| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859 |
- /*
- * SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #include "sdkconfig.h"
- #include <stdint.h>
- #include <assert.h>
- #include "soc/soc.h"
- #include "soc/soc_caps.h"
- // TODO: IDF-5645
- #if CONFIG_IDF_TARGET_ESP32C6
- #include "soc/lp_aon_reg.h"
- #include "soc/pcr_reg.h"
- #define SYSTEM_CPU_PER_CONF_REG PCR_CPU_WAITI_CONF_REG
- #define SYSTEM_CPU_WAIT_MODE_FORCE_ON PCR_CPU_WAIT_MODE_FORCE_ON
- #else
- #include "soc/rtc_cntl_reg.h"
- #endif
- #include "hal/soc_hal.h"
- #include "hal/mpu_hal.h"
- #include "esp_bit_defs.h"
- #include "esp_attr.h"
- #include "esp_err.h"
- #include "esp_cpu.h"
- #include "esp_memory_utils.h"
- #include "esp_fault.h"
- #if __XTENSA__
- #include "xtensa/config/core-isa.h"
- #else
- #include "soc/system_reg.h" // For SYSTEM_CPU_PER_CONF_REG
- #include "soc/dport_access.h" // For Dport access
- #include "riscv/semihosting.h"
- #include "riscv/csr.h" // For PMP_ENTRY. [refactor-todo] create PMP abstraction in rv_utils.h
- #endif
- #if SOC_CPU_HAS_FLEXIBLE_INTC
- #include "riscv/instruction_decode.h"
- #endif
- /* --------------------------------------------------- CPU Control -----------------------------------------------------
- *
- * ------------------------------------------------------------------------------------------------------------------ */
- void esp_cpu_stall(int core_id)
- {
- assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
- #if SOC_CPU_CORES_NUM > 1 // We don't allow stalling of the current core
- /*
- We need to write the value "0x86" to stall a particular core. The write location is split into two separate
- bit fields named "c0" and "c1", and the two fields are located in different registers. Each core has its own pair of
- "c0" and "c1" bit fields.
- Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the
- "rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source
- file's "rodata" section (see IDF-5214).
- */
- int rtc_cntl_c0_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_M : RTC_CNTL_SW_STALL_APPCPU_C0_M;
- int rtc_cntl_c0_s = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_S : RTC_CNTL_SW_STALL_APPCPU_C0_S;
- int rtc_cntl_c1_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_M : RTC_CNTL_SW_STALL_APPCPU_C1_M;
- int rtc_cntl_c1_s = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_S : RTC_CNTL_SW_STALL_APPCPU_C1_S;
- CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_c0_m);
- SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, 2 << rtc_cntl_c0_s);
- CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, rtc_cntl_c1_m);
- SET_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, 0x21 << rtc_cntl_c1_s);
- #endif
- }
- void esp_cpu_unstall(int core_id)
- {
- assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
- #if SOC_CPU_CORES_NUM > 1 // We don't allow stalling of the current core
- /*
- We need to write clear the value "0x86" to unstall a particular core. The location of this value is split into
- two separate bit fields named "c0" and "c1", and the two fields are located in different registers. Each core has
- its own pair of "c0" and "c1" bit fields.
- Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the
- "rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source
- file's "rodata" section (see IDF-5214).
- */
- int rtc_cntl_c0_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_M : RTC_CNTL_SW_STALL_APPCPU_C0_M;
- int rtc_cntl_c1_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_M : RTC_CNTL_SW_STALL_APPCPU_C1_M;
- CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_c0_m);
- CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, rtc_cntl_c1_m);
- #endif
- }
- void esp_cpu_reset(int core_id)
- {
- #if CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5645
- SET_PERI_REG_MASK(LP_AON_CPUCORE0_CFG_REG, LP_AON_CPU_CORE0_SW_RESET);
- #else
- assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
- #if SOC_CPU_CORES_NUM > 1
- /*
- Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the
- "rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source
- file's "rodata" section (see IDF-5214).
