uart.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/task.h"
  24. #include "freertos/ringbuf.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "sdkconfig.h"
  30. #if CONFIG_IDF_TARGET_ESP32
  31. #include "esp32/clk.h"
  32. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  33. #include "esp32s2beta/clk.h"
  34. #endif
  35. #define UART_NUM SOC_UART_NUM
  36. #define XOFF (char)0x13
  37. #define XON (char)0x11
  38. static const char *UART_TAG = "uart";
  39. #define UART_CHECK(a, str, ret_val) \
  40. if (!(a)) { \
  41. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  42. return (ret_val); \
  43. }
  44. #define UART_EMPTY_THRESH_DEFAULT (10)
  45. #define UART_FULL_THRESH_DEFAULT (120)
  46. #define UART_TOUT_THRESH_DEFAULT (10)
  47. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  48. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  49. #define UART_TX_IDLE_NUM_DEFAULT (0)
  50. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  51. #define UART_MIN_WAKEUP_THRESH (2)
  52. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  53. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  54. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  55. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  56. // Check actual UART mode set
  57. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  58. typedef struct {
  59. uart_event_type_t type; /*!< UART TX data type */
  60. struct {
  61. int brk_len;
  62. size_t size;
  63. uint8_t data[0];
  64. } tx_data;
  65. } uart_tx_data_t;
  66. typedef struct {
  67. int wr;
  68. int rd;
  69. int len;
  70. int *data;
  71. } uart_pat_rb_t;
  72. typedef struct {
  73. uart_port_t uart_num; /*!< UART port number*/
  74. int queue_size; /*!< UART event queue size*/
  75. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  76. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  77. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  78. bool coll_det_flg; /*!< UART collision detection flag */
  79. //rx parameters
  80. int rx_buffered_len; /*!< UART cached data length */
  81. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  82. int rx_buf_size; /*!< RX ring buffer size */
  83. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  84. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  85. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  86. uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
  87. uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
  88. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  89. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  90. uart_pat_rb_t rx_pattern_pos;
  91. //tx parameters
  92. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  93. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  94. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  95. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  96. int tx_buf_size; /*!< TX ring buffer size */
  97. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  98. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  99. uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  100. uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  101. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  102. uint32_t tx_len_cur;
  103. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  104. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  105. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  106. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  107. } uart_obj_t;
  108. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  109. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  110. static DRAM_ATTR uart_dev_t *const UART[UART_NUM_MAX] = {
  111. &UART0,
  112. &UART1,
  113. #if UART_NUM > 2
  114. &UART2
  115. #endif
  116. };
  117. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {
  118. portMUX_INITIALIZER_UNLOCKED,
  119. portMUX_INITIALIZER_UNLOCKED,
  120. #if UART_NUM > 2
  121. portMUX_INITIALIZER_UNLOCKED
  122. #endif
  123. };
  124. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  125. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  126. {
  127. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  128. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  129. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  130. UART[uart_num]->conf0.bit_num = data_bit;
  131. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  132. return ESP_OK;
  133. }
  134. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
  135. {
  136. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  137. *(data_bit) = UART[uart_num]->conf0.bit_num;
  138. return ESP_OK;
  139. }
  140. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  141. {
  142. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  143. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  144. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  145. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  146. if (stop_bit == UART_STOP_BITS_2) {
  147. stop_bit = UART_STOP_BITS_1;
  148. UART[uart_num]->rs485_conf.dl1_en = 1;
  149. } else {
  150. UART[uart_num]->rs485_conf.dl1_en = 0;
  151. }
  152. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  153. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  154. return ESP_OK;
  155. }
  156. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
  157. {
  158. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  159. #if CONFIG_IDF_TARGET_ESP32
  160. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  161. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  162. (*stop_bit) = UART_STOP_BITS_2;
  163. } else {
  164. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  165. }
  166. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  167. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  168. #endif
  169. return ESP_OK;
  170. }
  171. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  172. {
  173. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  174. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  175. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  176. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  177. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  178. return ESP_OK;
  179. }
  180. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
  181. {
  182. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  183. int val = UART[uart_num]->conf0.val;
  184. if (val & UART_PARITY_EN_M) {
  185. if (val & UART_PARITY_M) {
  186. (*parity_mode) = UART_PARITY_ODD;
  187. } else {
  188. (*parity_mode) = UART_PARITY_EVEN;
  189. }
  190. } else {
  191. (*parity_mode) = UART_PARITY_DISABLE;
  192. }
  193. return ESP_OK;
  194. }
  195. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  196. {
  197. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  198. esp_err_t ret = ESP_OK;
  199. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  200. int uart_clk_freq;
  201. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  202. /* this UART has been configured to use REF_TICK */
  203. uart_clk_freq = REF_CLK_FREQ;
  204. } else {
  205. uart_clk_freq = esp_clk_apb_freq();
  206. }
  207. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  208. if (clk_div < 16) {
  209. /* baud rate is too high for this clock frequency */
  210. ret = ESP_ERR_INVALID_ARG;
  211. } else {
  212. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  213. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  214. }
  215. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  216. return ret;
  217. }
  218. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  219. {
  220. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  221. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  222. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  223. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  224. uint32_t uart_clk_freq = esp_clk_apb_freq();
  225. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  226. uart_clk_freq = REF_CLK_FREQ;
  227. }
  228. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  229. return ESP_OK;
  230. }
  231. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  232. {
  233. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  234. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  235. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  236. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  237. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  238. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  239. return ESP_OK;
  240. }
  241. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  242. {
  243. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  244. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  245. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  246. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  247. UART[uart_num]->flow_conf.sw_flow_con_en = enable ? 1 : 0;
