uart.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "esp32/clk.h"
  20. #include "malloc.h"
  21. #include "freertos/FreeRTOS.h"
  22. #include "freertos/semphr.h"
  23. #include "freertos/xtensa_api.h"
  24. #include "freertos/task.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/uart_periph.h"
  27. #include "driver/uart.h"
  28. #include "driver/gpio.h"
  29. #include "driver/uart_select.h"
  30. #include "sdkconfig.h"
  31. #ifdef CONFIG_UART_ISR_IN_IRAM
  32. #define UART_ISR_ATTR IRAM_ATTR
  33. #else
  34. #define UART_ISR_ATTR
  35. #endif
  36. #define UART_NUM SOC_UART_NUM
  37. #define XOFF (char)0x13
  38. #define XON (char)0x11
  39. static const char* UART_TAG = "uart";
  40. #define UART_CHECK(a, str, ret_val) \
  41. if (!(a)) { \
  42. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  43. return (ret_val); \
  44. }
  45. #define UART_EMPTY_THRESH_DEFAULT (10)
  46. #define UART_FULL_THRESH_DEFAULT (120)
  47. #define UART_TOUT_THRESH_DEFAULT (10)
  48. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  49. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  50. #define UART_TX_IDLE_NUM_DEFAULT (0)
  51. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  52. #define UART_MIN_WAKEUP_THRESH (2)
  53. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  54. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  55. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  56. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  57. // Check actual UART mode set
  58. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  59. typedef struct {
  60. uart_event_type_t type; /*!< UART TX data type */
  61. struct {
  62. int brk_len;
  63. size_t size;
  64. uint8_t data[0];
  65. } tx_data;
  66. } uart_tx_data_t;
  67. typedef struct {
  68. int wr;
  69. int rd;
  70. int len;
  71. int* data;
  72. } uart_pat_rb_t;
  73. typedef struct {
  74. uart_port_t uart_num; /*!< UART port number*/
  75. int queue_size; /*!< UART event queue size*/
  76. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  77. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  78. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  79. bool coll_det_flg; /*!< UART collision detection flag */
  80. //rx parameters
  81. int rx_buffered_len; /*!< UART cached data length */
  82. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  83. int rx_buf_size; /*!< RX ring buffer size */
  84. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  85. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  86. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  87. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  88. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  89. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  90. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  91. uart_pat_rb_t rx_pattern_pos;
  92. //tx parameters
  93. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  94. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  95. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  96. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  97. int tx_buf_size; /*!< TX ring buffer size */
  98. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  99. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  100. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  101. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  102. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  103. uint32_t tx_len_cur;
  104. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  105. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  106. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  107. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  108. } uart_obj_t;
  109. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  110. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  111. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {
  112. &UART0,
  113. &UART1,
  114. #if UART_NUM > 2
  115. &UART2
  116. #endif
  117. };
  118. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {
  119. portMUX_INITIALIZER_UNLOCKED,
  120. portMUX_INITIALIZER_UNLOCKED,
  121. #if UART_NUM > 2
  122. portMUX_INITIALIZER_UNLOCKED
  123. #endif
  124. };
  125. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  126. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  127. {
  128. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  129. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  130. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  131. UART[uart_num]->conf0.bit_num = data_bit;
  132. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  133. return ESP_OK;
  134. }
  135. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  136. {
  137. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  138. *(data_bit) = UART[uart_num]->conf0.bit_num;
  139. return ESP_OK;
  140. }
  141. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  142. {
  143. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  144. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  145. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  146. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  147. if (stop_bit == UART_STOP_BITS_2) {
  148. stop_bit = UART_STOP_BITS_1;
  149. UART[uart_num]->rs485_conf.dl1_en = 1;
  150. } else {
  151. UART[uart_num]->rs485_conf.dl1_en = 0;
  152. }
  153. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  154. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  155. return ESP_OK;
  156. }
  157. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  158. {
  159. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  160. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  161. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  162. (*stop_bit) = UART_STOP_BITS_2;
  163. } else {
  164. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  165. }
  166. return ESP_OK;
  167. }
  168. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  169. {
  170. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  171. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  172. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  173. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  174. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  175. return ESP_OK;
  176. }
  177. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  178. {
  179. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  180. int val = UART[uart_num]->conf0.val;
  181. if(val & UART_PARITY_EN_M) {
  182. if(val & UART_PARITY_M) {
  183. (*parity_mode) = UART_PARITY_ODD;
  184. } else {
  185. (*parity_mode) = UART_PARITY_EVEN;
  186. }
  187. } else {
  188. (*parity_mode) = UART_PARITY_DISABLE;
  189. }
  190. return ESP_OK;
  191. }
  192. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  193. {
  194. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  195. esp_err_t ret = ESP_OK;
  196. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  197. int uart_clk_freq;
  198. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  199. /* this UART has been configured to use REF_TICK */
  200. uart_clk_freq = REF_CLK_FREQ;
  201. } else {
  202. uart_clk_freq = esp_clk_apb_freq();
  203. }
  204. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  205. if (clk_div < 16) {
  206. /* baud rate is too high for this clock frequency */
  207. ret = ESP_ERR_INVALID_ARG;
  208. } else {
  209. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  210. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  211. }
  212. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  213. return ret;
  214. }
  215. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  216. {
  217. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  218. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  219. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  220. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  221. uint32_t uart_clk_freq = esp_clk_apb_freq();
  222. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  223. uart_clk_freq = REF_CLK_FREQ;
  224. }
  225. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  226. return ESP_OK;
  227. }
  228. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  229. {