- */
- int rtc_cntl_rst_m = (core_id == 0) ? RTC_CNTL_SW_PROCPU_RST_M : RTC_CNTL_SW_APPCPU_RST_M;
- #else // SOC_CPU_CORES_NUM > 1
- int rtc_cntl_rst_m = RTC_CNTL_SW_PROCPU_RST_M;
- #endif // SOC_CPU_CORES_NUM > 1
- SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_rst_m);
- #endif
- }
- void esp_cpu_wait_for_intr(void)
- {
- #if __XTENSA__
- xt_utils_wait_for_intr();
- #else
- // TODO: IDF-5645 (better to implement with ll) C6 register names converted in the #include section at the top
- if (esp_cpu_dbgr_is_attached() && DPORT_REG_GET_BIT(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPU_WAIT_MODE_FORCE_ON) == 0) {
- /* when SYSTEM_CPU_WAIT_MODE_FORCE_ON is disabled in WFI mode SBA access to memory does not work for debugger,
- so do not enter that mode when debugger is connected */
- return;
- }
- rv_utils_wait_for_intr();
- #endif // __XTENSA__
- }
- /* -------------------------------------------------- CPU Registers ----------------------------------------------------
- *
- * ------------------------------------------------------------------------------------------------------------------ */
- /* ------------------------------------------------- CPU Interrupts ----------------------------------------------------
- *
- * ------------------------------------------------------------------------------------------------------------------ */
- // ---------------- Interrupt Descriptors ------------------
- #if SOC_CPU_HAS_FLEXIBLE_INTC
- static bool is_intr_num_resv(int intr_num)
- {
- // Workaround to reserve interrupt number 1 for Wi-Fi, 5,8 for Bluetooth, 6 for "permanently disabled interrupt"
- // [TODO: IDF-2465]
- uint32_t reserved = BIT(1) | BIT(5) | BIT(6) | BIT(8);
- // int_num 0,3,4,7 are inavaliable for PULP cpu
- #if CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5728 replace with a better macro name
- reserved |= BIT(0) | BIT(3) | BIT(4) | BIT(7);
- #endif
- if (reserved & BIT(intr_num)) {
- return true;
- }
- extern int _vector_table;
- extern int _interrupt_handler;
- const intptr_t pc = (intptr_t)(&_vector_table + intr_num);
- /* JAL instructions are relative to the PC there are executed from. */
- const intptr_t destination = pc + riscv_decode_offset_from_jal_instruction(pc);
- return destination != (intptr_t)&_interrupt_handler;
- }
- void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret)
- {
- intr_desc_ret->priority = 1; //Todo: We should make this -1
- intr_desc_ret->type = ESP_CPU_INTR_TYPE_NA;
- #if __riscv
- intr_desc_ret->flags = is_intr_num_resv(intr_num) ? ESP_CPU_INTR_DESC_FLAG_RESVD : 0;
- #else
- intr_desc_ret->flags = 0;
- #endif
- }
- #else // SOC_CPU_HAS_FLEXIBLE_INTC
- typedef struct {
- int priority;
- esp_cpu_intr_type_t type;
- uint32_t flags[SOC_CPU_CORES_NUM];
- } intr_desc_t;
- #if SOC_CPU_CORES_NUM > 1
- // Note: We currently only have dual core targets, so the table initializer is hard coded
- const static intr_desc_t intr_desc_table [SOC_CPU_INTR_NUM] = {
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //0
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //1
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //2
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //3
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //4
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //5
- #if CONFIG_FREERTOS_CORETIMER_0
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //6
- #else
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //6
- #endif
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //7
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //8
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //9
- { 1, ESP_CPU_INTR_TYPE_EDGE, { 0, 0 } }, //10
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //11
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0} }, //12
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0} }, //13
- { 7, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //14, NMI
- #if CONFIG_FREERTOS_CORETIMER_1
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //15
- #else
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //15
- #endif
- { 5, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //16
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //17
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //18
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //19
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //20
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //21
- { 3, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //22
- { 3, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //23
- { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //24
- { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //25
- { 5, ESP_CPU_INTR_TYPE_LEVEL, { 0, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //26
- { 3, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //27
- { 4, ESP_CPU_INTR_TYPE_EDGE, { 0, 0 } }, //28
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //29
- { 4, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //30
- { 5, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //31
- };
- #else // SOC_CPU_CORES_NUM > 1
- const static intr_desc_t intr_desc_table [SOC_CPU_INTR_NUM] = {
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //0
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //1
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //2
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //3