  248. UART[uart_num]->flow_conf.xonoff_del = enable ? 1 : 0;
  249. #if CONFIG_IDF_TARGET_ESP32
  250. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  251. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  252. UART[uart_num]->swfc_conf.xon_char = XON;
  253. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  254. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  255. UART[uart_num]->swfc_conf1.xon_threshold = rx_thresh_xon;
  256. UART[uart_num]->swfc_conf0.xoff_threshold = rx_thresh_xoff;
  257. UART[uart_num]->swfc_conf1.xon_char = XON;
  258. UART[uart_num]->swfc_conf0.xoff_char = XOFF;
  259. #endif
  260. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  261. return ESP_OK;
  262. }
  263. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  264. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  265. {
  266. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  267. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  268. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  269. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  270. if (flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  271. #if CONFIG_IDF_TARGET_ESP32
  272. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  273. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  274. UART[uart_num]->mem_conf.rx_flow_thrhd = rx_thresh;
  275. #endif
  276. UART[uart_num]->conf1.rx_flow_en = 1;
  277. } else {
  278. UART[uart_num]->conf1.rx_flow_en = 0;
  279. }
  280. if (flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  281. UART[uart_num]->conf0.tx_flow_en = 1;
  282. } else {
  283. UART[uart_num]->conf0.tx_flow_en = 0;
  284. }
  285. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  286. return ESP_OK;
  287. }
  288. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
  289. {
  290. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  291. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  292. if (UART[uart_num]->conf1.rx_flow_en) {
  293. val |= UART_HW_FLOWCTRL_RTS;
  294. }
  295. if (UART[uart_num]->conf0.tx_flow_en) {
  296. val |= UART_HW_FLOWCTRL_CTS;
  297. }
  298. (*flow_ctrl) = val;
  299. return ESP_OK;
  300. }
  301. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  302. {
  303. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  304. #if CONFIG_IDF_TARGET_ESP32
  305. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  306. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  307. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  308. while (UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  309. READ_PERI_REG(UART_FIFO_REG(uart_num));
  310. }
  311. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  312. UART[uart_num]->conf0.rxfifo_rst = 1;
  313. UART[uart_num]->conf0.rxfifo_rst = 0;
  314. #endif
  315. return ESP_OK;
  316. }
  317. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  318. {
  319. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  320. //intr_clr register is write-only
  321. UART[uart_num]->int_clr.val = clr_mask;
  322. return ESP_OK;
  323. }
  324. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  325. {
  326. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  327. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  328. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  329. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  330. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  331. return ESP_OK;
  332. }
  333. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  334. {
  335. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  336. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  337. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  338. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  339. return ESP_OK;
  340. }
  341. static void uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  342. {
  343. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  344. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  345. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  346. }
  347. static void uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  348. {
  349. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  350. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  351. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  352. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  353. }
  354. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  355. {
  356. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  357. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  358. int *pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  359. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  360. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  361. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  362. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  363. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  364. free(pdata);
  365. }
  366. return ESP_OK;
  367. }
  368. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  369. {
  370. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  371. esp_err_t ret = ESP_OK;
  372. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  373. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  374. int next = p_pos->wr + 1;
  375. if (next >= p_pos->len) {
  376. next = 0;
  377. }
  378. if (next == p_pos->rd) {
  379. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  380. ret = ESP_FAIL;
  381. } else {
  382. p_pos->data[p_pos->wr] = pos;
  383. p_pos->wr = next;
  384. ret = ESP_OK;
  385. }
  386. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  387. return ret;
  388. }
  389. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  390. {
  391. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  392. if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  393. return ESP_ERR_INVALID_STATE;
  394. } else {
  395. esp_err_t ret = ESP_OK;
  396. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  397. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  398. if (p_pos->rd == p_pos->wr) {
  399. ret = ESP_FAIL;
  400. } else {
  401. p_pos->rd++;
  402. }
  403. if (p_pos->rd >= p_pos->len) {
  404. p_pos->rd = 0;
  405. }
  406. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  407. return ret;
  408. }
  409. }
  410. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  411. {
  412. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  413. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  414. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  415. int rd = p_pos->rd;
  416. while (rd != p_pos->wr) {
  417. p_pos->data[rd] -= diff_len;
  418. int rd_rec = rd;
  419. rd ++;
  420. if (rd >= p_pos->len) {
  421. rd = 0;
  422. }
  423. if (p_pos->data[rd_rec] < 0) {
  424. p_pos->rd = rd;
  425. }
  426. }
  427. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  428. return ESP_OK;
  429. }
  430. int uart_pattern_pop_pos(uart_port_t uart_num)
  431. {
  432. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  433. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  434. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  435. int pos = -1;
  436. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  437. pos = pat_pos->data[pat_pos->rd];
  438. uart_pattern_dequeue(uart_num);
  439. }
  440. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  441. return pos;
  442. }
  443. int uart_pattern_get_pos(uart_port_t uart_num)
  444. {
  445. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  446. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  447. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  448. int pos = -1;
  449. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  450. pos = pat_pos->data[pat_pos->rd];
  451. }
  452. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  453. return pos;
  454. }
  455. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  456. {
  457. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  458. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  459. int *pdata = (int *) malloc(queue_length * sizeof(int));
  460. if (pdata == NULL) {
  461. return ESP_ERR_NO_MEM;
  462. }
  463. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  464. int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  465. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  466. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  467. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  468. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  469. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  470. free(ptmp);
  471. return ESP_OK;
  472. }
  473. #if CONFIG_IDF_TARGET_ESP32
  474. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  475. {
  476. //This function is deprecated, please use uart_enable_pattern_det_baud_intr instead.