  230. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  231. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  232. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  233. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  234. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  235. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  236. return ESP_OK;
  237. }
  238. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  239. {
  240. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  241. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  242. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  243. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  244. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  245. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  246. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  247. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  248. UART[uart_num]->swfc_conf.xon_char = XON;
  249. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  250. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  251. return ESP_OK;
  252. }
  253. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  254. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  255. {
  256. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  257. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  258. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  259. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  260. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  261. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  262. UART[uart_num]->conf1.rx_flow_en = 1;
  263. } else {
  264. UART[uart_num]->conf1.rx_flow_en = 0;
  265. }
  266. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  267. UART[uart_num]->conf0.tx_flow_en = 1;
  268. } else {
  269. UART[uart_num]->conf0.tx_flow_en = 0;
  270. }
  271. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  272. return ESP_OK;
  273. }
  274. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  275. {
  276. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  277. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  278. if(UART[uart_num]->conf1.rx_flow_en) {
  279. val |= UART_HW_FLOWCTRL_RTS;
  280. }
  281. if(UART[uart_num]->conf0.tx_flow_en) {
  282. val |= UART_HW_FLOWCTRL_CTS;
  283. }
  284. (*flow_ctrl) = val;
  285. return ESP_OK;
  286. }
  287. static esp_err_t UART_ISR_ATTR uart_reset_rx_fifo(uart_port_t uart_num)
  288. {
  289. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  290. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  291. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  292. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  293. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  294. READ_PERI_REG(UART_FIFO_REG(uart_num));
  295. }
  296. return ESP_OK;
  297. }
  298. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  299. {
  300. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  301. //intr_clr register is write-only
  302. UART[uart_num]->int_clr.val = clr_mask;
  303. return ESP_OK;
  304. }
  305. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  306. {
  307. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  308. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  309. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  310. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  311. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  312. return ESP_OK;
  313. }
  314. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  315. {
  316. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  317. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  318. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  319. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  320. return ESP_OK;
  321. }
  322. static void UART_ISR_ATTR uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  323. {
  324. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  325. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  326. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  327. }
  328. static void UART_ISR_ATTR uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  329. {
  330. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  331. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  332. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  333. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  334. }
  335. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  336. {
  337. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  338. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  339. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  340. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  341. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  342. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  343. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  344. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  345. free(pdata);
  346. }
  347. return ESP_OK;
  348. }
  349. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  350. {
  351. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  352. esp_err_t ret = ESP_OK;
  353. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  354. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  355. int next = p_pos->wr + 1;
  356. if (next >= p_pos->len) {
  357. next = 0;
  358. }
  359. if (next == p_pos->rd) {
  360. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  361. ret = ESP_FAIL;
  362. } else {
  363. p_pos->data[p_pos->wr] = pos;
  364. p_pos->wr = next;
  365. ret = ESP_OK;
  366. }
  367. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  368. return ret;
  369. }
  370. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  371. {
  372. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  373. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  374. return ESP_ERR_INVALID_STATE;
  375. } else {
  376. esp_err_t ret = ESP_OK;
  377. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  378. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  379. if (p_pos->rd == p_pos->wr) {
  380. ret = ESP_FAIL;
  381. } else {
  382. p_pos->rd++;
  383. }
  384. if (p_pos->rd >= p_pos->len) {
  385. p_pos->rd = 0;
  386. }
  387. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  388. return ret;
  389. }
  390. }
  391. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  392. {
  393. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  394. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  395. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  396. int rd = p_pos->rd;
  397. while(rd != p_pos->wr) {
  398. p_pos->data[rd] -= diff_len;
  399. int rd_rec = rd;
  400. rd ++;
  401. if (rd >= p_pos->len) {
  402. rd = 0;
  403. }
  404. if (p_pos->data[rd_rec] < 0) {
  405. p_pos->rd = rd;
  406. }
  407. }
  408. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  409. return ESP_OK;
  410. }
  411. int uart_pattern_pop_pos(uart_port_t uart_num)
  412. {
  413. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  414. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  415. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  416. int pos = -1;
  417. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  418. pos = pat_pos->data[pat_pos->rd];
  419. uart_pattern_dequeue(uart_num);
  420. }
  421. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  422. return pos;
  423. }
  424. int uart_pattern_get_pos(uart_port_t uart_num)
  425. {
  426. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  427. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  428. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  429. int pos = -1;
  430. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  431. pos = pat_pos->data[pat_pos->rd];
  432. }
  433. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  434. return pos;
  435. }
  436. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  437. {
  438. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  439. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  440. int* pdata = (int*) malloc(queue_length * sizeof(int));
  441. if(pdata == NULL) {
  442. return ESP_ERR_NO_MEM;
  443. }
