ledc.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_types.h"
  8. #include "freertos/FreeRTOS.h"
  9. #include "freertos/semphr.h"
  10. #include "esp_log.h"
  11. #include "esp_check.h"
  12. #include "soc/gpio_periph.h"
  13. #include "soc/ledc_periph.h"
  14. #include "esp_private/esp_clk.h"
  15. #include "soc/soc_caps.h"
  16. #include "hal/ledc_hal.h"
  17. #include "hal/gpio_hal.h"
  18. #include "driver/ledc.h"
  19. #include "esp_rom_gpio.h"
  20. #include "esp_rom_sys.h"
  21. #include "clk_ctrl_os.h"
  22. #include "esp_private/periph_ctrl.h"
  23. static __attribute__((unused)) const char *LEDC_TAG = "ledc";
  24. #define LEDC_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, LEDC_TAG, "%s", str)
  25. #define LEDC_ARG_CHECK(a, param) ESP_RETURN_ON_FALSE(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid")
  26. #define LEDC_CLK_NOT_FOUND 0
  27. typedef enum {
  28. LEDC_FSM_IDLE,
  29. LEDC_FSM_HW_FADE,
  30. LEDC_FSM_ISR_CAL,
  31. LEDC_FSM_KILLED_PENDING,
  32. } ledc_fade_fsm_t;
  33. typedef struct {
  34. ledc_mode_t speed_mode;
  35. ledc_duty_direction_t direction;
  36. uint32_t target_duty;
  37. int cycle_num;
  38. int scale;
  39. ledc_fade_mode_t mode;
  40. SemaphoreHandle_t ledc_fade_sem;
  41. SemaphoreHandle_t ledc_fade_mux;
  42. #if CONFIG_SPIRAM_USE_MALLOC
  43. StaticQueue_t ledc_fade_sem_storage;
  44. #endif
  45. ledc_cb_t ledc_fade_callback;
  46. void *cb_user_arg;
  47. volatile ledc_fade_fsm_t fsm;
  48. } ledc_fade_t;
  49. typedef struct {
  50. ledc_hal_context_t ledc_hal; /*!< LEDC hal context*/
  51. } ledc_obj_t;
  52. static ledc_obj_t *p_ledc_obj[LEDC_SPEED_MODE_MAX] = {0};
  53. static ledc_fade_t *s_ledc_fade_rec[LEDC_SPEED_MODE_MAX][LEDC_CHANNEL_MAX];
  54. static ledc_isr_handle_t s_ledc_fade_isr_handle = NULL;
  55. static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED;
  56. #define LEDC_VAL_NO_CHANGE (-1)
  57. #define LEDC_DUTY_NUM_MAX LEDC_LL_DUTY_NUM_MAX // Maximum steps per hardware fade
  58. #define LEDC_DUTY_DECIMAL_BIT_NUM (4)
  59. #define LEDC_TIMER_DIV_NUM_MAX (0x3FFFF)
  60. #define LEDC_FADE_TOO_SLOW_STR "LEDC FADE TOO SLOW"
  61. #define LEDC_FADE_TOO_FAST_STR "LEDC FADE TOO FAST"
  62. #define DIM(array) (sizeof(array)/sizeof(*array))
  63. #define LEDC_IS_DIV_INVALID(div) ((div) <= LEDC_LL_FRACTIONAL_MAX || (div) > LEDC_TIMER_DIV_NUM_MAX)
  64. static __attribute__((unused)) const char *LEDC_NOT_INIT = "LEDC is not initialized";
  65. static __attribute__((unused)) const char *LEDC_FADE_SERVICE_ERR_STR = "LEDC fade service not installed";
  66. static __attribute__((unused)) const char *LEDC_FADE_INIT_ERROR_STR = "LEDC fade channel init error, not enough memory or service not installed";
  67. //This value will be calibrated when in use.
  68. static uint32_t s_ledc_slow_clk_8M = 0;
  69. static const ledc_slow_clk_sel_t s_glb_clks[] = LEDC_LL_GLOBAL_CLOCKS;
  70. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  71. static const struct { ledc_clk_src_t clk; uint32_t freq; } s_timer_specific_clks[] = LEDC_LL_TIMER_SPECIFIC_CLOCKS;
  72. #endif
  73. static void ledc_ls_timer_update(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  74. {
  75. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  76. ledc_hal_ls_timer_update(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  77. }
  78. }
  79. static IRAM_ATTR void ledc_ls_channel_update(ledc_mode_t speed_mode, ledc_channel_t channel)
  80. {
  81. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  82. ledc_hal_ls_channel_update(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  83. }
  84. }
  85. //We know that CLK8M is about 8M, but don't know the actual value. So we need to do a calibration.
  86. static bool ledc_slow_clk_calibrate(void)
  87. {
  88. if (periph_rtc_dig_clk8m_enable()) {
  89. s_ledc_slow_clk_8M = periph_rtc_dig_clk8m_get_freq();
  90. #if !SOC_CLK_RC_FAST_SUPPORT_CALIBRATION
  91. /* Workaround: CLK8M calibration cannot be performed, we can only use its theoretic freq */
  92. ESP_LOGD(LEDC_TAG, "Calibration cannot be performed, approximate CLK8M_CLK : %"PRIu32" Hz", s_ledc_slow_clk_8M);
  93. #else
  94. ESP_LOGD(LEDC_TAG, "Calibrate CLK8M_CLK : %"PRIu32" Hz", s_ledc_slow_clk_8M);
  95. #endif
  96. return true;
  97. }
  98. ESP_LOGE(LEDC_TAG, "Calibrate CLK8M_CLK failed");
  99. return false;
  100. }
  101. static uint32_t ledc_get_src_clk_freq(ledc_clk_cfg_t clk_cfg)
  102. {
  103. uint32_t src_clk_freq = 0;
  104. if (clk_cfg == LEDC_USE_RTC8M_CLK) {
  105. src_clk_freq = s_ledc_slow_clk_8M;
  106. #if SOC_LEDC_SUPPORT_APB_CLOCK
  107. } else if (clk_cfg == LEDC_USE_APB_CLK) {
  108. src_clk_freq = esp_clk_apb_freq();
  109. #endif
  110. #if SOC_LEDC_SUPPORT_PLL_DIV_CLOCK
  111. } else if (clk_cfg == LEDC_USE_PLL_DIV_CLK) {
  112. src_clk_freq = LEDC_LL_PLL_DIV_CLK_FREQ;
  113. #endif
  114. #if SOC_LEDC_SUPPORT_REF_TICK
  115. } else if (clk_cfg == LEDC_USE_REF_TICK) {
  116. src_clk_freq = REF_CLK_FREQ;
  117. #endif
  118. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  119. } else if (clk_cfg == LEDC_USE_XTAL_CLK) {
  120. src_clk_freq = esp_clk_xtal_freq();
  121. #endif
  122. }
  123. return src_clk_freq;
  124. }
  125. /* Retrieve the clock frequency for global clocks only */
  126. static uint32_t ledc_get_glb_clk_freq(ledc_slow_clk_sel_t clk_cfg)
  127. {
  128. uint32_t src_clk_freq = 0;
  129. switch (clk_cfg) {
  130. #if SOC_LEDC_SUPPORT_APB_CLOCK
  131. case LEDC_SLOW_CLK_APB:
  132. src_clk_freq = esp_clk_apb_freq();
  133. break;
  134. #endif
  135. #if SOC_LEDC_SUPPORT_PLL_DIV_CLOCK
  136. case LEDC_SLOW_CLK_PLL_DIV:
  137. src_clk_freq = LEDC_LL_PLL_DIV_CLK_FREQ;
  138. break;
  139. #endif
  140. case LEDC_SLOW_CLK_RTC8M:
  141. src_clk_freq = s_ledc_slow_clk_8M;
  142. break;
  143. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  144. case LEDC_SLOW_CLK_XTAL:
  145. src_clk_freq = esp_clk_xtal_freq();
  146. break;
  147. #endif
  148. }
  149. return src_clk_freq;
  150. }
  151. static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_intr_type_t type)
  152. {
  153. if (type == LEDC_INTR_FADE_END) {
  154. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  155. } else {
  156. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  157. }