  477. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  478. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  479. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  480. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  481. UART[uart_num]->at_cmd_char.data = pattern_chr;
  482. UART[uart_num]->at_cmd_char.char_num = chr_num;
  483. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  484. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  485. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  486. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  487. }
  488. #endif
  489. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  490. {
  491. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  492. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  493. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  494. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  495. UART[uart_num]->at_cmd_char.data = pattern_chr;
  496. UART[uart_num]->at_cmd_char.char_num = chr_num;
  497. #if CONFIG_IDF_TARGET_ESP32
  498. int apb_clk_freq = 0;
  499. uint32_t uart_baud = 0;
  500. uint32_t uart_div = 0;
  501. uart_get_baudrate(uart_num, &uart_baud);
  502. apb_clk_freq = esp_clk_apb_freq();
  503. uart_div = apb_clk_freq / uart_baud;
  504. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout * uart_div;
  505. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle * uart_div;
  506. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle * uart_div;
  507. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  508. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  509. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  510. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  511. #endif
  512. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  513. }
  514. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  515. {
  516. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  517. }
  518. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  519. {
  520. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
  521. }
  522. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  523. {
  524. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
  525. }
  526. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  527. {
  528. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  529. }
  530. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  531. {
  532. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  533. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  534. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  535. UART[uart_num]->int_clr.txfifo_empty = 1;
  536. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  537. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  538. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  539. return ESP_OK;
  540. }
  541. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  542. {
  543. int ret;
  544. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  545. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  546. switch (uart_num) {
  547. case UART_NUM_1:
  548. ret = esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  549. break;
  550. #if UART_NUM > 2
  551. case UART_NUM_2:
  552. ret = esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  553. break;
  554. #endif
  555. case UART_NUM_0:
  556. default:
  557. ret = esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  558. break;
  559. }
  560. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  561. return ret;
  562. }
  563. esp_err_t uart_isr_free(uart_port_t uart_num)
  564. {
  565. esp_err_t ret;
  566. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  567. if (p_uart_obj[uart_num]->intr_handle == NULL) {
  568. return ESP_ERR_INVALID_ARG;
  569. }
  570. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  571. ret = esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  572. p_uart_obj[uart_num]->intr_handle = NULL;
  573. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  574. return ret;
  575. }
  576. //internal signal can be output to multiple GPIO pads
  577. //only one GPIO pad can connect with input signal
  578. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  579. {
  580. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  581. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  582. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  583. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  584. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  585. int tx_sig, rx_sig, rts_sig, cts_sig;
  586. switch (uart_num) {
  587. case UART_NUM_0:
  588. tx_sig = U0TXD_OUT_IDX;
  589. rx_sig = U0RXD_IN_IDX;
  590. rts_sig = U0RTS_OUT_IDX;
  591. cts_sig = U0CTS_IN_IDX;
  592. break;
  593. case UART_NUM_1:
  594. tx_sig = U1TXD_OUT_IDX;
  595. rx_sig = U1RXD_IN_IDX;
  596. rts_sig = U1RTS_OUT_IDX;
  597. cts_sig = U1CTS_IN_IDX;
  598. break;
  599. #if UART_NUM > 2
  600. case UART_NUM_2:
  601. tx_sig = U2TXD_OUT_IDX;
  602. rx_sig = U2RXD_IN_IDX;
  603. rts_sig = U2RTS_OUT_IDX;
  604. cts_sig = U2CTS_IN_IDX;
  605. break;
  606. #endif
  607. case UART_NUM_MAX:
  608. default:
  609. tx_sig = U0TXD_OUT_IDX;
  610. rx_sig = U0RXD_IN_IDX;
  611. rts_sig = U0RTS_OUT_IDX;
  612. cts_sig = U0CTS_IN_IDX;
  613. break;
  614. }
  615. if (tx_io_num >= 0) {
  616. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  617. gpio_set_level(tx_io_num, 1);
  618. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  619. }
  620. if (rx_io_num >= 0) {
  621. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  622. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  623. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  624. gpio_matrix_in(rx_io_num, rx_sig, 0);
  625. }
  626. if (rts_io_num >= 0) {
  627. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  628. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  629. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  630. }
  631. if (cts_io_num >= 0) {
  632. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  633. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  634. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  635. gpio_matrix_in(cts_io_num, cts_sig, 0);
  636. }
  637. return ESP_OK;
  638. }
  639. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  640. {
  641. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  642. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  643. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  644. UART[uart_num]->conf0.sw_rts = level & 0x1;
  645. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  646. return ESP_OK;
  647. }
  648. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  649. {
  650. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  651. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  652. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  653. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  654. return ESP_OK;
  655. }
  656. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  657. {
  658. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  659. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  660. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  661. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  662. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  663. return ESP_OK;
  664. }
  665. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  666. {
  667. esp_err_t r;
  668. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  669. UART_CHECK((uart_config), "param null", ESP_FAIL);
  670. if (uart_num == UART_NUM_0) {
  671. periph_module_enable(PERIPH_UART0_MODULE);
  672. } else if (uart_num == UART_NUM_1) {
  673. periph_module_enable(PERIPH_UART1_MODULE);
  674. #if UART_NUM > 2
  675. } else if (uart_num == UART_NUM_2) {
  676. periph_module_enable(PERIPH_UART2_MODULE);
  677. #endif
  678. }
  679. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  680. if (r != ESP_OK) {
  681. return r;
  682. }
  683. UART[uart_num]->conf0.val =
  684. (uart_config->parity << UART_PARITY_S)
  685. | (uart_config->data_bits << UART_BIT_NUM_S)
  686. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  687. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  688. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  689. if (r != ESP_OK) {
  690. return r;
  691. }
  692. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  693. if (r != ESP_OK) {
  694. return r;
  695. }
  696. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  697. //A hardware reset does not reset the fifo,
  698. //so we need to reset the fifo manually.
