bootloader_utility.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722
  1. // Copyright 2018 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <limits.h>
  17. #include <sys/param.h>
  18. #include "esp_attr.h"
  19. #include "esp_log.h"
  20. #include "esp32/rom/cache.h"
  21. #include "esp32/rom/efuse.h"
  22. #include "esp32/rom/ets_sys.h"
  23. #include "esp32/rom/spi_flash.h"
  24. #include "esp32/rom/crc.h"
  25. #include "esp32/rom/rtc.h"
  26. #include "esp32/rom/uart.h"
  27. #include "esp32/rom/gpio.h"
  28. #include "esp32/rom/secure_boot.h"
  29. #include "soc/soc.h"
  30. #include "soc/cpu.h"
  31. #include "soc/rtc.h"
  32. #include "soc/dport_reg.h"
  33. #include "soc/io_mux_reg.h"
  34. #include "soc/efuse_reg.h"
  35. #include "soc/rtc_cntl_reg.h"
  36. #include "soc/timer_group_reg.h"
  37. #include "soc/gpio_reg.h"
  38. #include "soc/gpio_sig_map.h"
  39. #include "sdkconfig.h"
  40. #include "esp_image_format.h"
  41. #include "esp_secure_boot.h"
  42. #include "esp_flash_encrypt.h"
  43. #include "esp_flash_partitions.h"
  44. #include "bootloader_flash.h"
  45. #include "bootloader_random.h"
  46. #include "bootloader_config.h"
  47. #include "bootloader_common.h"
  48. #include "bootloader_utility.h"
  49. #include "bootloader_sha.h"
  50. #include "esp_efuse.h"
  51. static const char* TAG = "boot";
  52. /* Reduce literal size for some generic string literals */
  53. #define MAP_ERR_MSG "Image contains multiple %s segments. Only the last one will be mapped."
  54. static bool ota_has_initial_contents;
  55. static void load_image(const esp_image_metadata_t* image_data);
  56. static void unpack_load_app(const esp_image_metadata_t *data);
  57. static void set_cache_and_start_app(uint32_t drom_addr,
  58. uint32_t drom_load_addr,
  59. uint32_t drom_size,
  60. uint32_t irom_addr,
  61. uint32_t irom_load_addr,
  62. uint32_t irom_size,
  63. uint32_t entry_addr);
  64. // Read ota_info partition and fill array from two otadata structures.
  65. static esp_err_t read_otadata(const esp_partition_pos_t *ota_info, esp_ota_select_entry_t *two_otadata)
  66. {
  67. const esp_ota_select_entry_t *ota_select_map;
  68. if (ota_info->offset == 0) {
  69. return ESP_ERR_NOT_FOUND;
  70. }
  71. // partition table has OTA data partition
  72. if (ota_info->size < 2 * SPI_SEC_SIZE) {
  73. ESP_LOGE(TAG, "ota_info partition size %d is too small (minimum %d bytes)", ota_info->size, sizeof(esp_ota_select_entry_t));
  74. return ESP_FAIL; // can't proceed
  75. }
  76. ESP_LOGD(TAG, "OTA data offset 0x%x", ota_info->offset);
  77. ota_select_map = bootloader_mmap(ota_info->offset, ota_info->size);
  78. if (!ota_select_map) {
  79. ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ota_info->offset, ota_info->size);
  80. return ESP_FAIL; // can't proceed
  81. }
  82. memcpy(&two_otadata[0], ota_select_map, sizeof(esp_ota_select_entry_t));
  83. memcpy(&two_otadata[1], (uint8_t *)ota_select_map + SPI_SEC_SIZE, sizeof(esp_ota_select_entry_t));
  84. bootloader_munmap(ota_select_map);
  85. return ESP_OK;
  86. }
  87. bool bootloader_utility_load_partition_table(bootloader_state_t* bs)
  88. {
  89. const esp_partition_info_t *partitions;
  90. const char *partition_usage;
  91. esp_err_t err;
  92. int num_partitions;
  93. partitions = bootloader_mmap(ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
  94. if (!partitions) {
  95. ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
  96. return false;
  97. }
  98. ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_OFFSET, (intptr_t)partitions);
  99. err = esp_partition_table_verify(partitions, true, &num_partitions);
  100. if (err != ESP_OK) {
  101. ESP_LOGE(TAG, "Failed to verify partition table");
  102. return false;