  158. return ESP_OK;
  159. }
  160. static void _ledc_fade_hw_acquire(ledc_mode_t mode, ledc_channel_t channel)
  161. {
  162. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  163. if (fade) {
  164. xSemaphoreTake(fade->ledc_fade_sem, portMAX_DELAY);
  165. portENTER_CRITICAL(&ledc_spinlock);
  166. ledc_enable_intr_type(mode, channel, LEDC_INTR_DISABLE);
  167. portEXIT_CRITICAL(&ledc_spinlock);
  168. }
  169. }
  170. static void _ledc_fade_hw_release(ledc_mode_t mode, ledc_channel_t channel)
  171. {
  172. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  173. if (fade) {
  174. xSemaphoreGive(fade->ledc_fade_sem);
  175. }
  176. }
  177. static void _ledc_op_lock_acquire(ledc_mode_t mode, ledc_channel_t channel)
  178. {
  179. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  180. if (fade) {
  181. xSemaphoreTake(fade->ledc_fade_mux, portMAX_DELAY);
  182. }
  183. }
  184. static void _ledc_op_lock_release(ledc_mode_t mode, ledc_channel_t channel)
  185. {
  186. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  187. if (fade) {
  188. xSemaphoreGive(fade->ledc_fade_mux);
  189. }
  190. }
  191. static uint32_t ledc_get_max_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  192. {
  193. // The arguments are checked before internally calling this function.
  194. uint32_t max_duty;
  195. ledc_hal_get_max_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &max_duty);
  196. return max_duty;
  197. }
  198. esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider, uint32_t duty_resolution,
  199. ledc_clk_src_t clk_src)
  200. {
  201. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  202. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  203. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  204. portENTER_CRITICAL(&ledc_spinlock);
  205. ledc_hal_set_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clock_divider);
  206. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  207. /* Clock source can only be configured on boards which support timer-specific
  208. * source clock. */
  209. ledc_hal_set_clock_source(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clk_src);
  210. #endif
  211. ledc_hal_set_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, duty_resolution);
  212. ledc_ls_timer_update(speed_mode, timer_sel);
  213. portEXIT_CRITICAL(&ledc_spinlock);
  214. return ESP_OK;
  215. }
  216. static IRAM_ATTR esp_err_t ledc_duty_config(ledc_mode_t speed_mode, ledc_channel_t channel, int hpoint_val,
  217. int duty_val, ledc_duty_direction_t duty_direction, uint32_t duty_num, uint32_t duty_cycle, uint32_t duty_scale)
  218. {
  219. if (hpoint_val >= 0) {
  220. ledc_hal_set_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, hpoint_val);
  221. }
  222. if (duty_val >= 0) {
  223. ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_val);
  224. }
  225. ledc_hal_set_duty_direction(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_direction);
  226. ledc_hal_set_duty_num(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_num);
  227. ledc_hal_set_duty_cycle(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_cycle);
  228. ledc_hal_set_duty_scale(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_scale);
  229. #if SOC_LEDC_GAMMA_FADE_RANGE_MAX > 1
  230. ledc_hal_set_duty_range(&(p_ledc_obj[speed_mode]->ledc_hal), channel, 0);
  231. ledc_hal_set_range_number(&(p_ledc_obj[speed_mode]->ledc_hal), channel, 1);
  232. #endif
  233. ledc_ls_channel_update(speed_mode, channel);
  234. return ESP_OK;
  235. }
  236. esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_timer_t timer_sel)
  237. {
  238. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  239. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  240. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  241. portENTER_CRITICAL(&ledc_spinlock);
  242. ledc_hal_bind_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, timer_sel);
  243. ledc_ls_channel_update(speed_mode, channel);
  244. portEXIT_CRITICAL(&ledc_spinlock);
  245. return ESP_OK;
  246. }
  247. esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  248. {
  249. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  250. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  251. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  252. portENTER_CRITICAL(&ledc_spinlock);
  253. ledc_hal_timer_rst(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  254. portEXIT_CRITICAL(&ledc_spinlock);
  255. return ESP_OK;
  256. }
  257. esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  258. {
  259. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  260. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  261. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  262. portENTER_CRITICAL(&ledc_spinlock);
  263. ledc_hal_timer_pause(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  264. portEXIT_CRITICAL(&ledc_spinlock);
  265. return ESP_OK;
  266. }
  267. esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  268. {
  269. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  270. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  271. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  272. portENTER_CRITICAL(&ledc_spinlock);
  273. ledc_hal_timer_resume(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  274. portEXIT_CRITICAL(&ledc_spinlock);
  275. return ESP_OK;
  276. }
  277. esp_err_t ledc_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, ledc_isr_handle_t *handle)
  278. {
  279. esp_err_t ret;
  280. LEDC_ARG_CHECK(fn, "fn");
  281. portENTER_CRITICAL(&ledc_spinlock);
  282. ret = esp_intr_alloc(ETS_LEDC_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  283. portEXIT_CRITICAL(&ledc_spinlock);
  284. return ret;
  285. }
  286. static inline uint32_t ledc_calculate_divisor(uint32_t src_clk_freq, int freq_hz, uint32_t precision)
  287. {
  288. /**
  289. * In order to find the right divisor, we need to divide the source clock
  290. * frequency by the desired frequency. However, two things to note here:
  291. * - The lowest LEDC_LL_FRACTIONAL_BITS bits of the result are the FRACTIONAL
  292. * part. The higher bits represent the integer part, this is why we need
  293. * to right shift the source frequency.