  444. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  445. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  446. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  447. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  448. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  449. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  450. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  451. free(ptmp);
  452. return ESP_OK;
  453. }
  454. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  455. {
  456. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  457. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  458. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  459. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  460. UART[uart_num]->at_cmd_char.data = pattern_chr;
  461. UART[uart_num]->at_cmd_char.char_num = chr_num;
  462. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  463. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  464. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  465. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  466. }
  467. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  468. {
  469. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  470. }
  471. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  472. {
  473. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  474. }
  475. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  476. {
  477. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  478. }
  479. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  480. {
  481. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  482. }
  483. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  484. {
  485. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  486. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  487. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  488. UART[uart_num]->int_clr.txfifo_empty = 1;
  489. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  490. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  491. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  492. return ESP_OK;
  493. }
  494. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  495. {
  496. int ret;
  497. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  498. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  499. switch(uart_num) {
  500. case UART_NUM_1:
  501. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  502. break;
  503. #if UART_NUM > 2
  504. case UART_NUM_2:
  505. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  506. break;
  507. #endif
  508. case UART_NUM_0:
  509. default:
  510. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  511. break;
  512. }
  513. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  514. return ret;
  515. }
  516. esp_err_t uart_isr_free(uart_port_t uart_num)
  517. {
  518. esp_err_t ret;
  519. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  520. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  521. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  522. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  523. p_uart_obj[uart_num]->intr_handle=NULL;
  524. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  525. return ret;
  526. }
  527. //internal signal can be output to multiple GPIO pads
  528. //only one GPIO pad can connect with input signal
  529. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  530. {
  531. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  532. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  533. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  534. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  535. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  536. int tx_sig, rx_sig, rts_sig, cts_sig;
  537. switch(uart_num) {
  538. case UART_NUM_0:
  539. tx_sig = U0TXD_OUT_IDX;
  540. rx_sig = U0RXD_IN_IDX;
  541. rts_sig = U0RTS_OUT_IDX;
  542. cts_sig = U0CTS_IN_IDX;
  543. break;
  544. case UART_NUM_1:
  545. tx_sig = U1TXD_OUT_IDX;
  546. rx_sig = U1RXD_IN_IDX;
  547. rts_sig = U1RTS_OUT_IDX;
  548. cts_sig = U1CTS_IN_IDX;
  549. break;
  550. #if UART_NUM > 2
  551. case UART_NUM_2:
  552. tx_sig = U2TXD_OUT_IDX;
  553. rx_sig = U2RXD_IN_IDX;
  554. rts_sig = U2RTS_OUT_IDX;
  555. cts_sig = U2CTS_IN_IDX;
  556. break;
  557. #endif
  558. case UART_NUM_MAX:
  559. default:
  560. tx_sig = U0TXD_OUT_IDX;
  561. rx_sig = U0RXD_IN_IDX;
  562. rts_sig = U0RTS_OUT_IDX;
  563. cts_sig = U0CTS_IN_IDX;
  564. break;
  565. }
  566. if(tx_io_num >= 0) {
  567. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  568. gpio_set_level(tx_io_num, 1);
  569. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  570. }
  571. if(rx_io_num >= 0) {
  572. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  573. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  574. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  575. gpio_matrix_in(rx_io_num, rx_sig, 0);
  576. }
  577. if(rts_io_num >= 0) {
  578. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  579. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  580. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  581. }
  582. if(cts_io_num >= 0) {
  583. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  584. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  585. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  586. gpio_matrix_in(cts_io_num, cts_sig, 0);
  587. }
  588. return ESP_OK;
  589. }
  590. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  591. {
  592. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  593. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  594. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  595. UART[uart_num]->conf0.sw_rts = level & 0x1;
  596. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  597. return ESP_OK;
  598. }
  599. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  600. {
  601. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  602. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  603. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  604. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  605. return ESP_OK;
  606. }
  607. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  608. {
  609. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  610. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  611. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  612. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  613. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  614. return ESP_OK;
  615. }
  616. static periph_module_t get_periph_module(uart_port_t uart_num)
  617. {
  618. periph_module_t periph_module = PERIPH_UART0_MODULE;
  619. if (uart_num == UART_NUM_0) {
  620. periph_module = PERIPH_UART0_MODULE;
  621. } else if (uart_num == UART_NUM_1) {
  622. periph_module = PERIPH_UART1_MODULE;
  623. }
  624. #if SOC_UART_NUM > 2
  625. else if (uart_num == UART_NUM_2) {
  626. periph_module = PERIPH_UART2_MODULE;
  627. }
  628. #endif
  629. else {
  630. assert(0 && "uart_num error");
  631. }
  632. return periph_module;
  633. }
  634. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  635. {
  636. esp_err_t r;
  637. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  638. UART_CHECK((uart_config), "param null", ESP_FAIL);
  639. periph_module_t periph_module = get_periph_module(uart_num);
  640. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  641. periph_module_reset(periph_module);
  642. }
  643. periph_module_enable(periph_module);
  644. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  645. if (r != ESP_OK) return r;
  646. UART[uart_num]->conf0.val =
  647. (uart_config->parity << UART_PARITY_S)
  648. | (uart_config->data_bits << UART_BIT_NUM_S)
  649. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  650. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  651. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  652. if (r != ESP_OK) return r;
  653. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  654. if (r != ESP_OK) return r;
  655. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  656. //A hardware reset does not reset the fifo,
  657. //so we need to reset the fifo manually.