  103. }
  104. ESP_LOGI(TAG, "Partition Table:");
  105. ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
  106. for(int i = 0; i < num_partitions; i++) {
  107. const esp_partition_info_t *partition = &partitions[i];
  108. ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
  109. ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
  110. partition_usage = "unknown";
  111. /* valid partition table */
  112. switch(partition->type) {
  113. case PART_TYPE_APP: /* app partition */
  114. switch(partition->subtype) {
  115. case PART_SUBTYPE_FACTORY: /* factory binary */
  116. bs->factory = partition->pos;
  117. partition_usage = "factory app";
  118. break;
  119. case PART_SUBTYPE_TEST: /* test binary */
  120. bs->test = partition->pos;
  121. partition_usage = "test app";
  122. break;
  123. default:
  124. /* OTA binary */
  125. if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
  126. bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
  127. ++bs->app_count;
  128. partition_usage = "OTA app";
  129. }
  130. else {
  131. partition_usage = "Unknown app";
  132. }
  133. break;
  134. }
  135. break; /* PART_TYPE_APP */
  136. case PART_TYPE_DATA: /* data partition */
  137. switch(partition->subtype) {
  138. case PART_SUBTYPE_DATA_OTA: /* ota data */
  139. bs->ota_info = partition->pos;
  140. partition_usage = "OTA data";
  141. break;
  142. case PART_SUBTYPE_DATA_RF:
  143. partition_usage = "RF data";
  144. break;
  145. case PART_SUBTYPE_DATA_WIFI:
  146. partition_usage = "WiFi data";
  147. break;
  148. case PART_SUBTYPE_DATA_NVS_KEYS:
  149. partition_usage = "NVS keys";
  150. break;
  151. case PART_SUBTYPE_DATA_EFUSE_EM:
  152. partition_usage = "efuse";
  153. #ifdef CONFIG_BOOTLOADER_EFUSE_SECURE_VERSION_EMULATE
  154. esp_efuse_init(partition->pos.offset, partition->pos.size);
  155. #endif
  156. break;
  157. default:
  158. partition_usage = "Unknown data";
  159. break;
  160. }
  161. break; /* PARTITION_USAGE_DATA */
  162. default: /* other partition type */
  163. break;
  164. }
  165. /* print partition type info */
  166. ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
  167. partition->type, partition->subtype,
  168. partition->pos.offset, partition->pos.size);
  169. }
  170. bootloader_munmap(partitions);
  171. ESP_LOGI(TAG,"End of partition table");
  172. return true;
  173. }
  174. /* Given a partition index, return the partition position data from the bootloader_state_t structure */
  175. static esp_partition_pos_t index_to_partition(const bootloader_state_t *bs, int index)
  176. {
  177. if (index == FACTORY_INDEX) {
  178. return bs->factory;
  179. }
  180. if (index == TEST_APP_INDEX) {
  181. return bs->test;
  182. }
  183. if (index >= 0 && index < MAX_OTA_SLOTS && index < bs->app_count) {
  184. return bs->ota[index];
  185. }
  186. esp_partition_pos_t invalid = { 0 };
  187. return invalid;
  188. }
  189. static void log_invalid_app_partition(int index)
  190. {
  191. const char *not_bootable = " is not bootable"; /* save a few string literal bytes */
  192. switch(index) {
  193. case FACTORY_INDEX:
  194. ESP_LOGE(TAG, "Factory app partition%s", not_bootable);
  195. break;
  196. case TEST_APP_INDEX:
  197. ESP_LOGE(TAG, "Factory test app partition%s", not_bootable);
  198. break;
  199. default:
  200. ESP_LOGE(TAG, "OTA app partition slot %d%s", index, not_bootable);
  201. break;
  202. }
  203. }
  204. static esp_err_t write_otadata(esp_ota_select_entry_t *otadata, uint32_t offset, bool write_encrypted)
  205. {
  206. esp_err_t err = bootloader_flash_erase_sector(offset / FLASH_SECTOR_SIZE);
  207. if (err == ESP_OK) {
  208. err = bootloader_flash_write(offset, otadata, sizeof(esp_ota_select_entry_t), write_encrypted);