  294. * - The `precision` parameter represents the granularity of the clock. It
  295. * **must** be a power of 2. It means that the resulted divisor is
  296. * a multiplier of `precision`.
  297. *
  298. * Let's take a concrete example, we need to generate a 5KHz clock out of
  299. * a 80MHz clock (APB).
  300. * If the precision is 1024 (10 bits), the resulted multiplier is:
  301. * (80000000 << 8) / (5000 * 1024) = 4000 (0xfa0)
  302. * Let's ignore the fractional part to simplify the explanation, so we get
  303. * a result of 15 (0xf).
  304. * This can be interpreted as: every 15 "precision" ticks, the resulted
  305. * clock will go high, where one precision tick is made out of 1024 source
  306. * clock ticks.
  307. * Thus, every `15 * 1024` source clock ticks, the resulted clock will go
  308. * high.
  309. *
  310. * NOTE: We are also going to round up the value when necessary, thanks to:
  311. * (freq_hz * precision) / 2
  312. */
  313. return ( ( (uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS ) + ((freq_hz * precision) / 2 ) )
  314. / (freq_hz * precision);
  315. }
  316. static inline uint32_t ledc_auto_global_clk_divisor(int freq_hz, uint32_t precision, ledc_slow_clk_sel_t* clk_target)
  317. {
  318. uint32_t ret = LEDC_CLK_NOT_FOUND;
  319. uint32_t clk_freq = 0;
  320. /* This function will go through all the following clock sources to look
  321. * for a valid divisor which generates the requested frequency. */
  322. for (int i = 0; i < DIM(s_glb_clks); i++) {
  323. /* Before calculating the divisor, we need to have the RTC frequency.
  324. * If it hasn't been measured yet, try calibrating it now. */
  325. if (s_glb_clks[i] == LEDC_SLOW_CLK_RTC8M && s_ledc_slow_clk_8M == 0 && !ledc_slow_clk_calibrate()) {
  326. ESP_LOGD(LEDC_TAG, "Unable to retrieve RTC clock frequency, skipping it\n");
  327. continue;
  328. }
  329. clk_freq = ledc_get_glb_clk_freq(s_glb_clks[i]);
  330. uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
  331. /* If the divisor is valid, we can return this value. */
  332. if (!LEDC_IS_DIV_INVALID(div_param)) {
  333. *clk_target = s_glb_clks[i];
  334. ret = div_param;
  335. break;
  336. }
  337. }
  338. return ret;
  339. }
  340. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  341. static inline uint32_t ledc_auto_timer_specific_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  342. ledc_clk_src_t* clk_source)
  343. {
  344. uint32_t ret = LEDC_CLK_NOT_FOUND;
  345. for (int i = 0; i < DIM(s_timer_specific_clks); i++) {
  346. uint32_t div_param = ledc_calculate_divisor(s_timer_specific_clks[i].freq, freq_hz, precision);
  347. /* If the divisor is valid, we can return this value. */
  348. if (!LEDC_IS_DIV_INVALID(div_param)) {
  349. *clk_source = s_timer_specific_clks[i].clk;
  350. ret = div_param;
  351. break;
  352. }
  353. }
  354. #if SOC_LEDC_SUPPORT_HS_MODE
  355. /* On board that support LEDC high-speed mode, APB clock becomes a timer-
  356. * specific clock when in high speed mode. Check if it is necessary here
  357. * to test APB. */
  358. if (speed_mode == LEDC_HIGH_SPEED_MODE && ret == LEDC_CLK_NOT_FOUND) {
  359. /* No divider was found yet, try with APB! */
  360. uint32_t div_param = ledc_calculate_divisor(esp_clk_apb_freq(), freq_hz, precision);
  361. if (!LEDC_IS_DIV_INVALID(div_param)) {
  362. *clk_source = LEDC_APB_CLK;
  363. ret = div_param;
  364. }
  365. }
  366. #endif
  367. return ret;
  368. }
  369. #endif
  370. /**
  371. * @brief Try to find the clock with its divisor giving the frequency requested
  372. * by the caller.
  373. */
  374. static uint32_t ledc_auto_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  375. ledc_clk_src_t* clk_source, ledc_slow_clk_sel_t* clk_target)
  376. {
  377. uint32_t ret = LEDC_CLK_NOT_FOUND;
  378. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  379. /* If the SoC presents timer-specific clock(s), try to achieve the given frequency
  380. * thanks to it/them.
  381. * clk_source parameter will returned by this function. */
  382. uint32_t div_param_timer = ledc_auto_timer_specific_clk_divisor(speed_mode, freq_hz, precision, clk_source);
  383. if (div_param_timer != LEDC_CLK_NOT_FOUND) {
  384. /* The dividor is valid, no need try any other clock, return directly. */
  385. ret = div_param_timer;
  386. }
  387. #endif
  388. /* On ESP32, only low speed channel can use the global clocks. For other
  389. * chips, there are no high speed channels. */
  390. if (ret == LEDC_CLK_NOT_FOUND && speed_mode == LEDC_LOW_SPEED_MODE) {
  391. uint32_t div_param_global = ledc_auto_global_clk_divisor(freq_hz, precision, clk_target);
  392. if (div_param_global != LEDC_CLK_NOT_FOUND) {
  393. *clk_source = LEDC_SCLK;
  394. ret = div_param_global;
  395. }
  396. }
  397. return ret;
  398. }
  399. static ledc_slow_clk_sel_t ledc_clk_cfg_to_global_clk(const ledc_clk_cfg_t clk_cfg)
  400. {
  401. ledc_slow_clk_sel_t glb_clk;
  402. switch (clk_cfg) {
  403. #if SOC_LEDC_SUPPORT_APB_CLOCK
  404. case LEDC_USE_APB_CLK:
  405. glb_clk = LEDC_SLOW_CLK_APB;
  406. break;
  407. #endif
  408. #if SOC_LEDC_SUPPORT_PLL_DIV_CLOCK
  409. case LEDC_USE_PLL_DIV_CLK:
  410. glb_clk = LEDC_SLOW_CLK_PLL_DIV;
  411. break;
  412. #endif
  413. case LEDC_USE_RTC8M_CLK:
  414. glb_clk = LEDC_SLOW_CLK_RTC8M;
  415. break;
  416. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  417. case LEDC_USE_XTAL_CLK:
  418. glb_clk = LEDC_SLOW_CLK_XTAL;
  419. break;
  420. #endif
  421. #if SOC_LEDC_SUPPORT_REF_TICK
  422. case LEDC_USE_REF_TICK:
  423. #endif
  424. default:
  425. /* We should not get here, REF_TICK is NOT a global clock,
  426. * it is a timer-specific clock. */
  427. abort();
  428. }
  429. return glb_clk;
  430. }
  431. extern void esp_sleep_periph_use_8m(bool use_or_not);
  432. /**
  433. * @brief Function setting the LEDC timer divisor with the given source clock,
  434. * frequency and resolution. If the clock configuration passed is
  435. * LEDC_AUTO_CLK, the clock will be determined automatically (if possible).