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //4
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //5
- #if CONFIG_FREERTOS_CORETIMER_0
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //6
- #else
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //6
- #endif
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //7
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //8
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //9
- { 1, ESP_CPU_INTR_TYPE_EDGE, { 0 } }, //10
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //11
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //12
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //13
- { 7, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //14, NMI
- #if CONFIG_FREERTOS_CORETIMER_1
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //15
- #else
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //15
- #endif
- { 5, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //16
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //17
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //18
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //19
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //20
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //21
- { 3, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //22
- { 3, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //23
- { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //24
- { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //25
- { 5, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //26
- { 3, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //27
- { 4, ESP_CPU_INTR_TYPE_EDGE, { 0 } }, //28
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //29
- { 4, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //30
- { 5, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //31
- };
- #endif // SOC_CPU_CORES_NUM > 1
- void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret)
- {
- assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
- #if SOC_CPU_CORES_NUM == 1
- core_id = 0; //If this is a single core target, hard code CPU ID to 0
- #endif
- intr_desc_ret->priority = intr_desc_table[intr_num].priority;
- intr_desc_ret->type = intr_desc_table[intr_num].type;
- intr_desc_ret->flags = intr_desc_table[intr_num].flags[core_id];
- }
- #endif // SOC_CPU_HAS_FLEXIBLE_INTC
- /* -------------------------------------------------- Memory Ports -----------------------------------------------------
- *
- * ------------------------------------------------------------------------------------------------------------------ */
- #if SOC_CPU_HAS_PMA
- static void esp_cpu_configure_invalid_regions(void)
- {
- const unsigned PMA_NONE = PMA_EN;
- __attribute__((unused)) const unsigned PMA_RW = PMA_EN | PMA_R | PMA_W;
- __attribute__((unused)) const unsigned PMA_RX = PMA_EN | PMA_R | PMA_X;
- __attribute__((unused)) const unsigned PMA_RWX = PMA_EN | PMA_R | PMA_W | PMA_X;
- // 1. Gap at bottom of address space
- PMA_ENTRY_SET_TOR(0, SOC_DEBUG_LOW, PMA_TOR | PMA_NONE);
- // 2. Gap between debug region & IROM
- PMA_ENTRY_SET_TOR(1, SOC_DEBUG_HIGH, PMA_NONE);
- PMA_ENTRY_SET_TOR(2, SOC_IROM_MASK_LOW, PMA_TOR | PMA_NONE);
- // 3. Gap between ROM & RAM
- PMA_ENTRY_SET_TOR(3, SOC_DROM_MASK_HIGH, PMA_NONE);
- PMA_ENTRY_SET_TOR(4, SOC_IRAM_LOW, PMA_TOR | PMA_NONE);
- // 4. Gap between DRAM and I_Cache
- PMA_ENTRY_SET_TOR(5, SOC_IRAM_HIGH, PMA_NONE);
- PMA_ENTRY_SET_TOR(6, SOC_IROM_LOW, PMA_TOR | PMA_NONE);
- // 5. Gap between D_Cache & LP_RAM
- PMA_ENTRY_SET_TOR(7, SOC_DROM_HIGH, PMA_NONE);
- PMA_ENTRY_SET_TOR(8, SOC_RTC_IRAM_LOW, PMA_TOR | PMA_NONE);
- // 6. Gap between LP memory & peripheral addresses
- PMA_ENTRY_SET_TOR(9, SOC_RTC_IRAM_HIGH, PMA_NONE);
- PMA_ENTRY_SET_TOR(10, SOC_PERIPHERAL_LOW, PMA_TOR | PMA_NONE);
- // 7. End of address space
- PMA_ENTRY_SET_TOR(11, SOC_PERIPHERAL_HIGH, PMA_NONE);
- PMA_ENTRY_SET_TOR(12, UINT32_MAX, PMA_TOR | PMA_NONE);
- }
- #endif
- #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
- void esp_cpu_configure_region_protection(void)
- {
- /* Note: currently this is configured the same on all Xtensa targets
- *
- * Both chips have the address space divided into 8 regions, 512MB each.
- */
- const int illegal_regions[] = {0, 4, 5, 6, 7}; // 0x00000000, 0x80000000, 0xa0000000, 0xc0000000, 0xe0000000
- for (size_t i = 0; i < sizeof(illegal_regions) / sizeof(illegal_regions[0]); ++i) {
- mpu_hal_set_region_access(illegal_regions[i], MPU_REGION_ILLEGAL);
- }
- mpu_hal_set_region_access(1, MPU_REGION_RW); // 0x20000000
- }
- #elif CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H4
- void esp_cpu_configure_region_protection(void)
- {
- /* Notes on implementation:
- *
- * 1) Note: ESP32-C3/H4 CPU doesn't support overlapping PMP regions
- *
- * 2) Therefore, we use TOR (top of range) entries to map the whole address
- * space, bottom to top.
- *
- * 3) There are not enough entries to describe all the memory regions 100% accurately.
- *
- * 4) This means some gaps (invalid memory) are accessible. Priority for extending regions
- * to cover gaps is to extend read-only or read-execute regions or read-only regions only
- * (executing unmapped addresses should always fault with invalid instruction, read-only means
- * stores will correctly fault even if reads may return some invalid value.)
- *
- * 5) Entries are grouped in order with some static asserts to try and verify everything is
- * correct.