  699. uart_reset_rx_fifo(uart_num);
  700. return r;
  701. }
  702. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  703. {
  704. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  705. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  706. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  707. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  708. if (intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  709. #if CONFIG_IDF_TARGET_ESP32
  710. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  711. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  712. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  713. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  714. } else {
  715. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  716. }
  717. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  718. UART[uart_num]->mem_conf.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  719. #endif
  720. UART[uart_num]->conf1.rx_tout_en = 1;
  721. } else {
  722. UART[uart_num]->conf1.rx_tout_en = 0;
  723. }
  724. if (intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  725. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  726. }
  727. if (intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  728. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  729. }
  730. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  731. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  732. return ESP_OK;
  733. }
  734. static int uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, int pat_num)
  735. {
  736. int cnt = 0;
  737. int len = length;
  738. while (len >= 0) {
  739. if (buf[len] == pat_chr) {
  740. cnt++;
  741. } else {
  742. cnt = 0;
  743. }
  744. if (cnt >= pat_num) {
  745. break;
  746. }
  747. len --;
  748. }
  749. return len;
  750. }
  751. //internal isr handler for default driver code.
  752. static void uart_rx_intr_handler_default(void *param)
  753. {
  754. uart_obj_t *p_uart = (uart_obj_t *) param;
  755. uint8_t uart_num = p_uart->uart_num;
  756. uart_dev_t *uart_reg = UART[uart_num];
  757. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  758. uint8_t buf_idx = 0;
  759. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  760. uart_event_t uart_event;
  761. portBASE_TYPE HPTaskAwoken = 0;
  762. static uint8_t pat_flg = 0;
  763. while (uart_intr_status != 0x0) {
  764. buf_idx = 0;
  765. uart_event.type = UART_EVENT_MAX;
  766. if (uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  767. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  768. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  769. if (p_uart->tx_waiting_brk) {
  770. continue;
  771. }
  772. //TX semaphore will only be used when tx_buf_size is zero.
  773. if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  774. p_uart->tx_waiting_fifo = false;
  775. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  776. if (HPTaskAwoken == pdTRUE) {
  777. portYIELD_FROM_ISR();
  778. }
  779. } else {
  780. //We don't use TX ring buffer, because the size is zero.
  781. if (p_uart->tx_buf_size == 0) {
  782. continue;
  783. }
  784. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  785. bool en_tx_flg = false;
  786. //We need to put a loop here, in case all the buffer items are very short.
  787. //That would cause a watch_dog reset because empty interrupt happens so often.
  788. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  789. while (tx_fifo_rem) {
  790. if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  791. size_t size;
  792. p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  793. if (p_uart->tx_head) {
  794. //The first item is the data description
  795. //Get the first item to get the data information
  796. if (p_uart->tx_len_tot == 0) {
  797. p_uart->tx_ptr = NULL;
  798. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  799. if (p_uart->tx_head->type == UART_DATA_BREAK) {
  800. p_uart->tx_brk_flg = 1;
  801. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  802. }
  803. //We have saved the data description from the 1st item, return buffer.
  804. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  805. if (HPTaskAwoken == pdTRUE) {
  806. portYIELD_FROM_ISR();
  807. }
  808. } else if (p_uart->tx_ptr == NULL) {
  809. //Update the TX item pointer, we will need this to return item to buffer.
  810. p_uart->tx_ptr = (uint8_t *) p_uart->tx_head;
  811. en_tx_flg = true;
  812. p_uart->tx_len_cur = size;
  813. }
  814. } else {
  815. //Can not get data from ring buffer, return;
  816. break;
  817. }
  818. }
  819. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  820. //To fill the TX FIFO.
  821. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  822. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  823. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  824. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  825. uart_reg->conf0.sw_rts = 0;
  826. uart_reg->int_ena.tx_done = 1;
  827. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  828. }
  829. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  830. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  831. *(p_uart->tx_ptr++) & 0xff);
  832. }
  833. p_uart->tx_len_tot -= send_len;
  834. p_uart->tx_len_cur -= send_len;
  835. tx_fifo_rem -= send_len;
  836. if (p_uart->tx_len_cur == 0) {
  837. //Return item to ring buffer.
  838. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  839. if (HPTaskAwoken == pdTRUE) {
  840. portYIELD_FROM_ISR();
  841. }
  842. p_uart->tx_head = NULL;
  843. p_uart->tx_ptr = NULL;
  844. //Sending item done, now we need to send break if there is a record.