  209. }
  210. if (err != ESP_OK) {
  211. ESP_LOGE(TAG, "Error in write_otadata operation. err = 0x%x", err);
  212. }
  213. return err;
  214. }
  215. static bool check_anti_rollback(const esp_partition_pos_t *partition)
  216. {
  217. #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  218. esp_app_desc_t app_desc;
  219. esp_err_t err = bootloader_common_get_partition_description(partition, &app_desc);
  220. return err == ESP_OK && esp_efuse_check_secure_version(app_desc.secure_version) == true;
  221. #else
  222. return true;
  223. #endif
  224. }
  225. #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  226. static void update_anti_rollback(const esp_partition_pos_t *partition)
  227. {
  228. esp_app_desc_t app_desc;
  229. esp_err_t err = bootloader_common_get_partition_description(partition, &app_desc);
  230. if (err == ESP_OK) {
  231. esp_efuse_update_secure_version(app_desc.secure_version);
  232. }
  233. }
  234. static int get_active_otadata_with_check_anti_rollback(const bootloader_state_t *bs, esp_ota_select_entry_t *two_otadata)
  235. {
  236. uint32_t ota_seq;
  237. uint32_t ota_slot;
  238. bool valid_otadata[2];
  239. valid_otadata[0] = bootloader_common_ota_select_valid(&two_otadata[0]);
  240. valid_otadata[1] = bootloader_common_ota_select_valid(&two_otadata[1]);
  241. bool sec_ver_valid_otadata[2] = { 0 };
  242. for (int i = 0; i < 2; ++i) {
  243. if (valid_otadata[i] == true) {
  244. ota_seq = two_otadata[i].ota_seq - 1; // Raw OTA sequence number. May be more than # of OTA slots
  245. ota_slot = ota_seq % bs->app_count; // Actual OTA partition selection
  246. if (check_anti_rollback(&bs->ota[ota_slot]) == false) {
  247. // invalid. This otadata[i] will not be selected as active.
  248. ESP_LOGD(TAG, "OTA slot %d has an app with secure_version, this version is smaller than in the device. This OTA slot will not be selected.", ota_slot);
  249. } else {
  250. sec_ver_valid_otadata[i] = true;
  251. }
  252. }
  253. }
  254. return bootloader_common_select_otadata(two_otadata, sec_ver_valid_otadata, true);
  255. }
  256. #endif
  257. int bootloader_utility_get_selected_boot_partition(const bootloader_state_t *bs)
  258. {
  259. esp_ota_select_entry_t otadata[2];
  260. int boot_index = FACTORY_INDEX;
  261. if (bs->ota_info.offset == 0) {
  262. return FACTORY_INDEX;
  263. }
  264. if (read_otadata(&bs->ota_info, otadata) != ESP_OK) {
  265. return INVALID_INDEX;
  266. }
  267. ota_has_initial_contents = false;
  268. ESP_LOGD(TAG, "otadata[0]: sequence values 0x%08x", otadata[0].ota_seq);
  269. ESP_LOGD(TAG, "otadata[1]: sequence values 0x%08x", otadata[1].ota_seq);
  270. #ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
  271. bool write_encrypted = esp_flash_encryption_enabled();
  272. for (int i = 0; i < 2; ++i) {
  273. if (otadata[i].ota_state == ESP_OTA_IMG_PENDING_VERIFY) {
  274. ESP_LOGD(TAG, "otadata[%d] is marking as ABORTED", i);
  275. otadata[i].ota_state = ESP_OTA_IMG_ABORTED;
  276. write_otadata(&otadata[i], bs->ota_info.offset + FLASH_SECTOR_SIZE * i, write_encrypted);
  277. }
  278. }
  279. #endif
  280. #ifndef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  281. if ((bootloader_common_ota_select_invalid(&otadata[0]) &&
  282. bootloader_common_ota_select_invalid(&otadata[1])) ||
  283. bs->app_count == 0) {
  284. ESP_LOGD(TAG, "OTA sequence numbers both empty (all-0xFF) or partition table does not have bootable ota_apps (app_count=%d)", bs->app_count);
  285. if (bs->factory.offset != 0) {
  286. ESP_LOGI(TAG, "Defaulting to factory image");
  287. boot_index = FACTORY_INDEX;
  288. } else {
  289. ESP_LOGI(TAG, "No factory image, trying OTA 0");
  290. boot_index = 0;
  291. // Try to boot from ota_0.