  436. */
  437. static esp_err_t ledc_set_timer_div(ledc_mode_t speed_mode, ledc_timer_t timer_num, ledc_clk_cfg_t clk_cfg, int freq_hz, int duty_resolution)
  438. {
  439. uint32_t div_param = 0;
  440. const uint32_t precision = ( 0x1 << duty_resolution );
  441. /* The clock sources are not initialized on purpose. To produce compiler warning if used but the selector functions
  442. * don't set them properly. */
  443. /* Timer-specific mux. Set to timer-specific clock or LEDC_SCLK if a global clock is used. */
  444. ledc_clk_src_t timer_clk_src;
  445. /* Global clock mux. Should be set when LEDC_SCLK is used in LOW_SPEED_MODE. Otherwise left uninitialized. */
  446. ledc_slow_clk_sel_t glb_clk;
  447. if (clk_cfg == LEDC_AUTO_CLK) {
  448. /* User hasn't specified the speed, we should try to guess it. */
  449. div_param = ledc_auto_clk_divisor(speed_mode, freq_hz, precision, &timer_clk_src, &glb_clk);
  450. } else if (clk_cfg == LEDC_USE_RTC8M_CLK) {
  451. /* User specified source clock(RTC8M_CLK) for low speed channel.
  452. * Make sure the speed mode is correct. */
  453. ESP_RETURN_ON_FALSE((speed_mode == LEDC_LOW_SPEED_MODE), ESP_ERR_INVALID_ARG, LEDC_TAG, "RTC clock can only be used in low speed mode");
  454. /* Before calculating the divisor, we need to have the RTC frequency.
  455. * If it hasn't been measured yet, try calibrating it now. */
  456. if(s_ledc_slow_clk_8M == 0 && ledc_slow_clk_calibrate() == false) {
  457. goto error;
  458. }
  459. /* Set the global clock source */
  460. timer_clk_src = LEDC_SCLK;
  461. glb_clk = LEDC_SLOW_CLK_RTC8M;
  462. /* We have the RTC clock frequency now. */
  463. div_param = ledc_calculate_divisor(s_ledc_slow_clk_8M, freq_hz, precision);
  464. if (LEDC_IS_DIV_INVALID(div_param)) {
  465. div_param = LEDC_CLK_NOT_FOUND;
  466. }
  467. } else {
  468. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  469. if (LEDC_LL_IS_TIMER_SPECIFIC_CLOCK(speed_mode, clk_cfg)) {
  470. /* Currently we can convert a timer-specific clock to a source clock that
  471. * easily because their values are identical in the enumerations (on purpose)
  472. * If we decide to change the values in the future, we should consider defining
  473. * a macro/function to convert timer-specific clock to clock source .*/
  474. timer_clk_src = (ledc_clk_src_t) clk_cfg;
  475. } else
  476. #endif
  477. {
  478. timer_clk_src = LEDC_SCLK;
  479. glb_clk = ledc_clk_cfg_to_global_clk(clk_cfg);
  480. }
  481. uint32_t src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
  482. div_param = ledc_calculate_divisor(src_clk_freq, freq_hz, precision);
  483. if (LEDC_IS_DIV_INVALID(div_param)) {
  484. div_param = LEDC_CLK_NOT_FOUND;
  485. }
  486. }
  487. if (div_param == LEDC_CLK_NOT_FOUND) {
  488. goto error;
  489. }
  490. /* The following debug message makes more sense for AUTO mode. */
  491. ESP_LOGD(LEDC_TAG, "Using clock source %d (in %s mode), divisor: 0x%"PRIx32,
  492. timer_clk_src, (speed_mode == LEDC_LOW_SPEED_MODE ? "slow" : "fast"), div_param);
  493. /* The following block configures the global clock.
  494. * Thus, in theory, this only makes sense when configuring the LOW_SPEED timer and the source clock is LEDC_SCLK (as
  495. * HIGH_SPEED timers won't be clocked by the global clock). However, there are some limitations due to HW design.
  496. */
  497. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  498. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  499. /* On ESP32 and ESP32-S2, when the source clock of LOW_SPEED timer is a timer-specific one (i.e. REF_TICK), the
  500. * global clock MUST be set to APB_CLK. For HIGH_SPEED timers, this is not necessary.
  501. */
  502. if (timer_clk_src != LEDC_SCLK) {
  503. glb_clk = LEDC_SLOW_CLK_APB;
  504. }
  505. #else
  506. /* On later chips, there is only one type of timer/channel (referred as LOW_SPEED in the code), which can only be
  507. * clocked by the global clock. So there's no limitation on the global clock, except that it must be set.