- */
- const unsigned NONE = PMP_L | PMP_TOR;
- const unsigned R = PMP_L | PMP_TOR | PMP_R;
- const unsigned RW = PMP_L | PMP_TOR | PMP_R | PMP_W;
- const unsigned RX = PMP_L | PMP_TOR | PMP_R | PMP_X;
- const unsigned RWX = PMP_L | PMP_TOR | PMP_R | PMP_W | PMP_X;
- // 1. Gap at bottom of address space
- PMP_ENTRY_SET(0, SOC_DEBUG_LOW, NONE);
- // 2. Debug region
- PMP_ENTRY_SET(1, SOC_DEBUG_HIGH, RWX);
- _Static_assert(SOC_DEBUG_LOW < SOC_DEBUG_HIGH, "Invalid CPU debug region");
- // 3. Gap between debug region & DROM (flash cache)
- PMP_ENTRY_SET(2, SOC_DROM_LOW, NONE);
- _Static_assert(SOC_DEBUG_HIGH < SOC_DROM_LOW, "Invalid PMP entry order");
- // 4. DROM (flash cache)
- // 5. Gap between DROM & DRAM
- // (Note: To save PMP entries these two are merged into one read-only region)
- PMP_ENTRY_SET(3, SOC_DRAM_LOW, R);
- _Static_assert(SOC_DROM_LOW < SOC_DROM_HIGH, "Invalid DROM region");
- _Static_assert(SOC_DROM_HIGH < SOC_DRAM_LOW, "Invalid PMP entry order");
- // 6. DRAM
- PMP_ENTRY_SET(4, SOC_DRAM_HIGH, RW);
- _Static_assert(SOC_DRAM_LOW < SOC_DRAM_HIGH, "Invalid DRAM region");
- // 7. Gap between DRAM and Mask DROM
- // 8. Mask DROM
- // (Note: to save PMP entries these two are merged into one read-only region)
- PMP_ENTRY_SET(5, SOC_DROM_MASK_HIGH, R);
- _Static_assert(SOC_DRAM_HIGH < SOC_DROM_MASK_LOW, "Invalid PMP entry order");
- _Static_assert(SOC_DROM_MASK_LOW < SOC_DROM_MASK_HIGH, "Invalid mask DROM region");
- // 9. Gap between mask DROM and mask IROM
- // 10. Mask IROM
- // (Note: to save PMP entries these two are merged into one RX region)
- PMP_ENTRY_SET(6, SOC_IROM_MASK_HIGH, RX);
- _Static_assert(SOC_DROM_MASK_HIGH < SOC_IROM_MASK_LOW, "Invalid PMP entry order");
- _Static_assert(SOC_IROM_MASK_LOW < SOC_IROM_MASK_HIGH, "Invalid mask IROM region");
- // 11. Gap between mask IROM & IRAM
- PMP_ENTRY_SET(7, SOC_IRAM_LOW, NONE);
- _Static_assert(SOC_IROM_MASK_HIGH < SOC_IRAM_LOW, "Invalid PMP entry order");
- // 12. IRAM
- PMP_ENTRY_SET(8, SOC_IRAM_HIGH, RWX);
- _Static_assert(SOC_IRAM_LOW < SOC_IRAM_HIGH, "Invalid IRAM region");
- // 13. Gap between IRAM and IROM
- // 14. IROM (flash cache)
- // (Note: to save PMP entries these two are merged into one RX region)
- PMP_ENTRY_SET(9, SOC_IROM_HIGH, RX);
- _Static_assert(SOC_IRAM_HIGH < SOC_IROM_LOW, "Invalid PMP entry order");
- _Static_assert(SOC_IROM_LOW < SOC_IROM_HIGH, "Invalid IROM region");
- // 15. Gap between IROM & RTC slow memory
- PMP_ENTRY_SET(10, SOC_RTC_IRAM_LOW, NONE);
- _Static_assert(SOC_IROM_HIGH < SOC_RTC_IRAM_LOW, "Invalid PMP entry order");
- // 16. RTC fast memory
- PMP_ENTRY_SET(11, SOC_RTC_IRAM_HIGH, RWX);
- _Static_assert(SOC_RTC_IRAM_LOW < SOC_RTC_IRAM_HIGH, "Invalid RTC IRAM region");
- // 17. Gap between RTC fast memory & peripheral addresses
- PMP_ENTRY_SET(12, SOC_PERIPHERAL_LOW, NONE);
- _Static_assert(SOC_RTC_IRAM_HIGH < SOC_PERIPHERAL_LOW, "Invalid PMP entry order");
- // 18. Peripheral addresses
- PMP_ENTRY_SET(13, SOC_PERIPHERAL_HIGH, RW);
- _Static_assert(SOC_PERIPHERAL_LOW < SOC_PERIPHERAL_HIGH, "Invalid peripheral region");
- // 19. End of address space
- PMP_ENTRY_SET(14, UINT32_MAX, NONE); // all but last 4 bytes
- PMP_ENTRY_SET(15, UINT32_MAX, PMP_L | PMP_NA4); // last 4 bytes
- }
- #elif CONFIG_IDF_TARGET_ESP32C2
- #if CONFIG_ESP_SYSTEM_PMP_IDRAM_SPLIT && !BOOTLOADER_BUILD
- extern int _iram_end;
- extern int _data_start;
- #define IRAM_END (int)&_iram_end
- #define DRAM_START (int)&_data_start
- #else
- #define IRAM_END SOC_DIRAM_IRAM_HIGH
- #define DRAM_START SOC_DIRAM_DRAM_LOW
- #endif
- #ifdef BOOTLOADER_BUILD
- // Without L bit set
- #define CONDITIONAL_NONE 0x0
- #define CONDITIONAL_RX PMP_R | PMP_X
- #define CONDITIONAL_RW PMP_R | PMP_W
- #else
- // With L bit set
- #define CONDITIONAL_NONE NONE
- #define CONDITIONAL_RX RX
- #define CONDITIONAL_RW RW
- #endif
- void esp_cpu_configure_region_protection(void)
- {
- /* Notes on implementation:
- *
- * 1) ESP32-C2 CPU support overlapping PMP regions, configuration is based on static priority
- * feature(lowest numbered entry has highest priority).