  292. if ((otadata[0].ota_seq == UINT32_MAX || otadata[0].crc != bootloader_common_ota_select_crc(&otadata[0])) &&
  293. (otadata[1].ota_seq == UINT32_MAX || otadata[1].crc != bootloader_common_ota_select_crc(&otadata[1]))) {
  294. // Factory is not found and both otadata are initial(0xFFFFFFFF) or incorrect crc.
  295. // will set correct ota_seq.
  296. ota_has_initial_contents = true;
  297. }
  298. }
  299. } else {
  300. int active_otadata = bootloader_common_get_active_otadata(otadata);
  301. #else
  302. ESP_LOGI(TAG, "Enabled a check secure version of app for anti rollback");
  303. ESP_LOGI(TAG, "Secure version (from eFuse) = %d", esp_efuse_read_secure_version());
  304. // When CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK is enabled factory partition should not be in partition table, only two ota_app are there.
  305. if ((otadata[0].ota_seq == UINT32_MAX || otadata[0].crc != bootloader_common_ota_select_crc(&otadata[0])) &&
  306. (otadata[1].ota_seq == UINT32_MAX || otadata[1].crc != bootloader_common_ota_select_crc(&otadata[1]))) {
  307. ESP_LOGI(TAG, "otadata[0..1] in initial state");
  308. // both otadata are initial(0xFFFFFFFF) or incorrect crc.
  309. // will set correct ota_seq.
  310. ota_has_initial_contents = true;
  311. } else {
  312. int active_otadata = get_active_otadata_with_check_anti_rollback(bs, otadata);
  313. #endif
  314. if (active_otadata != -1) {
  315. ESP_LOGD(TAG, "Active otadata[%d]", active_otadata);
  316. uint32_t ota_seq = otadata[active_otadata].ota_seq - 1; // Raw OTA sequence number. May be more than # of OTA slots
  317. boot_index = ota_seq % bs->app_count; // Actual OTA partition selection
  318. ESP_LOGD(TAG, "Mapping seq %d -> OTA slot %d", ota_seq, boot_index);
  319. #ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
  320. if (otadata[active_otadata].ota_state == ESP_OTA_IMG_NEW) {
  321. ESP_LOGD(TAG, "otadata[%d] is selected as new and marked PENDING_VERIFY state", active_otadata);
  322. otadata[active_otadata].ota_state = ESP_OTA_IMG_PENDING_VERIFY;
  323. write_otadata(&otadata[active_otadata], bs->ota_info.offset + FLASH_SECTOR_SIZE * active_otadata, write_encrypted);
  324. }
  325. #endif // CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
  326. #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  327. if(otadata[active_otadata].ota_state == ESP_OTA_IMG_VALID) {
  328. update_anti_rollback(&bs->ota[boot_index]);
  329. }
  330. #endif // CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  331. } else if (bs->factory.offset != 0) {
  332. ESP_LOGE(TAG, "ota data partition invalid, falling back to factory");
  333. boot_index = FACTORY_INDEX;
  334. } else {
  335. ESP_LOGE(TAG, "ota data partition invalid and no factory, will try all partitions");
  336. boot_index = FACTORY_INDEX;
  337. }
  338. }
  339. return boot_index;
  340. }
  341. /* Return true if a partition has a valid app image that was successfully loaded */
  342. static bool try_load_partition(const esp_partition_pos_t *partition, esp_image_metadata_t *data)
  343. {
  344. if (partition->size == 0) {
  345. ESP_LOGD(TAG, "Can't boot from zero-length partition");
  346. return false;
  347. }
  348. #ifdef BOOTLOADER_BUILD
  349. if (bootloader_load_image(partition, data) == ESP_OK) {
  350. ESP_LOGI(TAG, "Loaded app from partition at offset 0x%x",
  351. partition->offset);
  352. return true;
  353. }
  354. #endif
  355. return false;
  356. }
  357. // ota_has_initial_contents flag is set if factory does not present in partition table and
  358. // otadata has initial content(0xFFFFFFFF), then set actual ota_seq.