  508. */
  509. assert(timer_clk_src == LEDC_SCLK);
  510. #endif
  511. ESP_LOGD(LEDC_TAG, "In slow speed mode, global clk set: %d", glb_clk);
  512. /* keep ESP_PD_DOMAIN_RTC8M on during light sleep */
  513. esp_sleep_periph_use_8m(glb_clk == LEDC_SLOW_CLK_RTC8M);
  514. portENTER_CRITICAL(&ledc_spinlock);
  515. ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), glb_clk);
  516. portEXIT_CRITICAL(&ledc_spinlock);
  517. }
  518. /* The divisor is correct, we can write in the hardware. */
  519. ledc_timer_set(speed_mode, timer_num, div_param, duty_resolution, timer_clk_src);
  520. return ESP_OK;
  521. error:
  522. ESP_LOGE(LEDC_TAG, "requested frequency and duty resolution can not be achieved, try reducing freq_hz or duty_resolution. div_param=%"PRIu32, div_param);
  523. return ESP_FAIL;
  524. }
  525. esp_err_t ledc_timer_config(const ledc_timer_config_t *timer_conf)
  526. {
  527. LEDC_ARG_CHECK(timer_conf != NULL, "timer_conf");
  528. uint32_t freq_hz = timer_conf->freq_hz;
  529. uint32_t duty_resolution = timer_conf->duty_resolution;
  530. uint32_t timer_num = timer_conf->timer_num;
  531. uint32_t speed_mode = timer_conf->speed_mode;
  532. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  533. LEDC_ARG_CHECK(!((timer_conf->clk_cfg == LEDC_USE_RTC8M_CLK) && (speed_mode != LEDC_LOW_SPEED_MODE)), "Only low speed channel support RTC8M_CLK");
  534. periph_module_enable(PERIPH_LEDC_MODULE);
  535. if (freq_hz == 0 || duty_resolution == 0 || duty_resolution >= LEDC_TIMER_BIT_MAX) {
  536. ESP_LOGE(LEDC_TAG, "freq_hz=%"PRIu32" duty_resolution=%"PRIu32, freq_hz, duty_resolution);
  537. return ESP_ERR_INVALID_ARG;
  538. }
  539. if (timer_num > LEDC_TIMER_3) {
  540. ESP_LOGE(LEDC_TAG, "invalid timer #%"PRIu32, timer_num);
  541. return ESP_ERR_INVALID_ARG;
  542. }
  543. if (p_ledc_obj[speed_mode] == NULL) {
  544. p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  545. if (p_ledc_obj[speed_mode] == NULL) {
  546. return ESP_ERR_NO_MEM;
  547. }
  548. ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
  549. }
  550. esp_err_t ret = ledc_set_timer_div(speed_mode, timer_num, timer_conf->clk_cfg, freq_hz, duty_resolution);
  551. if (ret == ESP_OK) {
  552. /* Reset the timer. */
  553. ledc_timer_rst(speed_mode, timer_num);
  554. }
  555. return ret;
  556. }
  557. esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel)
  558. {
  559. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  560. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  561. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  562. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  563. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  564. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, 0, 0);
  565. return ESP_OK;
  566. }
  567. esp_err_t ledc_channel_config(const ledc_channel_config_t *ledc_conf)
  568. {
  569. LEDC_ARG_CHECK(ledc_conf, "ledc_conf");
  570. uint32_t speed_mode = ledc_conf->speed_mode;
  571. int gpio_num = ledc_conf->gpio_num;
  572. uint32_t ledc_channel = ledc_conf->channel;
  573. uint32_t timer_select = ledc_conf->timer_sel;
  574. uint32_t intr_type = ledc_conf->intr_type;
  575. uint32_t duty = ledc_conf->duty;
  576. uint32_t hpoint = ledc_conf->hpoint;
  577. bool output_invert = ledc_conf->flags.output_invert;
  578. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  579. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  580. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  581. LEDC_ARG_CHECK(timer_select < LEDC_TIMER_MAX, "timer_select");
  582. LEDC_ARG_CHECK(intr_type < LEDC_INTR_MAX, "intr_type");
  583. periph_module_enable(PERIPH_LEDC_MODULE);
  584. esp_err_t ret = ESP_OK;
  585. if (p_ledc_obj[speed_mode] == NULL) {
  586. p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  587. if (p_ledc_obj[speed_mode] == NULL) {
  588. return ESP_ERR_NO_MEM;
  589. }
  590. ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
  591. }
  592. /*set channel parameters*/
  593. /* channel parameters decide how the waveform looks like in one period*/
  594. /* set channel duty and hpoint value, duty range is (0 ~ ((2 ** duty_resolution) - 1)), max hpoint value is 0xfffff*/
  595. ledc_set_duty_with_hpoint(speed_mode, ledc_channel, duty, hpoint);
  596. /*update duty settings*/
  597. ledc_update_duty(speed_mode, ledc_channel);
  598. /*bind the channel with the timer*/
  599. ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select);
  600. /*set interrupt type*/
  601. portENTER_CRITICAL(&ledc_spinlock);
  602. ledc_enable_intr_type(speed_mode, ledc_channel, intr_type);
  603. portEXIT_CRITICAL(&ledc_spinlock);
  604. ESP_LOGD(LEDC_TAG, "LEDC_PWM CHANNEL %"PRIu32"|GPIO %02u|Duty %04"PRIu32"|Time %"PRIu32,
  605. ledc_channel, gpio_num, duty, timer_select);
  606. /*set LEDC signal in gpio matrix*/
  607. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  608. gpio_set_level(gpio_num, output_invert);
  609. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  610. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, output_invert, 0);
  611. return ret;
  612. }
  613. static void _ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  614. {
  615. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  616. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  617. ledc_ls_channel_update(speed_mode, channel);
  618. }
  619. esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  620. {
  621. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  622. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  623. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  624. portENTER_CRITICAL(&ledc_spinlock);
  625. _ledc_update_duty(speed_mode, channel);
  626. portEXIT_CRITICAL(&ledc_spinlock);
  627. return ESP_OK;
  628. }
  629. esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
  630. {
  631. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  632. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  633. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  634. portENTER_CRITICAL(&ledc_spinlock);
  635. ledc_hal_set_idle_level(&(p_ledc_obj[speed_mode]->ledc_hal), channel, idle_level);
  636. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  637. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  638. ledc_ls_channel_update(speed_mode, channel);
  639. portEXIT_CRITICAL(&ledc_spinlock);
  640. return ESP_OK;
  641. }
  642. esp_err_t ledc_set_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, ledc_duty_direction_t fade_direction,
  643. uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale)
  644. {
  645. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  646. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  647. LEDC_ARG_CHECK(fade_direction < LEDC_DUTY_DIR_MAX, "fade_direction");
  648. LEDC_ARG_CHECK(step_num <= LEDC_LL_DUTY_NUM_MAX, "step_num");
  649. LEDC_ARG_CHECK(duty_cyle_num <= LEDC_LL_DUTY_CYCLE_MAX, "duty_cycle_num");
  650. LEDC_ARG_CHECK(duty_scale <= LEDC_LL_DUTY_SCALE_MAX, "duty_scale");