  658. uart_reset_rx_fifo(uart_num);
  659. return r;
  660. }
  661. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  662. {
  663. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  664. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  665. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  666. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  667. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  668. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  669. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  670. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  671. UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
  672. } else {
  673. UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
  674. }
  675. UART[uart_num]->conf1.rx_tout_en = 1;
  676. } else {
  677. UART[uart_num]->conf1.rx_tout_en = 0;
  678. }
  679. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  680. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  681. }
  682. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  683. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  684. }
  685. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  686. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  687. return ESP_OK;
  688. }
  689. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  690. {
  691. int cnt = 0;
  692. int len = length;
  693. while (len >= 0) {
  694. if (buf[len] == pat_chr) {
  695. cnt++;
  696. } else {
  697. cnt = 0;
  698. }
  699. if (cnt >= pat_num) {
  700. break;
  701. }
  702. len --;
  703. }
  704. return len;
  705. }
  706. //internal isr handler for default driver code.
  707. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  708. {
  709. uart_obj_t *p_uart = (uart_obj_t*) param;
  710. uint8_t uart_num = p_uart->uart_num;
  711. uart_dev_t* uart_reg = UART[uart_num];
  712. int rx_fifo_len = 0;
  713. uint8_t buf_idx = 0;
  714. uint32_t uart_intr_status = 0;
  715. uart_event_t uart_event;
  716. portBASE_TYPE HPTaskAwoken = 0;
  717. static uint8_t pat_flg = 0;
  718. while(1) {
  719. uart_intr_status = uart_reg->int_st.val;
  720. // The `continue statement` may cause the interrupt to loop infinitely
  721. // we exit the interrupt here
  722. if(uart_intr_status == 0) {
  723. break;
  724. }
  725. uart_event.type = UART_EVENT_MAX;
  726. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  727. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  728. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  729. if(p_uart->tx_waiting_brk) {
  730. continue;
  731. }
  732. //TX semaphore will only be used when tx_buf_size is zero.
  733. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  734. p_uart->tx_waiting_fifo = false;
  735. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  736. } else {
  737. //We don't use TX ring buffer, because the size is zero.
  738. if(p_uart->tx_buf_size == 0) {
  739. continue;
  740. }
  741. int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
  742. bool en_tx_flg = false;
  743. //We need to put a loop here, in case all the buffer items are very short.
  744. //That would cause a watch_dog reset because empty interrupt happens so often.
  745. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  746. while(tx_fifo_rem) {
  747. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  748. size_t size;
  749. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  750. if(p_uart->tx_head) {
  751. //The first item is the data description
  752. //Get the first item to get the data information
  753. if(p_uart->tx_len_tot == 0) {
  754. p_uart->tx_ptr = NULL;
  755. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  756. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  757. p_uart->tx_brk_flg = 1;
  758. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  759. }
  760. //We have saved the data description from the 1st item, return buffer.
  761. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  762. }else if(p_uart->tx_ptr == NULL) {
  763. //Update the TX item pointer, we will need this to return item to buffer.
  764. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  765. en_tx_flg = true;
  766. p_uart->tx_len_cur = size;
  767. }
  768. }
  769. else {
  770. //Can not get data from ring buffer, return;
  771. break;
  772. }
  773. }
  774. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  775. //To fill the TX FIFO.
  776. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  777. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  778. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  779. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  780. uart_reg->conf0.sw_rts = 0;
  781. uart_reg->int_ena.tx_done = 1;
  782. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  783. }
  784. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  785. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  786. *(p_uart->tx_ptr++) & 0xff);
  787. }
  788. p_uart->tx_len_tot -= send_len;
  789. p_uart->tx_len_cur -= send_len;
  790. tx_fifo_rem -= send_len;
  791. if (p_uart->tx_len_cur == 0) {
  792. //Return item to ring buffer.
  793. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  794. p_uart->tx_head = NULL;
  795. p_uart->tx_ptr = NULL;
  796. //Sending item done, now we need to send break if there is a record.
  797. //Set TX break signal after FIFO is empty
  798. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  799. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  800. uart_reg->int_ena.tx_brk_done = 0;
  801. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  802. uart_reg->conf0.txd_brk = 1;
  803. uart_reg->int_clr.tx_brk_done = 1;
  804. uart_reg->int_ena.tx_brk_done = 1;
  805. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  806. p_uart->tx_waiting_brk = 1;
  807. //do not enable TX empty interrupt
  808. en_tx_flg = false;
  809. } else {
  810. //enable TX empty interrupt
  811. en_tx_flg = true;
  812. }
  813. } else {
  814. //enable TX empty interrupt
  815. en_tx_flg = true;
  816. }
  817. }
  818. }
  819. if (en_tx_flg) {
  820. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  821. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  822. }
  823. }
  824. }
  825. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  826. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  827. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  828. ) {
  829. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  830. typeof(uart_reg->mem_rx_status) rx_status = uart_reg->mem_rx_status;
  831. // When using DPort to read fifo, fifo_cnt is not credible, we need to calculate the real cnt based on the fifo read and write pointer.