- *
- * 2) Therefore, we use TOR (top of range) and NAOPT entries to map the effective area.
- * Finally, define any address without access permission.
- *
- * 3) 3-15 PMPADDR entries be hardcoded to fixed value, 0-2 PMPADDR be programmed to split ID SRAM
- * as IRAM/DRAM. All PMPCFG entryies be available.
- *
- * 4) Ideally, PMPADDR 0-2 entries should be configured twice, once during bootloader startup and another during app startup.
- * However, the CPU currently always executes in machine mode and to enforce these permissions in machine mode, we need
- * to set the Lock (L) bit but if set once, it cannot be reconfigured. So, we only configure 0-2 PMPADDR during app startup.
- */
- const unsigned NONE = PMP_L ;
- const unsigned R = PMP_L | PMP_R;
- const unsigned X = PMP_L | PMP_X;
- const unsigned RW = PMP_L | PMP_R | PMP_W;
- const unsigned RX = PMP_L | PMP_R | PMP_X;
- const unsigned RWX = PMP_L | PMP_R | PMP_W | PMP_X;
- /* There are 4 configuration scenarios for PMPADDR 0-2
- *
- * 1. Bootloader build:
- * - We cannot set the lock bit as we need to reconfigure it again for the application.
- * We configure PMPADDR 0-1 to cover entire valid IRAM range and PMPADDR 2-3 to cover entire valid DRAM range.
- *
- * 2. Application build with CONFIG_ESP_SYSTEM_PMP_IDRAM_SPLIT enabled
- * - We split the SRAM into IRAM and DRAM such that IRAM region cannot be accessed via DBUS
- * and DRAM region cannot be accessed via IBUS. We use _iram_end and _data_start markers to set the boundaries.
- * We also lock these entries so the R/W/X permissions are enforced even for machine mode
- *
- * 3. Application build with CONFIG_ESP_SYSTEM_PMP_IDRAM_SPLIT disabled
- * - The IRAM-DRAM split is not enabled so we just need to ensure that access to only valid address ranges are successful
- * so for that we set PMPADDR 0-1 to cover entire valid IRAM range and PMPADDR 2-3 to cover entire DRAM region.
- * We also lock these entries so the R/W/X permissions are enforced even for machine mode
- *
- * 4. CPU is in OCD debug mode
- * - The IRAM-DRAM split is not enabled so that OpenOCD can write and execute from IRAM.
- * We set PMPADDR 0-1 to cover entire valid IRAM range and PMPADDR 2-3 to cover entire DRAM region.
- * We also lock these entries so the R/W/X permissions are enforced even for machine mode
- *
- * PMPADDR 3-15 are hard-coded and are appicable to both, bootloader and application. So we configure and lock
- * these during BOOTLOADER build itself. During application build, reconfiguration of these PMPADDR entries
- * are silently ignored by the CPU
- */
- if (esp_cpu_dbgr_is_attached()) {
- // Anti-FI check that cpu is really in ocd mode
- ESP_FAULT_ASSERT(esp_cpu_dbgr_is_attached());
- // 1. IRAM
- PMP_ENTRY_SET(0, SOC_DIRAM_IRAM_LOW, NONE);
- PMP_ENTRY_SET(1, SOC_DIRAM_IRAM_HIGH, PMP_TOR | RWX);
- // 2. DRAM
- PMP_ENTRY_SET(2, SOC_DIRAM_DRAM_LOW, NONE);
- PMP_ENTRY_CFG_SET(3, PMP_TOR | RW);
- } else {
- // 1. IRAM
- PMP_ENTRY_SET(0, SOC_DIRAM_IRAM_LOW, CONDITIONAL_NONE);
- PMP_ENTRY_SET(1, IRAM_END, PMP_TOR | CONDITIONAL_RX);
- // 2. DRAM
- PMP_ENTRY_SET(2, DRAM_START, CONDITIONAL_NONE);
- PMP_ENTRY_CFG_SET(3, PMP_TOR | CONDITIONAL_RW);
- }
- // 3. Debug region
- PMP_ENTRY_CFG_SET(4, PMP_NAPOT | RWX);
- // 4. DROM (flash dcache)
- PMP_ENTRY_CFG_SET(5, PMP_NAPOT | R);
- // 5. DROM_MASK
- PMP_ENTRY_CFG_SET(6, NONE);
- PMP_ENTRY_CFG_SET(7, PMP_TOR | R);