  651. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  652. _ledc_fade_hw_acquire(speed_mode, channel);
  653. portENTER_CRITICAL(&ledc_spinlock);
  654. ledc_duty_config(speed_mode,
  655. channel, //uint32_t chan_num,
  656. LEDC_VAL_NO_CHANGE,
  657. duty, //uint32_t duty_val,
  658. fade_direction, //uint32_t increase,
  659. step_num, //uint32_t duty_num,
  660. duty_cyle_num, //uint32_t duty_cycle,
  661. duty_scale //uint32_t duty_scale
  662. );
  663. portEXIT_CRITICAL(&ledc_spinlock);
  664. _ledc_fade_hw_release(speed_mode, channel);
  665. return ESP_OK;
  666. }
  667. esp_err_t ledc_set_duty_with_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  668. {
  669. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  670. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  671. LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint");
  672. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  673. /* The channel configuration should not be changed before the fade operation is done. */
  674. _ledc_fade_hw_acquire(speed_mode, channel);
  675. portENTER_CRITICAL(&ledc_spinlock);
  676. ledc_duty_config(speed_mode,
  677. channel, //uint32_t chan_num,
  678. hpoint, //uint32_t hpoint_val,
  679. duty, //uint32_t duty_val,
  680. 1, //uint32_t increase,
  681. 0, //uint32_t duty_num,
  682. 0, //uint32_t duty_cycle,
  683. 0 //uint32_t duty_scale
  684. );
  685. portEXIT_CRITICAL(&ledc_spinlock);
  686. _ledc_fade_hw_release(speed_mode, channel);
  687. return ESP_OK;
  688. }
  689. esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)
  690. {
  691. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  692. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  693. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  694. /* The channel configuration should not be changed before the fade operation is done. */
  695. _ledc_fade_hw_acquire(speed_mode, channel);
  696. portENTER_CRITICAL(&ledc_spinlock);
  697. ledc_duty_config(speed_mode,
  698. channel, //uint32_t chan_num,
  699. LEDC_VAL_NO_CHANGE,
  700. duty, //uint32_t duty_val,
  701. 1, //uint32_t increase,
  702. 0, //uint32_t duty_num,
  703. 0, //uint32_t duty_cycle,
  704. 0 //uint32_t duty_scale
  705. );
  706. portEXIT_CRITICAL(&ledc_spinlock);
  707. _ledc_fade_hw_release(speed_mode, channel);
  708. return ESP_OK;
  709. }
  710. uint32_t ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  711. {
  712. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  713. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  714. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  715. uint32_t duty = 0;
  716. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty);
  717. return duty;
  718. }
  719. int ledc_get_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel)
  720. {
  721. LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode argument is invalid", LEDC_ERR_VAL);
  722. LEDC_CHECK(channel < LEDC_CHANNEL_MAX, "channel argument is invalid", LEDC_ERR_VAL);
  723. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  724. uint32_t hpoint = 0;
  725. ledc_hal_get_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &hpoint);
  726. return hpoint;
  727. }
  728. esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
  729. {
  730. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  731. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  732. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  733. ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK;
  734. uint32_t duty_resolution = 0;
  735. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  736. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  737. return ledc_set_timer_div(speed_mode, timer_num, clk_cfg, freq_hz, duty_resolution);
  738. }
  739. uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
  740. {
  741. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  742. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  743. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  744. portENTER_CRITICAL(&ledc_spinlock);
  745. uint32_t clock_divider = 0;
  746. uint32_t duty_resolution = 0;
  747. ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK;
  748. ledc_hal_get_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clock_divider);
  749. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  750. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  751. uint32_t precision = (0x1 << duty_resolution);
  752. uint32_t src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
  753. portEXIT_CRITICAL(&ledc_spinlock);
  754. if (clock_divider == 0) {
  755. ESP_LOGW(LEDC_TAG, "LEDC timer not configured, call ledc_timer_config to set timer frequency");
  756. return 0;
  757. }
  758. return ((uint64_t) src_clk_freq << 8) / precision / clock_divider;
  759. }
  760. static inline void ledc_calc_fade_end_channel(uint32_t *fade_end_status, uint32_t *channel)
  761. {
  762. uint32_t i = __builtin_ffs((*fade_end_status)) - 1;
  763. (*fade_end_status) &= ~(1 << i);
  764. *channel = i;
  765. }
  766. void IRAM_ATTR ledc_fade_isr(void *arg)
  767. {
  768. bool cb_yield = false;
  769. portBASE_TYPE HPTaskAwoken = pdFALSE;
  770. uint32_t speed_mode = 0;
  771. uint32_t channel = 0;
  772. uint32_t intr_status = 0;
  773. ledc_fade_fsm_t state;
  774. for (speed_mode = 0; speed_mode < LEDC_SPEED_MODE_MAX; speed_mode++) {
  775. if (p_ledc_obj[speed_mode] == NULL) {
  776. continue;
  777. }
  778. ledc_hal_get_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), &intr_status);
  779. while (intr_status) {
  780. ledc_calc_fade_end_channel(&intr_status, &channel);
  781. // clear interrupt
  782. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  783. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  784. //fade object not initialized yet.
  785. continue;
  786. }
  787. // Switch fade state to ISR_CAL if current state is HW_FADE
  788. bool already_stopped = false;
  789. portENTER_CRITICAL_ISR(&ledc_spinlock);
  790. state = s_ledc_fade_rec[speed_mode][channel]->fsm;
  791. assert(state != LEDC_FSM_ISR_CAL && state != LEDC_FSM_KILLED_PENDING);
  792. if (state == LEDC_FSM_HW_FADE) {
  793. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_ISR_CAL;
  794. } else if (state == LEDC_FSM_IDLE) {
  795. // interrupt seen, but has already been stopped by task
  796. already_stopped = true;
  797. }
  798. portEXIT_CRITICAL_ISR(&ledc_spinlock);
  799. if (already_stopped) {
  800. continue;
  801. }
  802. bool set_to_idle = false;
  803. int cycle = 0;
  804. int delta = 0;
  805. int step = 0;
  806. int next_duty = 0;
  807. uint32_t duty_cur = 0;
  808. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  809. uint32_t duty_tar = s_ledc_fade_rec[speed_mode][channel]->target_duty;
  810. int scale = s_ledc_fade_rec[speed_mode][channel]->scale;
  811. if (duty_cur == duty_tar || scale == 0) {
  812. // Target duty has reached
  813. set_to_idle = true;
  814. } else {
  815. // Calculate new duty config parameters
  816. delta = (s_ledc_fade_rec[speed_mode][channel]->direction == LEDC_DUTY_DIR_DECREASE) ?