  832. // When using AHB to read FIFO, we can use fifo_cnt to indicate the data length in fifo.
  833. if (rx_status.wr_addr > rx_status.rd_addr) {
  834. rx_fifo_len = rx_status.wr_addr - rx_status.rd_addr;
  835. } else if (rx_status.wr_addr < rx_status.rd_addr) {
  836. rx_fifo_len = (rx_status.wr_addr + 128) - rx_status.rd_addr;
  837. } else {
  838. rx_fifo_len = rx_fifo_len > 0 ? 128 : 0;
  839. }
  840. if(pat_flg == 1) {
  841. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  842. pat_flg = 0;
  843. }
  844. if (p_uart->rx_buffer_full_flg == false) {
  845. //We have to read out all data in RX FIFO to clear the interrupt signal
  846. for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
  847. p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte;
  848. }
  849. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  850. int pat_num = uart_reg->at_cmd_char.char_num;
  851. int pat_idx = -1;
  852. //Get the buffer from the FIFO
  853. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  854. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  855. uart_event.type = UART_PATTERN_DET;
  856. uart_event.size = rx_fifo_len;
  857. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  858. } else {
  859. //After Copying the Data From FIFO ,Clear intr_status
  860. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  861. uart_event.type = UART_DATA;
  862. uart_event.size = rx_fifo_len;
  863. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  864. if (p_uart->uart_select_notif_callback) {
  865. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  866. }
  867. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  868. }
  869. p_uart->rx_stash_len = rx_fifo_len;
  870. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  871. //Mainly for applications that uses flow control or small ring buffer.
  872. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  873. p_uart->rx_buffer_full_flg = true;
  874. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  875. if (uart_event.type == UART_PATTERN_DET) {
  876. if (rx_fifo_len < pat_num) {
  877. //some of the characters are read out in last interrupt
  878. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  879. } else {
  880. uart_pattern_enqueue(uart_num,
  881. pat_idx <= -1 ?
  882. //can not find the pattern in buffer,
  883. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  884. // find the pattern in buffer
  885. p_uart->rx_buffered_len + pat_idx);
  886. }
  887. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  888. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  889. }
  890. }
  891. uart_event.type = UART_BUFFER_FULL;
  892. } else {
  893. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  894. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  895. if (rx_fifo_len < pat_num) {
  896. //some of the characters are read out in last interrupt
  897. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  898. } else if(pat_idx >= 0) {
  899. // find pattern in statsh buffer.
  900. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  901. }
  902. }
  903. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  904. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  905. }
  906. } else {
  907. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  908. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  909. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  910. uart_reg->int_clr.at_cmd_char_det = 1;
  911. uart_event.type = UART_PATTERN_DET;
  912. uart_event.size = rx_fifo_len;
  913. pat_flg = 1;
  914. }
  915. }
  916. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  917. // When fifo overflows, we reset the fifo.
  918. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  919. uart_reset_rx_fifo(uart_num);
  920. uart_reg->int_clr.rxfifo_ovf = 1;
  921. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  922. uart_event.type = UART_FIFO_OVF;
  923. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  924. if (p_uart->uart_select_notif_callback) {
  925. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  926. }
  927. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  928. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  929. uart_reg->int_clr.brk_det = 1;
  930. uart_event.type = UART_BREAK;
  931. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  932. uart_reg->int_clr.frm_err = 1;
  933. uart_event.type = UART_FRAME_ERR;
  934. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  935. if (p_uart->uart_select_notif_callback) {
  936. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  937. }
  938. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  939. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  940. uart_reg->int_clr.parity_err = 1;
  941. uart_event.type = UART_PARITY_ERR;
  942. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  943. if (p_uart->uart_select_notif_callback) {
  944. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  945. }
  946. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  947. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  948. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  949. uart_reg->conf0.txd_brk = 0;
  950. uart_reg->int_ena.tx_brk_done = 0;
  951. uart_reg->int_clr.tx_brk_done = 1;
  952. if(p_uart->tx_brk_flg == 1) {
  953. uart_reg->int_ena.txfifo_empty = 1;
  954. }
  955. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  956. if(p_uart->tx_brk_flg == 1) {
  957. p_uart->tx_brk_flg = 0;
  958. p_uart->tx_waiting_brk = 0;
  959. } else {
  960. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  961. }
  962. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  963. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  964. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  965. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  966. uart_reg->int_clr.at_cmd_char_det = 1;
  967. uart_event.type = UART_PATTERN_DET;
  968. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  969. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  970. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  971. // RS485 collision or frame error interrupt triggered
  972. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  973. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  974. uart_reset_rx_fifo(uart_num);
  975. // Set collision detection flag
  976. p_uart_obj[uart_num]->coll_det_flg = true;
  977. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  978. uart_event.type = UART_EVENT_MAX;
  979. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  980. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  981. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  982. // If RS485 half duplex mode is enable then reset FIFO and
  983. // reset RTS pin to start receiver driver
  984. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  985. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  986. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  987. uart_reg->conf0.sw_rts = 1;
  988. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  989. }
  990. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  991. } else {
  992. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  993. uart_event.type = UART_EVENT_MAX;
  994. }