  359. static void set_actual_ota_seq(const bootloader_state_t *bs, int index)
  360. {
  361. if (index > FACTORY_INDEX && ota_has_initial_contents == true) {
  362. esp_ota_select_entry_t otadata;
  363. memset(&otadata, 0xFF, sizeof(otadata));
  364. otadata.ota_seq = index + 1;
  365. otadata.ota_state = ESP_OTA_IMG_VALID;
  366. otadata.crc = bootloader_common_ota_select_crc(&otadata);
  367. bool write_encrypted = esp_flash_encryption_enabled();
  368. write_otadata(&otadata, bs->ota_info.offset + FLASH_SECTOR_SIZE * 0, write_encrypted);
  369. ESP_LOGI(TAG, "Set actual ota_seq=%d in otadata[0]", otadata.ota_seq);
  370. #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  371. update_anti_rollback(&bs->ota[index]);
  372. #endif
  373. }
  374. }
  375. #define TRY_LOG_FORMAT "Trying partition index %d offs 0x%x size 0x%x"
  376. void bootloader_utility_load_boot_image(const bootloader_state_t *bs, int start_index)
  377. {
  378. int index = start_index;
  379. esp_partition_pos_t part;
  380. esp_image_metadata_t image_data;
  381. if(start_index == TEST_APP_INDEX) {
  382. if (try_load_partition(&bs->test, &image_data)) {
  383. load_image(&image_data);
  384. } else {
  385. ESP_LOGE(TAG, "No bootable test partition in the partition table");
  386. bootloader_reset();
  387. }
  388. }
  389. /* work backwards from start_index, down to the factory app */
  390. for(index = start_index; index >= FACTORY_INDEX; index--) {
  391. part = index_to_partition(bs, index);
  392. if (part.size == 0) {
  393. continue;
  394. }
  395. ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
  396. if (check_anti_rollback(&part) && try_load_partition(&part, &image_data)) {
  397. set_actual_ota_seq(bs, index);
  398. load_image(&image_data);
  399. }
  400. log_invalid_app_partition(index);
  401. }
  402. /* failing that work forwards from start_index, try valid OTA slots */
  403. for(index = start_index + 1; index < bs->app_count; index++) {
  404. part = index_to_partition(bs, index);
  405. if (part.size == 0) {
  406. continue;
  407. }
  408. ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
  409. if (check_anti_rollback(&part) && try_load_partition(&part, &image_data)) {
  410. set_actual_ota_seq(bs, index);
  411. load_image(&image_data);
  412. }
  413. log_invalid_app_partition(index);
  414. }
  415. if (try_load_partition(&bs->test, &image_data)) {
  416. ESP_LOGW(TAG, "Falling back to test app as only bootable partition");
  417. load_image(&image_data);
  418. }
  419. ESP_LOGE(TAG, "No bootable app partitions in the partition table");
  420. bzero(&image_data, sizeof(esp_image_metadata_t));
  421. bootloader_reset();
  422. }
  423. // Copy loaded segments to RAM, set up caches for mapped segments, and start application.