- // 6. IROM_MASK
- PMP_ENTRY_CFG_SET(8, NONE);
- PMP_ENTRY_CFG_SET(9, PMP_TOR | RX);
- // 7. IROM (flash icache)
- PMP_ENTRY_CFG_SET(10, PMP_NAPOT | RX);
- // 8. Peripheral addresses
- PMP_ENTRY_CFG_SET(11, PMP_NAPOT | RW);
- // 9. SRAM (used as ICache)
- PMP_ENTRY_CFG_SET(12, PMP_NAPOT | X);
- // 10. no access to any address below(0x0-0xFFFF_FFFF)
- PMP_ENTRY_CFG_SET(13, PMP_NA4 | NONE);// last 4 bytes(0xFFFFFFFC)
- PMP_ENTRY_CFG_SET(14, NONE);
- PMP_ENTRY_CFG_SET(15, PMP_TOR | NONE);
- }
- #elif CONFIG_IDF_TARGET_ESP32C6
- #ifdef BOOTLOADER_BUILD
- // Without L bit set
- #define CONDITIONAL_NONE 0x0
- #define CONDITIONAL_RX PMP_R | PMP_X
- #define CONDITIONAL_RW PMP_R | PMP_W
- #define CONDITIONAL_RWX PMP_R | PMP_W | PMP_X
- #else
- // With L bit set
- #define CONDITIONAL_NONE PMP_NONE
- #define CONDITIONAL_RX PMP_RX
- #define CONDITIONAL_RW PMP_RW
- #define CONDITIONAL_RWX PMP_RWX
- #endif
- void esp_cpu_configure_region_protection(void)
- {
- /* Notes on implementation:
- *
- * 1) Note: ESP32-C6 CPU doesn't support overlapping PMP regions
- *
- * 2) ESP32-C6 supports 16 PMA regions so we use this feature to block all the invalid address ranges
- *
- * 3) We use combination of NAPOT (Naturally Aligned Power Of Two) and TOR (top of range)
- * entries to map all the valid address space, bottom to top. This leaves us with some extra PMP entries
- * which can be used to provide more granular access
- *
- * 4) Entries are grouped in order with some static asserts to try and verify everything is
- * correct.
- */
- /* There are 4 configuration scenarios for SRAM
- *
- * 1. Bootloader build:
- * - We cannot set the lock bit as we need to reconfigure it again for the application.
- * We configure PMP to cover entire valid IRAM and DRAM range.
- *
- * 2. Application build with CONFIG_ESP_SYSTEM_PMP_IDRAM_SPLIT enabled
- * - We split the SRAM into IRAM and DRAM such that IRAM region cannot be written to
- * and DRAM region cannot be executed. We use _iram_end and _data_start markers to set the boundaries.
- * We also lock these entries so the R/W/X permissions are enforced even for machine mode
- *
- * 3. Application build with CONFIG_ESP_SYSTEM_PMP_IDRAM_SPLIT disabled
- * - The IRAM-DRAM split is not enabled so we just need to ensure that access to only valid address ranges are successful
- * so for that we set PMP to cover entire valid IRAM and DRAM region.
- * We also lock these entries so the R/W/X permissions are enforced even for machine mode
- *
- * 4. CPU is in OCD debug mode
- * - The IRAM-DRAM split is not enabled so that OpenOCD can write and execute from IRAM.
- * We set PMP to cover entire valid IRAM and DRAM region.
- * We also lock these entries so the R/W/X permissions are enforced even for machine mode
- */
- const unsigned PMP_NONE = PMP_L;
- const unsigned PMP_RW = PMP_L | PMP_R | PMP_W;
- const unsigned PMP_RX = PMP_L | PMP_R | PMP_X;
- const unsigned PMP_RWX = PMP_L | PMP_R | PMP_W | PMP_X;
- //
- // Configure all the invalid address regions using PMA
- //
- esp_cpu_configure_invalid_regions();
- //
- // Configure all the valid address regions using PMP
- //
- // 1. Debug region
- const uint32_t pmpaddr0 = PMPADDR_NAPOT(SOC_DEBUG_LOW, SOC_DEBUG_HIGH);
- PMP_ENTRY_SET(0, pmpaddr0, PMP_NAPOT | PMP_RWX);
- _Static_assert(SOC_DEBUG_LOW < SOC_DEBUG_HIGH, "Invalid CPU debug region");
- // 2.1 I-ROM
- PMP_ENTRY_SET(1, SOC_IROM_MASK_LOW, PMP_NONE);
