help
  650. If set, the first time the app boots it will disable the BASIC ROM Console
  651. permanently (by burning an efuse).
  652. Otherwise, the BASIC ROM Console starts on reset if no valid bootloader is
  653. read from the flash.
  654. (Enabling secure boot also disables the BASIC ROM Console by default.)
  655. config NO_BLOBS
  656. bool "No Binary Blobs"
  657. depends on !BT_ENABLED
  658. default n
  659. help
  660. If enabled, this disables the linking of binary libraries in the application build. Note
  661. that after enabling this Wi-Fi/Bluetooth will not work.
  662. config ESP_TIMER_PROFILING
  663. bool "Enable esp_timer profiling features"
  664. default n
  665. help
  666. If enabled, esp_timer_dump will dump information such as number of times
  667. the timer was started, number of times the timer has triggered, and the
  668. total time it took for the callback to run.
  669. This option has some effect on timer performance and the amount of memory
  670. used for timer storage, and should only be used for debugging/testing
  671. purposes.
  672. config COMPATIBLE_PRE_V2_1_BOOTLOADERS
  673. bool "App compatible with bootloaders before IDF v2.1"
  674. default n
  675. help
  676. Bootloaders before IDF v2.1 did less initialisation of the
  677. system clock. This setting needs to be enabled to build an app
  678. which can be booted by these older bootloaders.
  679. If this setting is enabled, the app can be booted by any bootloader
  680. from IDF v1.0 up to the current version.
  681. If this setting is disabled, the app can only be booted by bootloaders
  682. from IDF v2.1 or newer.
  683. Enabling this setting adds approximately 1KB to the app's IRAM usage.
  684. config ESP_ERR_TO_NAME_LOOKUP
  685. bool "Enable lookup of error code strings"
  686. default "y"
  687. help
  688. Functions esp_err_to_name() and esp_err_to_name_r() return string
  689. representations of error codes from a pre-generated lookup table.
  690. This option can be used to turn off the use of the look-up table in
  691. order to save memory but this comes at the price of sacrificing
  692. distinguishable (meaningful) output string representations.
  693. endmenu # ESP32-Specific
  694. menu Wi-Fi
  695. config SW_COEXIST_ENABLE
  696. bool "Software controls WiFi/Bluetooth coexistence"
  697. depends on BT_ENABLED
  698. default y
  699. help
  700. If enabled, WiFi & Bluetooth coexistence is controlled by software rather than hardware.
  701. Recommended for heavy traffic scenarios. Both coexistence configuration options are
  702. automatically managed, no user intervention is required.
  703. choice SW_COEXIST_PREFERENCE
  704. prompt "WiFi/Bluetooth coexistence performance preference"
  705. depends on SW_COEXIST_ENABLE
  706. default SW_COEXIST_PREFERENCE_BALANCE
  707. help
  708. Choose Bluetooth/WiFi/Balance for different preference.
  709. If choose WiFi, it will make WiFi performance better. Such, keep WiFi Audio more smooth.
  710. If choose Bluetooth, it will make Bluetooth performance better. Such, keep Bluetooth(A2DP) Audio more smooth.
  711. If choose Balance, the performance of WiFi and bluetooth will be balance. It's default.
  712. Except config preference in menuconfig, you can also call esp_coex_preference_set() dynamically.
  713. config SW_COEXIST_PREFERENCE_WIFI
  714. bool "WiFi"
  715. config SW_COEXIST_PREFERENCE_BT
  716. bool "Bluetooth(include BR/EDR and BLE)"
  717. config SW_COEXIST_PREFERENCE_BALANCE
  718. bool "Balance"
  719. endchoice
  720. config SW_COEXIST_PREFERENCE_VALUE
  721. int
  722. depends on SW_COEXIST_ENABLE
  723. default 0 if SW_COEXIST_PREFERENCE_WIFI
  724. default 1 if SW_COEXIST_PREFERENCE_BT
  725. default 2 if SW_COEXIST_PREFERENCE_BALANCE
  726. config ESP32_WIFI_STATIC_RX_BUFFER_NUM
  727. int "Max number of WiFi static RX buffers"
  728. range 2 25
  729. default 10
  730. help
  731. Set the number of WiFi static RX buffers. Each buffer takes approximately 1.6KB of RAM.
  732. The static rx buffers are allocated when esp_wifi_init is called, they are not freed
  733. until esp_wifi_deinit is called.
  734. WiFi hardware use these buffers to receive all 802.11 frames.
  735. A higher number may allow higher throughput but increases memory use.
  736. config ESP32_WIFI_DYNAMIC_RX_BUFFER_NUM
  737. int "Max number of WiFi dynamic RX buffers"
  738. range 0 128
  739. default 32
  740. help
  741. Set the number of WiFi dynamic RX buffers, 0 means unlimited RX buffers will be allocated
  742. (provided sufficient free RAM). The size of each dynamic RX buffer depends on the size of
  743. the received data frame.