  424. static void load_image(const esp_image_metadata_t* image_data)
  425. {
  426. /**
  427. * Rough steps for a first boot, when encryption and secure boot are both disabled:
  428. * 1) Generate secure boot key and write to EFUSE.
  429. * 2) Write plaintext digest based on plaintext bootloader
  430. * 3) Generate flash encryption key and write to EFUSE.
  431. * 4) Encrypt flash in-place including bootloader, then digest,
  432. * then app partitions and other encrypted partitions
  433. * 5) Burn EFUSE to enable flash encryption (FLASH_CRYPT_CNT)
  434. * 6) Burn EFUSE to enable secure boot (ABS_DONE_0)
  435. *
  436. * If power failure happens during Step 1, probably the next boot will continue from Step 2.
  437. * There is some small chance that EFUSEs will be part-way through being written so will be
  438. * somehow corrupted here. Thankfully this window of time is very small, but if that's the
  439. * case, one has to use the espefuse tool to manually set the remaining bits and enable R/W
  440. * protection. Once the relevant EFUSE bits are set and R/W protected, Step 1 will be skipped
  441. * successfully on further reboots.
  442. *
  443. * If power failure happens during Step 2, Step 1 will be skipped and Step 2 repeated:
  444. * the digest will get re-written on the next boot.
  445. *
  446. * If power failure happens during Step 3, it's possible that EFUSE was partially written
  447. * with the generated flash encryption key, though the time window for that would again
  448. * be very small. On reboot, Step 1 will be skipped and Step 2 repeated, though, Step 3
  449. * may fail due to the above mentioned reason, in which case, one has to use the espefuse
  450. * tool to manually set the remaining bits and enable R/W protection. Once the relevant EFUSE
  451. * bits are set and R/W protected, Step 3 will be skipped successfully on further reboots.
  452. *
  453. * If power failure happens after start of 4 and before end of 5, the next boot will fail
  454. * (bootloader header is encrypted and flash encryption isn't enabled yet, so it looks like
  455. * noise to the ROM bootloader). The check in the ROM is pretty basic so if the first byte of
  456. * ciphertext happens to be the magic byte E9 then it may try to boot, but it will definitely
  457. * crash (no chance that the remaining ciphertext will look like a valid bootloader image).
  458. * Only solution is to reflash with all plaintext and the whole process starts again: skips
  459. * Step 1, repeats Step 2, skips Step 3, etc.
  460. *
  461. * If power failure happens after 5 but before 6, the device will reboot with flash
  462. * encryption on and will regenerate an encrypted digest in Step 2. This should still
  463. * be valid as the input data for the digest is read via flash cache (so will be decrypted)
  464. * and the code in secure_boot_generate() tells bootloader_flash_write() to encrypt the data
  465. * on write if flash encryption is enabled. Steps 3 - 5 are skipped (encryption already on),
  466. * then Step 6 enables secure boot.