  845. //Set TX break signal after FIFO is empty
  846. if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  847. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  848. uart_reg->int_ena.tx_brk_done = 0;
  849. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  850. uart_reg->conf0.txd_brk = 1;
  851. uart_reg->int_clr.tx_brk_done = 1;
  852. uart_reg->int_ena.tx_brk_done = 1;
  853. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  854. p_uart->tx_waiting_brk = 1;
  855. //do not enable TX empty interrupt
  856. en_tx_flg = false;
  857. } else {
  858. //enable TX empty interrupt
  859. en_tx_flg = true;
  860. }
  861. } else {
  862. //enable TX empty interrupt
  863. en_tx_flg = true;
  864. }
  865. }
  866. }
  867. if (en_tx_flg) {
  868. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  869. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  870. }
  871. }
  872. } else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  873. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  874. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  875. ) {
  876. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  877. if (pat_flg == 1) {
  878. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  879. pat_flg = 0;
  880. }
  881. if (p_uart->rx_buffer_full_flg == false) {
  882. //We have to read out all data in RX FIFO to clear the interrupt signal
  883. while (buf_idx < rx_fifo_len) {
  884. #if CONFIG_IDF_TARGET_ESP32
  885. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  886. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  887. p_uart->rx_data_buf[buf_idx++] = READ_PERI_REG(UART_FIFO_AHB_REG(uart_num));
  888. #endif
  889. }
  890. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  891. int pat_num = uart_reg->at_cmd_char.char_num;
  892. int pat_idx = -1;
  893. //Get the buffer from the FIFO
  894. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  895. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  896. uart_event.type = UART_PATTERN_DET;
  897. uart_event.size = rx_fifo_len;
  898. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  899. } else {
  900. //After Copying the Data From FIFO ,Clear intr_status
  901. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  902. uart_event.type = UART_DATA;
  903. uart_event.size = rx_fifo_len;
  904. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  905. if (p_uart->uart_select_notif_callback) {
  906. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  907. }
  908. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  909. }
  910. p_uart->rx_stash_len = rx_fifo_len;
  911. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  912. //Mainly for applications that uses flow control or small ring buffer.
  913. if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  914. p_uart->rx_buffer_full_flg = true;
  915. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  916. if (uart_event.type == UART_PATTERN_DET) {
  917. if (rx_fifo_len < pat_num) {
  918. //some of the characters are read out in last interrupt
  919. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  920. } else {
  921. uart_pattern_enqueue(uart_num,
  922. pat_idx <= -1 ?
  923. //can not find the pattern in buffer,
  924. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  925. // find the pattern in buffer
  926. p_uart->rx_buffered_len + pat_idx);
  927. }
  928. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  929. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  930. }
  931. }
  932. uart_event.type = UART_BUFFER_FULL;
  933. } else {
  934. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  935. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  936. if (rx_fifo_len < pat_num) {
  937. //some of the characters are read out in last interrupt
  938. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  939. } else if (pat_idx >= 0) {
  940. // find pattern in statsh buffer.
  941. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  942. }
  943. }
  944. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  945. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  946. }
  947. if (HPTaskAwoken == pdTRUE) {
  948. portYIELD_FROM_ISR();
  949. }
  950. } else {
  951. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  952. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  953. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  954. uart_reg->int_clr.at_cmd_char_det = 1;
  955. uart_event.type = UART_PATTERN_DET;
  956. uart_event.size = rx_fifo_len;
  957. pat_flg = 1;
  958. }
  959. }
  960. } else if (uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  961. // When fifo overflows, we reset the fifo.
  962. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  963. uart_reset_rx_fifo(uart_num);
  964. uart_reg->int_clr.rxfifo_ovf = 1;
  965. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  966. uart_event.type = UART_FIFO_OVF;
  967. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  968. if (p_uart->uart_select_notif_callback) {
  969. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  970. }
  971. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  972. } else if (uart_intr_status & UART_BRK_DET_INT_ST_M) {
  973. uart_reg->int_clr.brk_det = 1;
  974. uart_event.type = UART_BREAK;
  975. } else if (uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  976. uart_reg->int_clr.frm_err = 1;
  977. uart_event.type = UART_FRAME_ERR;
  978. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  979. if (p_uart->uart_select_notif_callback) {
  980. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  981. }
  982. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  983. } else if (uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  984. uart_reg->int_clr.parity_err = 1;
  985. uart_event.type = UART_PARITY_ERR;
  986. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  987. if (p_uart->uart_select_notif_callback) {
  988. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  989. }
  990. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  991. } else if (uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  992. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  993. uart_reg->conf0.txd_brk = 0;
  994. uart_reg->int_ena.tx_brk_done = 0;
  995. uart_reg->int_clr.tx_brk_done = 1;
  996. if (p_uart->tx_brk_flg == 1) {
  997. uart_reg->int_ena.txfifo_empty = 1;
  998. }
  999. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1000. if (p_uart->tx_brk_flg == 1) {
  1001. p_uart->tx_brk_flg = 0;
  1002. p_uart->tx_waiting_brk = 0;
  1003. } else {
  1004. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  1005. if (HPTaskAwoken == pdTRUE) {
  1006. portYIELD_FROM_ISR();
  1007. }
  1008. }
  1009. } else if (uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  1010. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  1011. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  1012. } else if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  1013. uart_reg->int_clr.at_cmd_char_det = 1;
  1014. uart_event.type = UART_PATTERN_DET;
  1015. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  1016. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  1017. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  1018. // RS485 collision or frame error interrupt triggered
  1019. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  1020. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1021. uart_reset_rx_fifo(uart_num);
  1022. // Set collision detection flag
  1023. p_uart_obj[uart_num]->coll_det_flg = true;
  1024. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1025. uart_event.type = UART_EVENT_MAX;
  1026. } else if (uart_intr_status & UART_TX_DONE_INT_ST_M) {
  1027. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  1028. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  1029. // If RS485 half duplex mode is enable then reset FIFO and
  1030. // reset RTS pin to start receiver driver