  744. For each received data frame, the WiFi driver makes a copy to an RX buffer and then delivers
  745. it to the high layer TCP/IP stack. The dynamic RX buffer is freed after the higher layer has
  746. successfully received the data frame.
  747. For some applications, WiFi data frames may be received faster than the application can
  748. process them. In these cases we may run out of memory if RX buffer number is unlimited (0).
  749. If a dynamic RX buffer limit is set, it should be at least the number of static RX buffers.
  750. choice ESP32_WIFI_TX_BUFFER
  751. prompt "Type of WiFi TX buffers"
  752. default ESP32_WIFI_DYNAMIC_TX_BUFFER
  753. help
  754. Select type of WiFi TX buffers:
  755. If "Static" is selected, WiFi TX buffers are allocated when WiFi is initialized and released
  756. when WiFi is de-initialized. The size of each static TX buffer is fixed to about 1.6KB.
  757. If "Dynamic" is selected, each WiFi TX buffer is allocated as needed when a data frame is
  758. delivered to the Wifi driver from the TCP/IP stack. The buffer is freed after the data frame
  759. has been sent by the WiFi driver. The size of each dynamic TX buffer depends on the length
  760. of each data frame sent by the TCP/IP layer.
  761. If PSRAM is enabled, "Static" should be selected to guarantee enough WiFi TX buffers.
  762. If PSRAM is disabled, "Dynamic" should be selected to improve the utilization of RAM.
  763. config ESP32_WIFI_STATIC_TX_BUFFER
  764. bool "Static"
  765. config ESP32_WIFI_DYNAMIC_TX_BUFFER
  766. bool "Dynamic"
  767. depends on !SPIRAM_USE_MALLOC
  768. endchoice
  769. config ESP32_WIFI_TX_BUFFER_TYPE
  770. int
  771. default 0 if ESP32_WIFI_STATIC_TX_BUFFER
  772. default 1 if ESP32_WIFI_DYNAMIC_TX_BUFFER
  773. config ESP32_WIFI_STATIC_TX_BUFFER_NUM
  774. int "Max number of WiFi static TX buffers"
  775. depends on ESP32_WIFI_STATIC_TX_BUFFER
  776. range 6 64
  777. default 16
  778. help
  779. Set the number of WiFi static TX buffers. Each buffer takes approximately 1.6KB of RAM.
  780. The static RX buffers are allocated when esp_wifi_init() is called, they are not released
  781. until esp_wifi_deinit() is called.
  782. For each transmitted data frame from the higher layer TCP/IP stack, the WiFi driver makes a
  783. copy of it in a TX buffer. For some applications especially UDP applications, the upper
  784. layer can deliver frames faster than WiFi layer can transmit. In these cases, we may run out
  785. of TX buffers.
  786. config ESP32_WIFI_DYNAMIC_TX_BUFFER_NUM
  787. int "Max number of WiFi dynamic TX buffers"
  788. depends on ESP32_WIFI_DYNAMIC_TX_BUFFER
  789. range 16 128
  790. default 32
  791. help
  792. Set the number of WiFi dynamic TX buffers. The size of each dynamic TX buffer is not fixed,
  793. it depends on the size of each transmitted data frame.
  794. For each transmitted frame from the higher layer TCP/IP stack, the WiFi driver makes a copy
  795. of it in a TX buffer. For some applications, especially UDP applications, the upper layer
  796. can deliver frames faster than WiFi layer can transmit. In these cases, we may run out of TX
  797. buffers.
  798. config ESP32_WIFI_AMPDU_TX_ENABLED
  799. bool "WiFi AMPDU TX"
  800. default y if SW_COEXIST_ENABLE
  801. default y
  802. help
  803. Select this option to enable AMPDU TX feature
  804. Suggest enable it when SW_COEXIST_ENABLE is defined.
  805. config ESP32_WIFI_TX_BA_WIN
  806. int "WiFi AMPDU TX BA window size"
  807. depends on ESP32_WIFI_AMPDU_TX_ENABLED
  808. range 2 32
  809. default 2 if SW_COEXIST_ENABLE
  810. default 6
  811. help
  812. Set the size of WiFi Block Ack TX window. Generally a bigger value means higher throughput but
  813. more memory. Most of time we should NOT change the default value unless special reason, e.g.
  814. test the maximum UDP TX throughput with iperf etc. For iperf test in shieldbox, the recommended
  815. value is 9~12. If SW_COEXIST_ENABLE is defined, suggest value is 2.
  816. config ESP32_WIFI_AMPDU_RX_ENABLED
  817. bool "WiFi AMPDU RX"
  818. depends on !SW_COEXIST_ENABLE
  819. default y
  820. default y
  821. help
  822. Select this option to enable AMPDU RX feature
  823. Suggest disable this option when SW_COEXIST_ENABLE is enabled. It can improve WiFi RX performance normally.
  824. config ESP32_WIFI_RX_BA_WIN
  825. int "WiFi AMPDU RX BA window size"
  826. depends on ESP32_WIFI_AMPDU_RX_ENABLED
  827. range 2 32
  828. default 6
  829. help
  830. Set the size of WiFi Block Ack RX window. Generally a bigger value means higher throughput but
  831. more memory. Most of time we should NOT change the default value unless special reason, e.g.