  467. */
  468. #if defined(CONFIG_SECURE_BOOT_ENABLED) || defined(CONFIG_SECURE_FLASH_ENC_ENABLED)
  469. esp_err_t err;
  470. #endif
  471. #ifdef CONFIG_SECURE_BOOT_ENABLED
  472. /* Steps 1 & 2 (see above for full description):
  473. * 1) Generate secure boot EFUSE key
  474. * 2) Compute digest of plaintext bootloader
  475. */
  476. err = esp_secure_boot_generate_digest();
  477. if (err != ESP_OK) {
  478. ESP_LOGE(TAG, "Bootloader digest generation for secure boot failed (%d).", err);
  479. return;
  480. }
  481. #endif
  482. #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
  483. /* Steps 3, 4 & 5 (see above for full description):
  484. * 3) Generate flash encryption EFUSE key
  485. * 4) Encrypt flash contents
  486. * 5) Burn EFUSE to enable flash encryption
  487. */
  488. ESP_LOGI(TAG, "Checking flash encryption...");
  489. bool flash_encryption_enabled = esp_flash_encryption_enabled();
  490. err = esp_flash_encrypt_check_and_update();
  491. if (err != ESP_OK) {
  492. ESP_LOGE(TAG, "Flash encryption check failed (%d).", err);
  493. return;
  494. }
  495. #endif
  496. #ifdef CONFIG_SECURE_BOOT_ENABLED
  497. /* Step 6 (see above for full description):
  498. * 6) Burn EFUSE to enable secure boot
  499. */
  500. ESP_LOGI(TAG, "Checking secure boot...");
  501. err = esp_secure_boot_permanently_enable();
  502. if (err != ESP_OK) {
  503. ESP_LOGE(TAG, "FAILED TO ENABLE SECURE BOOT (%d).", err);
  504. /* Allow booting to continue, as the failure is probably
  505. due to user-configured EFUSEs for testing...
  506. */
  507. }
  508. #endif
  509. #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
  510. if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
  511. /* Flash encryption was just enabled for the first time,
  512. so issue a system reset to ensure flash encryption
  513. cache resets properly */
  514. ESP_LOGI(TAG, "Resetting with flash encryption enabled...");
  515. bootloader_reset();
  516. }
  517. #endif
  518. ESP_LOGI(TAG, "Disabling RNG early entropy source...");
  519. bootloader_random_disable();
  520. // copy loaded segments to RAM, set up caches for mapped segments, and start application
  521. unpack_load_app(image_data);
  522. }
  523. static void unpack_load_app(const esp_image_metadata_t* data)
  524. {
  525. uint32_t drom_addr = 0;
  526. uint32_t drom_load_addr = 0;
  527. uint32_t drom_size = 0;
  528. uint32_t irom_addr = 0;
  529. uint32_t irom_load_addr = 0;
  530. uint32_t irom_size = 0;
  531. // Find DROM & IROM addresses, to configure cache mappings
  532. for (int i = 0; i < data->image.segment_count; i++) {
  533. const esp_image_segment_header_t *header = &data->segments[i];
  534. if (header->load_addr >= SOC_DROM_LOW && header->load_addr < SOC_DROM_HIGH) {
  535. if (drom_addr != 0) {
  536. ESP_LOGE(TAG, MAP_ERR_MSG, "DROM");
  537. } else {
  538. ESP_LOGD(TAG, "Mapping segment %d as %s", i, "DROM");
  539. }
  540. drom_addr = data->segment_data[i];
  541. drom_load_addr = header->load_addr;
  542. drom_size = header->data_len;
  543. }
  544. if (header->load_addr >= SOC_IROM_LOW && header->load_addr < SOC_IROM_HIGH) {
  545. if (irom_addr != 0) {
  546. ESP_LOGE(TAG, MAP_ERR_MSG, "IROM");
  547. } else {
  548. ESP_LOGD(TAG, "Mapping segment %d as %s", i, "IROM");
  549. }
  550. irom_addr = data->segment_data[i];
  551. irom_load_addr = header->load_addr;
  552. irom_size = header->data_len;
  553. }
  554. }
  555. ESP_LOGD(TAG, "calling set_cache_and_start_app");
  556. set_cache_and_start_app(drom_addr,
  557. drom_load_addr,
  558. drom_size,
  559. irom_addr,
  560. irom_load_addr,
  561. irom_size,
  562. data->image.entry_addr);
  563. }
  564. static void set_cache_and_start_app(
  565. uint32_t drom_addr,
  566. uint32_t drom_load_addr,
  567. uint32_t drom_size,
  568. uint32_t irom_addr,
  569. uint32_t irom_load_addr,
  570. uint32_t irom_size,
  571. uint32_t entry_addr)
  572. {
  573. int rc;
  574. ESP_LOGD(TAG, "configure drom and irom and start");
  575. Cache_Read_Disable( 0 );
  576. Cache_Flush( 0 );
  577. /* Clear the MMU entries that are already set up,
  578. so the new app only has the mappings it creates.