  1031. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1032. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1033. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  1034. uart_reg->conf0.sw_rts = 1;
  1035. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1036. }
  1037. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  1038. if (HPTaskAwoken == pdTRUE) {
  1039. portYIELD_FROM_ISR();
  1040. }
  1041. } else {
  1042. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  1043. uart_event.type = UART_EVENT_MAX;
  1044. }
  1045. if (uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  1046. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  1047. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  1048. }
  1049. if (HPTaskAwoken == pdTRUE) {
  1050. portYIELD_FROM_ISR();
  1051. }
  1052. }
  1053. uart_intr_status = uart_reg->int_st.val;
  1054. }
  1055. }
  1056. /**************************************************************/
  1057. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  1058. {
  1059. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1060. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1061. BaseType_t res;
  1062. portTickType ticks_start = xTaskGetTickCount();
  1063. //Take tx_mux
  1064. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  1065. if (res == pdFALSE) {
  1066. return ESP_ERR_TIMEOUT;
  1067. }
  1068. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1069. if (UART[uart_num]->status.txfifo_cnt == 0) {
  1070. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1071. return ESP_OK;
  1072. }
  1073. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1074. TickType_t ticks_end = xTaskGetTickCount();
  1075. if (ticks_end - ticks_start > ticks_to_wait) {
  1076. ticks_to_wait = 0;
  1077. } else {
  1078. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1079. }
  1080. //take 2nd tx_done_sem, wait given from ISR
  1081. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1082. if (res == pdFALSE) {
  1083. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1084. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1085. return ESP_ERR_TIMEOUT;
  1086. }
  1087. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1088. return ESP_OK;
  1089. }
  1090. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1091. {
  1092. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1093. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1094. UART[uart_num]->conf0.txd_brk = 1;
  1095. UART[uart_num]->int_clr.tx_brk_done = 1;
  1096. UART[uart_num]->int_ena.tx_brk_done = 1;
  1097. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1098. return ESP_OK;
  1099. }
  1100. //Fill UART tx_fifo and return a number,
  1101. //This function by itself is not thread-safe, always call from within a muxed section.
  1102. static int uart_fill_fifo(uart_port_t uart_num, const char *buffer, uint32_t len)
  1103. {
  1104. uint8_t i = 0;
  1105. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1106. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1107. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1108. // Set the RTS pin if RS485 mode is enabled
  1109. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1110. UART[uart_num]->conf0.sw_rts = 0;
  1111. UART[uart_num]->int_ena.tx_done = 1;
  1112. }
  1113. for (i = 0; i < copy_cnt; i++) {
  1114. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1115. }
  1116. return copy_cnt;
  1117. }
  1118. int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
  1119. {
  1120. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1121. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1122. UART_CHECK(buffer, "buffer null", (-1));
  1123. if (len == 0) {
  1124. return 0;
  1125. }
  1126. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1127. int tx_len = uart_fill_fifo(uart_num, (const char *) buffer, len);
  1128. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1129. return tx_len;
  1130. }
  1131. static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
  1132. {
  1133. if (size == 0) {
  1134. return 0;
  1135. }
  1136. size_t original_size = size;
  1137. //lock for uart_tx
  1138. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1139. p_uart_obj[uart_num]->coll_det_flg = false;
  1140. if (p_uart_obj[uart_num]->tx_buf_size > 0) {
  1141. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1142. int offset = 0;
  1143. uart_tx_data_t evt;
  1144. evt.tx_data.size = size;
  1145. evt.tx_data.brk_len = brk_len;
  1146. if (brk_en) {
  1147. evt.type = UART_DATA_BREAK;
  1148. } else {
  1149. evt.type = UART_DATA;
  1150. }
  1151. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1152. while (size > 0) {
  1153. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1154. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
  1155. size -= send_size;
  1156. offset += send_size;
  1157. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1158. }
  1159. } else {
  1160. while (size) {
  1161. //semaphore for tx_fifo available
  1162. if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1163. size_t sent = uart_fill_fifo(uart_num, (char *) src, size);
  1164. if (sent < size) {
  1165. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1166. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1167. }
  1168. size -= sent;
  1169. src += sent;
  1170. }
  1171. }
  1172. if (brk_en) {
  1173. uart_set_break(uart_num, brk_len);
  1174. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1175. }
  1176. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1177. }
  1178. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1179. return original_size;
  1180. }
  1181. int uart_write_bytes(uart_port_t uart_num, const char *src, size_t size)
  1182. {
  1183. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1184. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1185. UART_CHECK(src, "buffer null", (-1));
  1186. return uart_tx_all(uart_num, src, size, 0, 0);
  1187. }
  1188. int uart_write_bytes_with_break(uart_port_t uart_num, const char *src, size_t size, int brk_len)
  1189. {
  1190. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1191. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1192. UART_CHECK((size > 0), "uart size error", (-1));
  1193. UART_CHECK((src), "uart data null", (-1));
  1194. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1195. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1196. }
  1197. static bool uart_check_buf_full(uart_port_t uart_num)
  1198. {
  1199. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1200. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1201. if (res == pdTRUE) {
  1202. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1203. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1204. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1205. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1206. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1207. return true;
  1208. }
  1209. }
  1210. return false;
  1211. }
  1212. int uart_read_bytes(uart_port_t uart_num, uint8_t *buf, uint32_t length, TickType_t ticks_to_wait)
  1213. {
  1214. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1215. UART_CHECK((buf), "uart data null", (-1));
  1216. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1217. uint8_t *data = NULL;
  1218. size_t size;
  1219. size_t copy_len = 0;
  1220. int len_tmp;
  1221. if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) {
  1222. return -1;
  1223. }
  1224. while (length) {
  1225. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1226. data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1227. if (data) {
  1228. p_uart_obj[uart_num]->rx_head_ptr = data;
  1229. p_uart_obj[uart_num]->rx_ptr = data;
  1230. p_uart_obj[uart_num]->rx_cur_remain = size;
  1231. } else {
  1232. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1233. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1234. //to solve the possible asynchronous issues.