  832. test the maximum UDP RX throughput with iperf etc. For iperf test in shieldbox, the recommended
  833. value is 9~12.
  834. config ESP32_WIFI_NVS_ENABLED
  835. bool "WiFi NVS flash"
  836. default y
  837. help
  838. Select this option to enable WiFi NVS flash
  839. endmenu # Wi-Fi
  840. menu PHY
  841. config ESP32_PHY_CALIBRATION_AND_DATA_STORAGE
  842. bool "Store phy calibration data in NVS"
  843. default y
  844. help
  845. If this option is enabled, NVS will be initialized and calibration data will be loaded from there.
  846. PHY calibration will be skipped on deep sleep wakeup. If calibration data is not found, full calibration
  847. will be performed and stored in NVS. Normally, only partial calibration will be performed.
  848. If this option is disabled, full calibration will be performed.
  849. If it's easy that your board calibrate bad data, choose 'n'.
  850. Two cases for example, you should choose 'n':
  851. 1.If your board is easy to be booted up with antenna disconnected.
  852. 2.Because of your board design, each time when you do calibration, the result are too unstable.
  853. If unsure, choose 'y'.
  854. config ESP32_PHY_INIT_DATA_IN_PARTITION
  855. bool "Use a partition to store PHY init data"
  856. default n
  857. help
  858. If enabled, PHY init data will be loaded from a partition.
  859. When using a custom partition table, make sure that PHY data
  860. partition is included (type: 'data', subtype: 'phy').
  861. With default partition tables, this is done automatically.
  862. If PHY init data is stored in a partition, it has to be flashed there,
  863. otherwise runtime error will occur.
  864. If this option is not enabled, PHY init data will be embedded
  865. into the application binary.
  866. If unsure, choose 'n'.
  867. config ESP32_PHY_MAX_WIFI_TX_POWER
  868. int "Max WiFi TX power (dBm)"
  869. range 0 20
  870. default 20
  871. help
  872. Set maximum transmit power for WiFi radio. Actual transmit power for high
  873. data rates may be lower than this setting.
  874. config ESP32_PHY_MAX_TX_POWER
  875. int
  876. default ESP32_PHY_MAX_WIFI_TX_POWER
  877. endmenu # PHY
  878. menu "Power Management"
  879. config PM_ENABLE
  880. bool "Support for power management"
  881. default n
  882. help
  883. If enabled, application is compiled with support for power management.
  884. This option has run-time overhead (increased interrupt latency,
  885. longer time to enter idle state), and it also reduces accuracy of
  886. RTOS ticks and timers used for timekeeping.
  887. Enable this option if application uses power management APIs.
  888. config PM_DFS_INIT_AUTO
  889. bool "Enable dynamic frequency scaling (DFS) at startup"
  890. depends on PM_ENABLE
  891. default n
  892. help
  893. If enabled, startup code configures dynamic frequency scaling.
  894. Max CPU frequency is set to CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ setting,
  895. min frequency is set to XTAL frequency.
  896. If disabled, DFS will not be active until the application
  897. configures it using esp_pm_configure function.
  898. config PM_USE_RTC_TIMER_REF
  899. bool "Use RTC timer to prevent time drift (EXPERIMENTAL)"
  900. depends on PM_ENABLE && (ESP32_TIME_SYSCALL_USE_RTC || ESP32_TIME_SYSCALL_USE_RTC_FRC1)
  901. default n
  902. help
  903. When APB clock frequency changes, high-resolution timer (esp_timer)
  904. scale and base value need to be adjusted. Each adjustment may cause
  905. small error, and over time such small errors may cause time drift.
  906. If this option is enabled, RTC timer will be used as a reference to
  907. compensate for the drift.
  908. It is recommended that this option is only used if 32k XTAL is selected
  909. as RTC clock source.
  910. config PM_PROFILING
  911. bool "Enable profiling counters for PM locks"
  912. depends on PM_ENABLE
  913. default n
  914. help
  915. If enabled, esp_pm_* functions will keep track of the amount of time
  916. each of the power management locks has been held, and esp_pm_dump_locks
  917. function will print this information.
  918. This feature can be used to analyze which locks are preventing the chip
  919. from going into a lower power state, and see what time the chip spends
  920. in each power saving mode. This feature does incur some run-time
  921. overhead, so should typically be disabled in production builds.
  922. config PM_TRACE
  923. bool "Enable debug tracing of PM using GPIOs"
  924. depends on PM_ENABLE
  925. default n
  926. help
  927. If enabled, some GPIOs will be used to signal events such as RTOS ticks,
  928. frequency switching, entry/exit from idle state. Refer to pm_trace.c
  929. file for the list of GPIOs.
  930. This feature is intended to be used when analyzing/debugging behavior
  931. of power management implementation, and should be kept disabled in
  932. applications.
  933. endmenu # "Power Management"