  995. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  996. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  997. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  998. }
  999. }
  1000. }
  1001. if(HPTaskAwoken == pdTRUE) {
  1002. portYIELD_FROM_ISR();
  1003. }
  1004. }
  1005. /**************************************************************/
  1006. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  1007. {
  1008. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1009. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1010. BaseType_t res;
  1011. portTickType ticks_start = xTaskGetTickCount();
  1012. //Take tx_mux
  1013. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  1014. if(res == pdFALSE) {
  1015. return ESP_ERR_TIMEOUT;
  1016. }
  1017. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1018. typeof(UART0.status) status = UART[uart_num]->status;
  1019. //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
  1020. if(status.txfifo_cnt == 0 && status.st_utx_out == 0) {
  1021. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1022. return ESP_OK;
  1023. }
  1024. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1025. TickType_t ticks_end = xTaskGetTickCount();
  1026. if (ticks_end - ticks_start > ticks_to_wait) {
  1027. ticks_to_wait = 0;
  1028. } else {
  1029. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1030. }
  1031. //take 2nd tx_done_sem, wait given from ISR
  1032. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1033. if(res == pdFALSE) {
  1034. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1035. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1036. return ESP_ERR_TIMEOUT;
  1037. }
  1038. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1039. return ESP_OK;
  1040. }
  1041. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1042. {
  1043. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1044. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1045. UART[uart_num]->conf0.txd_brk = 1;
  1046. UART[uart_num]->int_clr.tx_brk_done = 1;
  1047. UART[uart_num]->int_ena.tx_brk_done = 1;
  1048. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1049. return ESP_OK;
  1050. }
  1051. //Fill UART tx_fifo and return a number,
  1052. //This function by itself is not thread-safe, always call from within a muxed section.
  1053. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1054. {
  1055. uint8_t i = 0;
  1056. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1057. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1058. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1059. // Set the RTS pin if RS485 mode is enabled
  1060. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1061. UART[uart_num]->conf0.sw_rts = 0;
  1062. UART[uart_num]->int_ena.tx_done = 1;
  1063. }
  1064. for (i = 0; i < copy_cnt; i++) {
  1065. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1066. }
  1067. return copy_cnt;
  1068. }
  1069. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1070. {
  1071. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1072. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1073. UART_CHECK(buffer, "buffer null", (-1));
  1074. if(len == 0) {
  1075. return 0;
  1076. }
  1077. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1078. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1079. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1080. return tx_len;
  1081. }
  1082. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1083. {
  1084. if(size == 0) {
  1085. return 0;
  1086. }
  1087. size_t original_size = size;
  1088. //lock for uart_tx
  1089. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1090. p_uart_obj[uart_num]->coll_det_flg = false;
  1091. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1092. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1093. int offset = 0;
  1094. uart_tx_data_t evt;
  1095. evt.tx_data.size = size;
  1096. evt.tx_data.brk_len = brk_len;
  1097. if(brk_en) {
  1098. evt.type = UART_DATA_BREAK;
  1099. } else {
  1100. evt.type = UART_DATA;
  1101. }
  1102. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1103. while(size > 0) {
  1104. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1105. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1106. size -= send_size;
  1107. offset += send_size;
  1108. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1109. }
  1110. } else {
  1111. while(size) {
  1112. //semaphore for tx_fifo available
  1113. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1114. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1115. if(sent < size) {
  1116. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1117. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1118. }
  1119. size -= sent;
  1120. src += sent;
  1121. }
  1122. }
  1123. if(brk_en) {
  1124. uart_set_break(uart_num, brk_len);
  1125. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1126. }
  1127. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1128. }
  1129. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1130. return original_size;
  1131. }
  1132. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1133. {
  1134. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1135. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1136. UART_CHECK(src, "buffer null", (-1));
  1137. return uart_tx_all(uart_num, src, size, 0, 0);
  1138. }
  1139. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1140. {
  1141. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1142. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1143. UART_CHECK((size > 0), "uart size error", (-1));
  1144. UART_CHECK((src), "uart data null", (-1));
  1145. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1146. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1147. }
  1148. static bool uart_check_buf_full(uart_port_t uart_num)
  1149. {
  1150. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1151. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1152. if(res == pdTRUE) {
  1153. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1154. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1155. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1156. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1157. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1158. return true;
  1159. }
  1160. }
  1161. return false;
  1162. }
  1163. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1164. {
  1165. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1166. UART_CHECK((buf), "uart data null", (-1));
  1167. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1168. uint8_t* data = NULL;
  1169. size_t size;
  1170. size_t copy_len = 0;
  1171. int len_tmp;
  1172. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1173. return -1;
  1174. }
  1175. while(length) {
  1176. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1177. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1178. if(data) {
  1179. p_uart_obj[uart_num]->rx_head_ptr = data;
  1180. p_uart_obj[uart_num]->rx_ptr = data;
  1181. p_uart_obj[uart_num]->rx_cur_remain = size;
  1182. } else {
  1183. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1184. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1185. //to solve the possible asynchronous issues.