  1235. if (uart_check_buf_full(uart_num)) {
  1236. //This condition will never be true if `uart_read_bytes`
  1237. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1238. continue;
  1239. } else {
  1240. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1241. return copy_len;
  1242. }
  1243. }
  1244. }
  1245. if (p_uart_obj[uart_num]->rx_cur_remain > length) {
  1246. len_tmp = length;
  1247. } else {
  1248. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1249. }
  1250. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1251. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1252. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1253. uart_pattern_queue_update(uart_num, len_tmp);
  1254. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1255. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1256. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1257. copy_len += len_tmp;
  1258. length -= len_tmp;
  1259. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1260. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1261. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1262. p_uart_obj[uart_num]->rx_ptr = NULL;
  1263. uart_check_buf_full(uart_num);
  1264. }
  1265. }
  1266. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1267. return copy_len;
  1268. }
  1269. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
  1270. {
  1271. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1272. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1273. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1274. return ESP_OK;
  1275. }
  1276. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1277. esp_err_t uart_flush_input(uart_port_t uart_num)
  1278. {
  1279. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1280. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1281. uart_obj_t *p_uart = p_uart_obj[uart_num];
  1282. uint8_t *data;
  1283. size_t size;
  1284. //rx sem protect the ring buffer read related functions
  1285. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1286. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1287. while (true) {
  1288. if (p_uart->rx_head_ptr) {
  1289. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1290. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1291. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1292. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1293. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1294. p_uart->rx_ptr = NULL;
  1295. p_uart->rx_cur_remain = 0;
  1296. p_uart->rx_head_ptr = NULL;
  1297. }
  1298. data = (uint8_t *) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1299. if (data == NULL) {
  1300. if ( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1301. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1302. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1303. }
  1304. //We also need to clear the `rx_buffer_full_flg` here.
  1305. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1306. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1307. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1308. break;
  1309. }
  1310. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1311. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1312. uart_pattern_queue_update(uart_num, size);
  1313. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1314. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1315. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1316. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1317. if (res == pdTRUE) {
  1318. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1319. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1320. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1321. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1322. }
  1323. }
  1324. }
  1325. p_uart->rx_ptr = NULL;
  1326. p_uart->rx_cur_remain = 0;
  1327. p_uart->rx_head_ptr = NULL;
  1328. uart_reset_rx_fifo(uart_num);
  1329. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1330. xSemaphoreGive(p_uart->rx_mux);
  1331. return ESP_OK;
  1332. }
  1333. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1334. {
  1335. esp_err_t r;
  1336. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1337. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1338. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1339. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1340. if (p_uart_obj[uart_num] == NULL) {
  1341. p_uart_obj[uart_num] = (uart_obj_t *) calloc(1, sizeof(uart_obj_t));
  1342. if (p_uart_obj[uart_num] == NULL) {
  1343. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1344. return ESP_FAIL;
  1345. }
  1346. p_uart_obj[uart_num]->uart_num = uart_num;
  1347. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1348. p_uart_obj[uart_num]->coll_det_flg = false;
  1349. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1350. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1351. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1352. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1353. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1354. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1355. p_uart_obj[uart_num]->queue_size = queue_size;
  1356. p_uart_obj[uart_num]->tx_ptr = NULL;
  1357. p_uart_obj[uart_num]->tx_head = NULL;
  1358. p_uart_obj[uart_num]->tx_len_tot = 0;
  1359. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1360. p_uart_obj[uart_num]->tx_brk_len = 0;
  1361. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1362. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1363. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1364. if (uart_queue) {
  1365. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1366. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1367. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1368. } else {
  1369. p_uart_obj[uart_num]->xQueueUart = NULL;
  1370. }
  1371. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1372. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1373. p_uart_obj[uart_num]->rx_ptr = NULL;
  1374. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1375. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1376. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1377. if (tx_buffer_size > 0) {
  1378. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1379. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1380. } else {
  1381. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1382. p_uart_obj[uart_num]->tx_buf_size = 0;
  1383. }
  1384. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1385. } else {
  1386. ESP_LOGE(UART_TAG, "UART driver already installed");
  1387. return ESP_FAIL;
  1388. }
  1389. r = uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1390. if (r != ESP_OK) {
  1391. goto err;
  1392. }
  1393. uart_intr_config_t uart_intr = {
  1394. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1395. | UART_RXFIFO_TOUT_INT_ENA_M
  1396. | UART_FRM_ERR_INT_ENA_M
  1397. | UART_RXFIFO_OVF_INT_ENA_M
  1398. | UART_BRK_DET_INT_ENA_M
  1399. | UART_PARITY_ERR_INT_ENA_M,
  1400. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1401. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1402. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1403. };
  1404. r = uart_intr_config(uart_num, &uart_intr);
  1405. if (r != ESP_OK) {
  1406. goto err;
  1407. }
  1408. return r;