  579. */
  580. for (int i = 0; i < DPORT_FLASH_MMU_TABLE_SIZE; i++) {
  581. DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
  582. }
  583. uint32_t drom_load_addr_aligned = drom_load_addr & MMU_FLASH_MASK;
  584. uint32_t drom_page_count = bootloader_cache_pages_to_map(drom_size, drom_load_addr);
  585. ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d",
  586. drom_addr & MMU_FLASH_MASK, drom_load_addr_aligned, drom_size, drom_page_count);
  587. rc = cache_flash_mmu_set(0, 0, drom_load_addr_aligned, drom_addr & MMU_FLASH_MASK, 64, drom_page_count);
  588. ESP_LOGV(TAG, "rc=%d", rc);
  589. rc = cache_flash_mmu_set(1, 0, drom_load_addr_aligned, drom_addr & MMU_FLASH_MASK, 64, drom_page_count);
  590. ESP_LOGV(TAG, "rc=%d", rc);
  591. uint32_t irom_load_addr_aligned = irom_load_addr & MMU_FLASH_MASK;
  592. uint32_t irom_page_count = bootloader_cache_pages_to_map(irom_size, irom_load_addr);
  593. ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d",
  594. irom_addr & MMU_FLASH_MASK, irom_load_addr_aligned, irom_size, irom_page_count);
  595. rc = cache_flash_mmu_set(0, 0, irom_load_addr_aligned, irom_addr & MMU_FLASH_MASK, 64, irom_page_count);
  596. ESP_LOGV(TAG, "rc=%d", rc);
  597. rc = cache_flash_mmu_set(1, 0, irom_load_addr_aligned, irom_addr & MMU_FLASH_MASK, 64, irom_page_count);
  598. ESP_LOGV(TAG, "rc=%d", rc);
  599. DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG,
  600. (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) |
  601. (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 |
  602. DPORT_PRO_CACHE_MASK_DRAM1 );
  603. DPORT_REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG,
  604. (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) |
  605. (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 |
  606. DPORT_APP_CACHE_MASK_DRAM1 );
  607. Cache_Read_Enable( 0 );
  608. // Application will need to do Cache_Flush(1) and Cache_Read_Enable(1)
  609. ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
  610. typedef void (*entry_t)(void) __attribute__((noreturn));
  611. entry_t entry = ((entry_t) entry_addr);
  612. // TODO: we have used quite a bit of stack at this point.
  613. // use "movsp" instruction to reset stack back to where ROM stack starts.
  614. (*entry)();
  615. }
  616. void bootloader_reset(void)
  617. {
  618. #ifdef BOOTLOADER_BUILD
  619. uart_tx_flush(0); /* Ensure any buffered log output is displayed */
  620. uart_tx_flush(1);
  621. ets_delay_us(1000); /* Allow last byte to leave FIFO */
  622. REG_WRITE(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
  623. while (1) { } /* This line will never be reached, used to keep gcc happy */
  624. #else
  625. abort(); /* This function should really not be called from application code */
  626. #endif
  627. }
  628. esp_err_t bootloader_sha256_hex_to_str(char *out_str, const uint8_t *in_array_hex, size_t len)
  629. {
  630. if (out_str == NULL || in_array_hex == NULL || len == 0) {
  631. return ESP_ERR_INVALID_ARG;
  632. }
  633. for (int i = 0; i < len; i++) {
  634. for (int shift = 0; shift < 2; shift++) {
  635. uint8_t nibble = (in_array_hex[i] >> (shift ? 0 : 4)) & 0x0F;
  636. if (nibble < 10) {
  637. out_str[i * 2 + shift] = '0' + nibble;
  638. } else {
  639. out_str[i * 2 + shift] = 'a' + nibble - 10;
  640. }
  641. }
  642. }
  643. return ESP_OK;
  644. }