  817. (duty_cur - duty_tar) : (duty_tar - duty_cur);
  818. if (delta > scale) {
  819. next_duty = duty_cur;
  820. step = (delta / scale > LEDC_DUTY_NUM_MAX) ? LEDC_DUTY_NUM_MAX : (delta / scale);
  821. cycle = s_ledc_fade_rec[speed_mode][channel]->cycle_num;
  822. } else {
  823. next_duty = duty_tar;
  824. step = 1;
  825. cycle = 1;
  826. scale = 0;
  827. }
  828. }
  829. bool finished = false;
  830. portENTER_CRITICAL_ISR(&ledc_spinlock);
  831. state = s_ledc_fade_rec[speed_mode][channel]->fsm;
  832. assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_HW_FADE);
  833. if (set_to_idle || state == LEDC_FSM_KILLED_PENDING) {
  834. // Either fade has completed or has been killed, skip HW duty config
  835. finished = true;
  836. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
  837. } else if (state == LEDC_FSM_ISR_CAL) {
  838. // Loading new fade to start
  839. ledc_duty_config(speed_mode,
  840. channel,
  841. LEDC_VAL_NO_CHANGE,
  842. next_duty,
  843. s_ledc_fade_rec[speed_mode][channel]->direction,
  844. step,
  845. cycle,
  846. scale);
  847. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_HW_FADE;
  848. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  849. }
  850. portEXIT_CRITICAL_ISR(&ledc_spinlock);
  851. if (finished) {
  852. xSemaphoreGiveFromISR(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, &HPTaskAwoken);
  853. ledc_cb_t fade_cb = s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback;
  854. if (fade_cb) {
  855. ledc_cb_param_t param = {
  856. .event = LEDC_FADE_END_EVT,
  857. .speed_mode = speed_mode,
  858. .channel = channel,
  859. .duty = duty_cur
  860. };
  861. cb_yield |= fade_cb(&param, s_ledc_fade_rec[speed_mode][channel]->cb_user_arg);
  862. }
  863. }
  864. }
  865. }
  866. if (HPTaskAwoken == pdTRUE || cb_yield) {
  867. portYIELD_FROM_ISR();
  868. }
  869. }
  870. static esp_err_t ledc_fade_channel_deinit(ledc_mode_t speed_mode, ledc_channel_t channel)
  871. {
  872. if (s_ledc_fade_rec[speed_mode][channel]) {
  873. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux) {
  874. vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux);
  875. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = NULL;
  876. }
  877. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  878. vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  879. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = NULL;
  880. }
  881. free(s_ledc_fade_rec[speed_mode][channel]);
  882. s_ledc_fade_rec[speed_mode][channel] = NULL;
  883. }
  884. return ESP_OK;
  885. }
  886. static esp_err_t ledc_fade_channel_init_check(ledc_mode_t speed_mode, ledc_channel_t channel)
  887. {
  888. if (s_ledc_fade_isr_handle == NULL) {
  889. ESP_LOGE(LEDC_TAG, "Fade service not installed, call ledc_fade_func_install");
  890. return ESP_FAIL;
  891. }
  892. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  893. #if CONFIG_SPIRAM_USE_MALLOC
  894. s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) heap_caps_calloc(1, sizeof(ledc_fade_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  895. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  896. ledc_fade_channel_deinit(speed_mode, channel);
  897. return ESP_ERR_NO_MEM;
  898. }
  899. memset(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage, 0, sizeof(StaticQueue_t));
  900. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinaryStatic(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage);
  901. #else
  902. s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) calloc(1, sizeof(ledc_fade_t));
  903. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  904. ledc_fade_channel_deinit(speed_mode, channel);
  905. return ESP_ERR_NO_MEM;
  906. }
  907. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinary();
  908. #endif
  909. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = xSemaphoreCreateMutex();
  910. xSemaphoreGive(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  911. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
  912. }
  913. if (s_ledc_fade_rec[speed_mode][channel]
  914. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux
  915. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  916. return ESP_OK;
  917. } else {
  918. ledc_fade_channel_deinit(speed_mode, channel);
  919. return ESP_FAIL;
  920. }
  921. }
  922. static esp_err_t _ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int scale, int cycle_num)
  923. {
  924. portENTER_CRITICAL(&ledc_spinlock);
  925. uint32_t duty_cur = 0;
  926. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  927. // When duty == max_duty, meanwhile, if scale == 1 and fade_down == 1, counter would overflow.
  928. if (duty_cur == ledc_get_max_duty(speed_mode, channel)) {
  929. duty_cur -= 1;
  930. }
  931. s_ledc_fade_rec[speed_mode][channel]->speed_mode = speed_mode;
  932. s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty;
  933. s_ledc_fade_rec[speed_mode][channel]->cycle_num = cycle_num;
  934. s_ledc_fade_rec[speed_mode][channel]->scale = scale;
  935. int step_num = 0;
  936. int dir = LEDC_DUTY_DIR_DECREASE;
  937. if (scale > 0) {
  938. if (duty_cur > target_duty) {
  939. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_DECREASE;
  940. step_num = (duty_cur - target_duty) / scale;
  941. step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num;
  942. } else {
  943. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_INCREASE;
  944. dir = LEDC_DUTY_DIR_INCREASE;
  945. step_num = (target_duty - duty_cur) / scale;
  946. step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num;
  947. }
  948. }
  949. portEXIT_CRITICAL(&ledc_spinlock);
  950. if (scale > 0 && step_num > 0) {
  951. portENTER_CRITICAL(&ledc_spinlock);
  952. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, duty_cur, dir, step_num, cycle_num, scale);
  953. portEXIT_CRITICAL(&ledc_spinlock);
  954. ESP_LOGD(LEDC_TAG, "cur duty: %"PRIu32"; target: %"PRIu32", step: %d, cycle: %d; scale: %d; dir: %d\n",
  955. duty_cur, target_duty, step_num, cycle_num, scale, dir);
  956. } else {
  957. portENTER_CRITICAL(&ledc_spinlock);
  958. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, target_duty, dir, 0, 1, 0);
  959. portEXIT_CRITICAL(&ledc_spinlock);
  960. ESP_LOGD(LEDC_TAG, "Set to target duty: %"PRIu32, target_duty);
  961. }
  962. return ESP_OK;
  963. }
  964. static esp_err_t _ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  965. {
  966. ledc_timer_t timer_sel;
  967. uint32_t duty_cur = 0;
  968. ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
  969. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  970. uint32_t freq = ledc_get_freq(speed_mode, timer_sel);
  971. uint32_t duty_delta = target_duty > duty_cur ? target_duty - duty_cur : duty_cur - target_duty;
  972. if (duty_delta == 0) {
  973. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  974. }
  975. uint32_t total_cycles = max_fade_time_ms * freq / 1000;
  976. if (total_cycles == 0) {
  977. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  978. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  979. }
  980. int scale, cycle_num;
  981. if (total_cycles > duty_delta) {
  982. scale = 1;
  983. cycle_num = total_cycles / duty_delta;
  984. if (cycle_num > LEDC_LL_DUTY_NUM_MAX) {
  985. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR);
  986. cycle_num = LEDC_LL_DUTY_NUM_MAX;
  987. }
  988. } else {
  989. cycle_num = 1;
  990. scale = duty_delta / total_cycles;
  991. if (scale > LEDC_LL_DUTY_SCALE_MAX) {
  992. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  993. scale = LEDC_LL_DUTY_SCALE_MAX;
  994. }
  995. }
  996. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  997. }
  998. static void _ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  999. {
  1000. ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
  1001. fade->mode = fade_mode;
  1002. // Clear interrupt status of channel
  1003. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  1004. // Enable interrupt for channel
  1005. portENTER_CRITICAL(&ledc_spinlock);
  1006. ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_FADE_END);
  1007. // Set fade state to HW_FADE state for starting the fade
  1008. assert(fade->fsm == LEDC_FSM_IDLE);