  1186. if(uart_check_buf_full(uart_num)) {
  1187. //This condition will never be true if `uart_read_bytes`
  1188. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1189. continue;
  1190. } else {
  1191. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1192. return copy_len;
  1193. }
  1194. }
  1195. }
  1196. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1197. len_tmp = length;
  1198. } else {
  1199. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1200. }
  1201. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1202. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1203. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1204. uart_pattern_queue_update(uart_num, len_tmp);
  1205. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1206. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1207. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1208. copy_len += len_tmp;
  1209. length -= len_tmp;
  1210. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1211. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1212. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1213. p_uart_obj[uart_num]->rx_ptr = NULL;
  1214. uart_check_buf_full(uart_num);
  1215. }
  1216. }
  1217. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1218. return copy_len;
  1219. }
  1220. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1221. {
  1222. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1223. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1224. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1225. return ESP_OK;
  1226. }
  1227. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1228. esp_err_t uart_flush_input(uart_port_t uart_num)
  1229. {
  1230. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1231. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1232. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1233. uint8_t* data;
  1234. size_t size;
  1235. //rx sem protect the ring buffer read related functions
  1236. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1237. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1238. while(true) {
  1239. if(p_uart->rx_head_ptr) {
  1240. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1241. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1242. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1243. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1244. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1245. p_uart->rx_ptr = NULL;
  1246. p_uart->rx_cur_remain = 0;
  1247. p_uart->rx_head_ptr = NULL;
  1248. }
  1249. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1250. if(data == NULL) {
  1251. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1252. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1253. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1254. }
  1255. //We also need to clear the `rx_buffer_full_flg` here.
  1256. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1257. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1258. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1259. break;
  1260. }
  1261. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1262. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1263. uart_pattern_queue_update(uart_num, size);
  1264. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1265. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1266. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1267. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1268. if(res == pdTRUE) {
  1269. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1270. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1271. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1272. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1273. }
  1274. }
  1275. }
  1276. p_uart->rx_ptr = NULL;
  1277. p_uart->rx_cur_remain = 0;
  1278. p_uart->rx_head_ptr = NULL;
  1279. uart_reset_rx_fifo(uart_num);
  1280. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1281. xSemaphoreGive(p_uart->rx_mux);
  1282. return ESP_OK;
  1283. }
  1284. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1285. {
  1286. esp_err_t r;
  1287. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1288. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1289. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1290. #if CONFIG_UART_ISR_IN_IRAM
  1291. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0,
  1292. "should set ESP_INTR_FLAG_IRAM flag when CONFIG_UART_ISR_IN_IRAM is enabled", ESP_FAIL);
  1293. #else
  1294. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0,
  1295. "should not set ESP_INTR_FLAG_IRAM when CONFIG_UART_ISR_IN_IRAM is not enabled", ESP_FAIL);
  1296. #endif
  1297. if(p_uart_obj[uart_num] == NULL) {
  1298. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1299. if(p_uart_obj[uart_num] == NULL) {
  1300. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1301. return ESP_FAIL;
  1302. }
  1303. p_uart_obj[uart_num]->uart_num = uart_num;
  1304. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1305. p_uart_obj[uart_num]->coll_det_flg = false;
  1306. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1307. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1308. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1309. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1310. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1311. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1312. p_uart_obj[uart_num]->queue_size = queue_size;
  1313. p_uart_obj[uart_num]->tx_ptr = NULL;
  1314. p_uart_obj[uart_num]->tx_head = NULL;
  1315. p_uart_obj[uart_num]->tx_len_tot = 0;
  1316. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1317. p_uart_obj[uart_num]->tx_brk_len = 0;
  1318. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1319. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1320. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1321. if(uart_queue) {
  1322. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1323. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1324. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1325. } else {
  1326. p_uart_obj[uart_num]->xQueueUart = NULL;
  1327. }
  1328. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1329. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1330. p_uart_obj[uart_num]->rx_ptr = NULL;
  1331. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1332. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1333. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1334. if(tx_buffer_size > 0) {
  1335. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1336. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1337. } else {
  1338. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1339. p_uart_obj[uart_num]->tx_buf_size = 0;
  1340. }
  1341. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1342. } else {
  1343. ESP_LOGE(UART_TAG, "UART driver already installed");
  1344. return ESP_FAIL;
  1345. }
  1346. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1347. if (r!=ESP_OK) goto err;
  1348. uart_intr_config_t uart_intr = {
  1349. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1350. | UART_RXFIFO_TOUT_INT_ENA_M
  1351. | UART_FRM_ERR_INT_ENA_M
  1352. | UART_RXFIFO_OVF_INT_ENA_M
  1353. | UART_BRK_DET_INT_ENA_M
  1354. | UART_PARITY_ERR_INT_ENA_M,
  1355. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1356. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1357. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1358. };