- PMP_ENTRY_SET(2, SOC_IROM_MASK_HIGH, PMP_TOR | PMP_RX);
- _Static_assert(SOC_IROM_MASK_LOW < SOC_IROM_MASK_HIGH, "Invalid I-ROM region");
- // 2.2 D-ROM
- PMP_ENTRY_SET(3, SOC_DROM_MASK_LOW, PMP_NONE);
- PMP_ENTRY_SET(4, SOC_DROM_MASK_HIGH, PMP_TOR | PMP_R);
- _Static_assert(SOC_DROM_MASK_LOW < SOC_DROM_MASK_HIGH, "Invalid D-ROM region");
- if (esp_cpu_dbgr_is_attached()) {
- // Anti-FI check that cpu is really in ocd mode
- ESP_FAULT_ASSERT(esp_cpu_dbgr_is_attached());
- // 5. IRAM and DRAM
- const uint32_t pmpaddr5 = PMPADDR_NAPOT(SOC_IRAM_LOW, SOC_IRAM_HIGH);
- PMP_ENTRY_SET(5, pmpaddr5, PMP_NAPOT | PMP_RWX);
- _Static_assert(SOC_IRAM_LOW < SOC_IRAM_HIGH, "Invalid RAM region");
- } else {
- #if CONFIG_ESP_SYSTEM_PMP_IDRAM_SPLIT && !BOOTLOADER_BUILD
- extern int _iram_end;
- // 5. IRAM and DRAM
- PMP_ENTRY_SET(5, SOC_IRAM_LOW, PMP_NONE);
- PMP_ENTRY_SET(6, (int)&_iram_end, PMP_TOR | PMP_RX);
- PMP_ENTRY_SET(7, SOC_DRAM_HIGH, PMP_TOR | PMP_RW);
- #else
- // 5. IRAM and DRAM
- const uint32_t pmpaddr5 = PMPADDR_NAPOT(SOC_IRAM_LOW, SOC_IRAM_HIGH);
- PMP_ENTRY_SET(5, pmpaddr5, PMP_NAPOT | CONDITIONAL_RWX);
- _Static_assert(SOC_IRAM_LOW < SOC_IRAM_HIGH, "Invalid RAM region");
- #endif
- }
- // 4. I_Cache (flash)
- const uint32_t pmpaddr8 = PMPADDR_NAPOT(SOC_IROM_LOW, SOC_IROM_HIGH);
- PMP_ENTRY_SET(8, pmpaddr8, PMP_NAPOT | PMP_RX);
- _Static_assert(SOC_IROM_LOW < SOC_IROM_HIGH, "Invalid I_Cache region");
- // 5. D_Cache (flash)
- const uint32_t pmpaddr9 = PMPADDR_NAPOT(SOC_DROM_LOW, SOC_DROM_HIGH);
- PMP_ENTRY_SET(9, pmpaddr9, PMP_NAPOT | PMP_R);
- _Static_assert(SOC_DROM_LOW < SOC_DROM_HIGH, "Invalid D_Cache region");
- // 6. LP memory
- #if CONFIG_ESP_SYSTEM_PMP_IDRAM_SPLIT && !BOOTLOADER_BUILD
- extern int _rtc_text_end;
- PMP_ENTRY_SET(10, SOC_RTC_IRAM_LOW, PMP_NONE);
- PMP_ENTRY_SET(11, (int)&_rtc_text_end, PMP_TOR | PMP_RX);
- PMP_ENTRY_SET(12, SOC_RTC_IRAM_HIGH, PMP_TOR | PMP_RW);
- #else
- const uint32_t pmpaddr10 = PMPADDR_NAPOT(SOC_RTC_IRAM_LOW, SOC_RTC_IRAM_HIGH);
- PMP_ENTRY_SET(10, pmpaddr10, PMP_NAPOT | CONDITIONAL_RWX);
- _Static_assert(SOC_RTC_IRAM_LOW < SOC_RTC_IRAM_HIGH, "Invalid RTC IRAM region");
- #endif
- // 7. Peripheral addresses
- const uint32_t pmpaddr13 = PMPADDR_NAPOT(SOC_PERIPHERAL_LOW, SOC_PERIPHERAL_HIGH);
- PMP_ENTRY_SET(13, pmpaddr13, PMP_NAPOT | PMP_RW);
- _Static_assert(SOC_PERIPHERAL_LOW < SOC_PERIPHERAL_HIGH, "Invalid peripheral region");
- }
- #endif
- /* ---------------------------------------------------- Debugging ------------------------------------------------------
- *
- * ------------------------------------------------------------------------------------------------------------------ */
- // --------------- Breakpoints/Watchpoints -----------------
- #if SOC_CPU_BREAKPOINTS_NUM > 0
- esp_err_t esp_cpu_set_breakpoint(int bp_num, const void *bp_addr)
- {
- /*
- Todo:
- - Check that bp_num is in range
- */
- #if __XTENSA__
- xt_utils_set_breakpoint(bp_num, (uint32_t)bp_addr);
- #else
- if (esp_cpu_dbgr_is_attached()) {
- /* If we want to set breakpoint which when hit transfers control to debugger
- * we need to set `action` in `mcontrol` to 1 (Enter Debug Mode).
- * That `action` value is supported only when `dmode` of `tdata1` is set.
- * But `dmode` can be modified by debugger only (from Debug Mode).
- *
- * So when debugger is connected we use special syscall to ask it to set breakpoint for us.