  1009. fade->fsm = LEDC_FSM_HW_FADE;
  1010. portEXIT_CRITICAL(&ledc_spinlock);
  1011. // Trigger the fade
  1012. ledc_update_duty(speed_mode, channel);
  1013. if (fade_mode == LEDC_FADE_WAIT_DONE) {
  1014. // Waiting for fade done
  1015. _ledc_fade_hw_acquire(speed_mode, channel);
  1016. // Release hardware to support next time fade configure
  1017. _ledc_fade_hw_release(speed_mode, channel);
  1018. }
  1019. }
  1020. esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  1021. {
  1022. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1023. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1024. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1025. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1026. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1027. _ledc_fade_hw_acquire(speed_mode, channel);
  1028. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  1029. _ledc_fade_hw_release(speed_mode, channel);
  1030. return ESP_OK;
  1031. }
  1032. esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num)
  1033. {
  1034. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1035. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1036. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale");
  1037. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num");
  1038. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1039. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1040. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1041. _ledc_fade_hw_acquire(speed_mode, channel);
  1042. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1043. _ledc_fade_hw_release(speed_mode, channel);
  1044. return ESP_OK;
  1045. }
  1046. esp_err_t ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  1047. {
  1048. LEDC_CHECK(s_ledc_fade_rec[speed_mode][channel] != NULL, LEDC_FADE_SERVICE_ERR_STR, ESP_ERR_INVALID_STATE);
  1049. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1050. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1051. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1052. _ledc_fade_hw_acquire(speed_mode, channel);
  1053. _ledc_fade_start(speed_mode, channel, fade_mode);
  1054. return ESP_OK;
  1055. }
  1056. // ESP32 does not support this functionality, fade cannot be overwritten with new duty config
  1057. #if SOC_LEDC_SUPPORT_FADE_STOP
  1058. esp_err_t ledc_fade_stop(ledc_mode_t speed_mode, ledc_channel_t channel)
  1059. {
  1060. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1061. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1062. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1063. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1064. ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
  1065. ledc_fade_fsm_t state = fade->fsm;
  1066. bool wait_for_idle = false;
  1067. assert(state != LEDC_FSM_KILLED_PENDING);
  1068. if (state == LEDC_FSM_IDLE) {
  1069. // if there is no fade going on, do nothing
  1070. return ESP_OK;
  1071. }
  1072. // Fade state is either HW_FADE or ISR_CAL (there is a fade in process)
  1073. portENTER_CRITICAL(&ledc_spinlock);
  1074. // Disable ledc channel interrupt first
  1075. ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_DISABLE);
  1076. // Config duty to the duty cycle at this moment
  1077. uint32_t duty_cur = ledc_get_duty(speed_mode, channel);
  1078. ledc_duty_config(speed_mode,
  1079. channel, //uint32_t chan_num,
  1080. LEDC_VAL_NO_CHANGE,
  1081. duty_cur, //uint32_t duty_val,
  1082. 1, //uint32_t increase,
  1083. 0, //uint32_t duty_num,
  1084. 0, //uint32_t duty_cycle,
  1085. 0 //uint32_t duty_scale
  1086. );
  1087. _ledc_update_duty(speed_mode, channel);
  1088. state = fade->fsm;
  1089. assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_KILLED_PENDING);
  1090. if (state == LEDC_FSM_HW_FADE) {
  1091. fade->fsm = LEDC_FSM_IDLE;
  1092. } else if (state == LEDC_FSM_ISR_CAL) {
  1093. fade->fsm = LEDC_FSM_KILLED_PENDING;
  1094. wait_for_idle = true;
  1095. }
  1096. portEXIT_CRITICAL(&ledc_spinlock);
  1097. if (wait_for_idle) {
  1098. // Wait for ISR return, which gives the semaphore and switchs state to IDLE
  1099. _ledc_fade_hw_acquire(speed_mode, channel);
  1100. assert(fade->fsm == LEDC_FSM_IDLE);
  1101. }
  1102. _ledc_fade_hw_release(speed_mode, channel);
  1103. return ESP_OK;
  1104. }
  1105. #endif
  1106. esp_err_t ledc_fade_func_install(int intr_alloc_flags)
  1107. {
  1108. //OR intr_alloc_flags with ESP_INTR_FLAG_IRAM because the fade isr is in IRAM
  1109. return ledc_isr_register(ledc_fade_isr, NULL, intr_alloc_flags | ESP_INTR_FLAG_IRAM, &s_ledc_fade_isr_handle);
  1110. }
  1111. void ledc_fade_func_uninstall(void)
  1112. {
  1113. if (s_ledc_fade_isr_handle) {
  1114. esp_intr_free(s_ledc_fade_isr_handle);
  1115. s_ledc_fade_isr_handle = NULL;
  1116. }
  1117. int channel, mode;
  1118. for (mode = 0; mode < LEDC_SPEED_MODE_MAX; mode++) {
  1119. for (channel = 0; channel < LEDC_CHANNEL_MAX; channel++) {
  1120. ledc_fade_channel_deinit(mode, channel);
  1121. }
  1122. }
  1123. return;
  1124. }
  1125. esp_err_t ledc_cb_register(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_cbs_t *cbs, void *user_arg)
  1126. {
  1127. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1128. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1129. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1130. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1131. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback = cbs->fade_cb;
  1132. s_ledc_fade_rec[speed_mode][channel]->cb_user_arg = user_arg;
  1133. return ESP_OK;
  1134. }
  1135. /*
  1136. * The functions below are thread-safe version of APIs for duty and fade control.
  1137. * These APIs can be called from different tasks.
  1138. */
  1139. esp_err_t ledc_set_duty_and_update(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  1140. {
  1141. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1142. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1143. LEDC_ARG_CHECK(duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1144. LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint");
  1145. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1146. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1147. _ledc_fade_hw_acquire(speed_mode, channel);
  1148. portENTER_CRITICAL(&ledc_spinlock);
  1149. ledc_duty_config(speed_mode, channel, hpoint, duty, 1, 0, 0, 0);
  1150. _ledc_update_duty(speed_mode, channel);
  1151. portEXIT_CRITICAL(&ledc_spinlock);
  1152. _ledc_fade_hw_release(speed_mode, channel);
  1153. return ESP_OK;
  1154. }
  1155. esp_err_t ledc_set_fade_time_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t max_fade_time_ms, ledc_fade_mode_t fade_mode)
  1156. {
  1157. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1158. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1159. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1160. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1161. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1162. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1163. _ledc_op_lock_acquire(speed_mode, channel);
  1164. _ledc_fade_hw_acquire(speed_mode, channel);
  1165. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  1166. _ledc_fade_start(speed_mode, channel, fade_mode);
  1167. _ledc_op_lock_release(speed_mode, channel);
  1168. return ESP_OK;
  1169. }
  1170. esp_err_t ledc_set_fade_step_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num, ledc_fade_mode_t fade_mode)
  1171. {
  1172. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1173. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1174. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1175. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1176. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1177. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale");
  1178. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num");
  1179. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1180. _ledc_op_lock_acquire(speed_mode, channel);
  1181. _ledc_fade_hw_acquire(speed_mode, channel);
  1182. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1183. _ledc_fade_start(speed_mode, channel, fade_mode);
  1184. _ledc_op_lock_release(speed_mode, channel);
  1185. return ESP_OK;
  1186. }