  1409. err:
  1410. uart_driver_delete(uart_num);
  1411. return r;
  1412. }
  1413. //Make sure no other tasks are still using UART before you call this function
  1414. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1415. {
  1416. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1417. if (p_uart_obj[uart_num] == NULL) {
  1418. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1419. return ESP_OK;
  1420. }
  1421. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1422. uart_disable_rx_intr(uart_num);
  1423. uart_disable_tx_intr(uart_num);
  1424. uart_pattern_link_free(uart_num);
  1425. if (p_uart_obj[uart_num]->tx_fifo_sem) {
  1426. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1427. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1428. }
  1429. if (p_uart_obj[uart_num]->tx_done_sem) {
  1430. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1431. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1432. }
  1433. if (p_uart_obj[uart_num]->tx_brk_sem) {
  1434. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1435. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1436. }
  1437. if (p_uart_obj[uart_num]->tx_mux) {
  1438. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1439. p_uart_obj[uart_num]->tx_mux = NULL;
  1440. }
  1441. if (p_uart_obj[uart_num]->rx_mux) {
  1442. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1443. p_uart_obj[uart_num]->rx_mux = NULL;
  1444. }
  1445. if (p_uart_obj[uart_num]->xQueueUart) {
  1446. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1447. p_uart_obj[uart_num]->xQueueUart = NULL;
  1448. }
  1449. if (p_uart_obj[uart_num]->rx_ring_buf) {
  1450. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1451. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1452. }
  1453. if (p_uart_obj[uart_num]->tx_ring_buf) {
  1454. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1455. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1456. }
  1457. free(p_uart_obj[uart_num]);
  1458. p_uart_obj[uart_num] = NULL;
  1459. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  1460. if (uart_num == UART_NUM_0) {
  1461. periph_module_disable(PERIPH_UART0_MODULE);
  1462. } else if (uart_num == UART_NUM_1) {
  1463. periph_module_disable(PERIPH_UART1_MODULE);
  1464. #if UART_NUM > 2
  1465. } else if (uart_num == UART_NUM_2) {
  1466. periph_module_disable(PERIPH_UART2_MODULE);
  1467. #endif
  1468. }
  1469. }
  1470. return ESP_OK;
  1471. }
  1472. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1473. {
  1474. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1475. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1476. }
  1477. }
  1478. portMUX_TYPE *uart_get_selectlock()
  1479. {
  1480. return &uart_selectlock;
  1481. }
  1482. // Set UART mode
  1483. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1484. {
  1485. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1486. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1487. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1488. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1489. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1490. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1491. }
  1492. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1493. UART[uart_num]->rs485_conf.en = 0;
  1494. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1495. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1496. UART[uart_num]->conf0.irda_en = 0;
  1497. UART[uart_num]->conf0.sw_rts = 0;
  1498. switch (mode) {
  1499. case UART_MODE_UART:
  1500. break;
  1501. case UART_MODE_RS485_COLLISION_DETECT:
  1502. // This mode allows read while transmitting that allows collision detection
  1503. p_uart_obj[uart_num]->coll_det_flg = false;
  1504. // Transmitter’s output signal loop back to the receiver’s input signal
  1505. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1506. // Transmitter should send data when its receiver is busy
  1507. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1508. UART[uart_num]->rs485_conf.en = 1;
  1509. // Enable collision detection interrupts
  1510. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1511. | UART_RXFIFO_FULL_INT_ENA
  1512. | UART_RS485_CLASH_INT_ENA
  1513. | UART_RS485_FRM_ERR_INT_ENA
  1514. | UART_RS485_PARITY_ERR_INT_ENA);
  1515. break;
  1516. case UART_MODE_RS485_APP_CTRL:
  1517. // Application software control, remove echo
  1518. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1519. UART[uart_num]->rs485_conf.en = 1;
  1520. break;
  1521. case UART_MODE_RS485_HALF_DUPLEX:
  1522. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1523. UART[uart_num]->conf0.sw_rts = 1;
  1524. UART[uart_num]->rs485_conf.en = 1;
  1525. // Must be set to 0 to automatically remove echo
  1526. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1527. // This is to void collision
  1528. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1529. break;
  1530. case UART_MODE_IRDA:
  1531. UART[uart_num]->conf0.irda_en = 1;
  1532. break;
  1533. default:
  1534. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1535. break;
  1536. }
  1537. p_uart_obj[uart_num]->uart_mode = mode;
  1538. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1539. return ESP_OK;
  1540. }
  1541. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1542. {
  1543. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1544. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1545. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1546. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1547. // transmission time of one symbol (~11 bit) on current baudrate
  1548. if (tout_thresh > 0) {
  1549. #if CONFIG_IDF_TARGET_ESP32
  1550. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  1551. UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  1552. } else {
  1553. UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
  1554. }
  1555. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  1556. UART[uart_num]->mem_conf.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
  1557. #endif
  1558. UART[uart_num]->conf1.rx_tout_en = 1;
  1559. } else {
  1560. UART[uart_num]->conf1.rx_tout_en = 0;
  1561. }
  1562. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1563. return ESP_OK;
  1564. }
  1565. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
  1566. {
  1567. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1568. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1569. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1570. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1571. "wrong mode", ESP_ERR_INVALID_ARG);
  1572. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1573. return ESP_OK;
  1574. }
  1575. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1576. {
  1577. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1578. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1579. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1580. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1581. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1582. return ESP_OK;
  1583. }
  1584. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
  1585. {
  1586. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1587. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1588. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1589. return ESP_OK;
  1590. }