- */
- long args[] = {true, bp_num, (long)bp_addr};
- int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_BREAKPOINT_SET, args);
- if (ret == 0) {
- return ESP_ERR_INVALID_RESPONSE;
- }
- }
- rv_utils_set_breakpoint(bp_num, (uint32_t)bp_addr);
- #endif // __XTENSA__
- return ESP_OK;
- }
- esp_err_t esp_cpu_clear_breakpoint(int bp_num)
- {
- /*
- Todo:
- - Check if the bp_num is valid
- */
- #if __XTENSA__
- xt_utils_clear_breakpoint(bp_num);
- #else
- if (esp_cpu_dbgr_is_attached()) {
- // See description in esp_cpu_set_breakpoint()
- long args[] = {false, bp_num};
- int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_BREAKPOINT_SET, args);
- if (ret == 0) {
- return ESP_ERR_INVALID_RESPONSE;
- }
- }
- rv_utils_clear_breakpoint(bp_num);
- #endif // __XTENSA__
- return ESP_OK;
- }
- #endif // SOC_CPU_BREAKPOINTS_NUM > 0
- #if SOC_CPU_WATCHPOINTS_NUM > 0
- esp_err_t esp_cpu_set_watchpoint(int wp_num, const void *wp_addr, size_t size, esp_cpu_watchpoint_trigger_t trigger)
- {
- /*
- Todo:
- - Check that wp_num is in range
- - Check if the wp_num is already in use
- */
- // Check if size is 2^n, where n is in [0...6]
- if (size < 1 || size > 64 || (size & (size - 1)) != 0) {
- return ESP_ERR_INVALID_ARG;
- }
- bool on_read = (trigger == ESP_CPU_WATCHPOINT_LOAD || trigger == ESP_CPU_WATCHPOINT_ACCESS);
- bool on_write = (trigger == ESP_CPU_WATCHPOINT_STORE || trigger == ESP_CPU_WATCHPOINT_ACCESS);
- #if __XTENSA__
- xt_utils_set_watchpoint(wp_num, (uint32_t)wp_addr, size, on_read, on_write);
- #else
- if (esp_cpu_dbgr_is_attached()) {
- // See description in esp_cpu_set_breakpoint()
- long args[] = {true, wp_num, (long)wp_addr, (long)size,
- (long)((on_read ? ESP_SEMIHOSTING_WP_FLG_RD : 0) | (on_write ? ESP_SEMIHOSTING_WP_FLG_WR : 0))
- };
- int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_WATCHPOINT_SET, args);
- if (ret == 0) {
- return ESP_ERR_INVALID_RESPONSE;
- }
- }
- rv_utils_set_watchpoint(wp_num, (uint32_t)wp_addr, size, on_read, on_write);
- #endif // __XTENSA__
- return ESP_OK;
- }
- esp_err_t esp_cpu_clear_watchpoint(int wp_num)
- {
- /*
- Todo:
- - Check if the wp_num is valid
- */
- #if __XTENSA__
- xt_utils_clear_watchpoint(wp_num);
- #else
- if (esp_cpu_dbgr_is_attached()) {
- // See description in esp_cpu_dbgr_is_attached()
- long args[] = {false, wp_num};
- int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_WATCHPOINT_SET, args);
- if (ret == 0) {
- return ESP_ERR_INVALID_RESPONSE;
- }
- }
- rv_utils_clear_watchpoint(wp_num);
- #endif // __XTENSA__
- return ESP_OK;
- }
- #endif // SOC_CPU_WATCHPOINTS_NUM > 0
- /* ------------------------------------------------------ Misc ---------------------------------------------------------
- *
- * ------------------------------------------------------------------------------------------------------------------ */
- #if __XTENSA__ && XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
- static DRAM_ATTR uint32_t external_ram_cas_lock = 0;
- #endif
- bool esp_cpu_compare_and_set(volatile uint32_t *addr, uint32_t compare_value, uint32_t new_value)
- {
- #if __XTENSA__
- bool ret;
- #if XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
- // Check if the target address is in external RAM
- if ((uint32_t)addr >= SOC_EXTRAM_DATA_LOW && (uint32_t)addr < SOC_EXTRAM_DATA_HIGH) {
- /* The target address is in external RAM, thus the native CAS instruction cannot be used. Instead, we achieve
- atomicity by disabling interrupts and then acquiring an external RAM CAS lock. */
- uint32_t intr_level;
- __asm__ __volatile__ ("rsil %0, " XTSTR(XCHAL_EXCM_LEVEL) "\n"
- : "=r"(intr_level));
- if (!xt_utils_compare_and_set(&external_ram_cas_lock, 0, 1)) {
- // External RAM CAS lock already taken. Exit
- ret = false;
- goto exit;
- }
- // Now we compare and set the target address
- ret = (*addr == compare_value);
- if (ret) {
- *addr = new_value;
- }
- // Release the external RAM CAS lock
- external_ram_cas_lock = 0;
- exit:
- // Reenable interrupts
- __asm__ __volatile__ ("memw \n"
- "wsr %0, ps\n"
- :: "r"(intr_level));
- } else
- #endif // XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
- {
- // The target address is in internal RAM. Use the CPU's native CAS instruction
- ret = xt_utils_compare_and_set(addr, compare_value, new_value);
- }
- return ret;
- #else // __XTENSA__
- // Single core targets don't have atomic CAS instruction. So access method is the same for internal and external RAM
- return rv_utils_compare_and_set(addr, compare_value, new_value);
- #endif
- }
|