  1359. r=uart_intr_config(uart_num, &uart_intr);
  1360. if (r!=ESP_OK) goto err;
  1361. return r;
  1362. err:
  1363. uart_driver_delete(uart_num);
  1364. return r;
  1365. }
  1366. //Make sure no other tasks are still using UART before you call this function
  1367. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1368. {
  1369. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1370. if(p_uart_obj[uart_num] == NULL) {
  1371. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1372. return ESP_OK;
  1373. }
  1374. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1375. uart_disable_rx_intr(uart_num);
  1376. uart_disable_tx_intr(uart_num);
  1377. uart_pattern_link_free(uart_num);
  1378. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1379. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1380. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1381. }
  1382. if(p_uart_obj[uart_num]->tx_done_sem) {
  1383. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1384. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1385. }
  1386. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1387. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1388. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1389. }
  1390. if(p_uart_obj[uart_num]->tx_mux) {
  1391. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1392. p_uart_obj[uart_num]->tx_mux = NULL;
  1393. }
  1394. if(p_uart_obj[uart_num]->rx_mux) {
  1395. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1396. p_uart_obj[uart_num]->rx_mux = NULL;
  1397. }
  1398. if(p_uart_obj[uart_num]->xQueueUart) {
  1399. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1400. p_uart_obj[uart_num]->xQueueUart = NULL;
  1401. }
  1402. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1403. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1404. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1405. }
  1406. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1407. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1408. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1409. }
  1410. free(p_uart_obj[uart_num]);
  1411. p_uart_obj[uart_num] = NULL;
  1412. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  1413. periph_module_t periph_module = get_periph_module(uart_num);
  1414. periph_module_disable(periph_module);
  1415. }
  1416. return ESP_OK;
  1417. }
  1418. bool uart_is_driver_installed(uart_port_t uart_num)
  1419. {
  1420. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1421. }
  1422. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1423. {
  1424. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1425. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1426. }
  1427. }
  1428. portMUX_TYPE *uart_get_selectlock()
  1429. {
  1430. return &uart_selectlock;
  1431. }
  1432. // Set UART mode
  1433. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1434. {
  1435. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1436. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1437. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1438. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1439. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1440. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1441. }
  1442. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1443. UART[uart_num]->rs485_conf.en = 0;
  1444. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1445. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1446. UART[uart_num]->conf0.irda_en = 0;
  1447. UART[uart_num]->conf0.sw_rts = 0;
  1448. switch (mode) {
  1449. case UART_MODE_UART:
  1450. break;
  1451. case UART_MODE_RS485_COLLISION_DETECT:
  1452. // This mode allows read while transmitting that allows collision detection
  1453. p_uart_obj[uart_num]->coll_det_flg = false;
  1454. // Transmitter’s output signal loop back to the receiver’s input signal
  1455. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1456. // Transmitter should send data when its receiver is busy
  1457. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1458. UART[uart_num]->rs485_conf.en = 1;
  1459. // Enable collision detection interrupts
  1460. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1461. | UART_RXFIFO_FULL_INT_ENA
  1462. | UART_RS485_CLASH_INT_ENA
  1463. | UART_RS485_FRM_ERR_INT_ENA
  1464. | UART_RS485_PARITY_ERR_INT_ENA);
  1465. break;
  1466. case UART_MODE_RS485_APP_CTRL:
  1467. // Application software control, remove echo
  1468. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1469. UART[uart_num]->rs485_conf.en = 1;
  1470. break;
  1471. case UART_MODE_RS485_HALF_DUPLEX:
  1472. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1473. UART[uart_num]->conf0.sw_rts = 1;
  1474. UART[uart_num]->rs485_conf.en = 1;
  1475. // Must be set to 0 to automatically remove echo
  1476. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1477. // This is to void collision
  1478. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1479. break;
  1480. case UART_MODE_IRDA:
  1481. UART[uart_num]->conf0.irda_en = 1;
  1482. break;
  1483. default:
  1484. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1485. break;
  1486. }
  1487. p_uart_obj[uart_num]->uart_mode = mode;
  1488. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1489. return ESP_OK;
  1490. }
  1491. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1492. {
  1493. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1494. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1495. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1496. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1497. // transmission time of one symbol (~11 bit) on current baudrate
  1498. if (tout_thresh > 0) {
  1499. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  1500. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  1501. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  1502. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT;
  1503. } else {
  1504. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh;
  1505. }
  1506. UART[uart_num]->conf1.rx_tout_en = 1;
  1507. } else {
  1508. UART[uart_num]->conf1.rx_tout_en = 0;
  1509. }
  1510. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1511. return ESP_OK;
  1512. }
  1513. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1514. {
  1515. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1516. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1517. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1518. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1519. "wrong mode", ESP_ERR_INVALID_ARG);
  1520. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1521. return ESP_OK;
  1522. }
  1523. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1524. {
  1525. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1526. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1527. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1528. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1529. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1530. return ESP_OK;
  1531. }
  1532. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1533. {
  1534. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1535. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1536. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1537. return ESP_OK;
  1538. }