uart.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "malloc.h"
  21. #include "freertos/FreeRTOS.h"
  22. #include "freertos/semphr.h"
  23. #include "freertos/xtensa_api.h"
  24. #include "freertos/task.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/dport_reg.h"
  27. #include "soc/uart_struct.h"
  28. #include "driver/uart.h"
  29. #include "driver/gpio.h"
  30. static const char* UART_TAG = "uart";
  31. #define UART_CHECK(a, str, ret_val) \
  32. if (!(a)) { \
  33. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  34. return (ret_val); \
  35. }
  36. #define UART_EMPTY_THRESH_DEFAULT (10)
  37. #define UART_FULL_THRESH_DEFAULT (120)
  38. #define UART_TOUT_THRESH_DEFAULT (10)
  39. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  40. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  41. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  42. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  43. typedef struct {
  44. uart_event_type_t type; /*!< UART TX data type */
  45. struct {
  46. int brk_len;
  47. size_t size;
  48. uint8_t data[0];
  49. } tx_data;
  50. } uart_tx_data_t;
  51. typedef struct {
  52. uart_port_t uart_num; /*!< UART port number*/
  53. int queue_size; /*!< UART event queue size*/
  54. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  55. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  56. //rx parameters
  57. int rx_buffered_len; /*!< UART cached data length */
  58. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  59. int rx_buf_size; /*!< RX ring buffer size */
  60. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  61. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  62. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  63. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  64. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  65. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  66. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  67. //tx parameters
  68. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  69. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  70. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  71. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  72. int tx_buf_size; /*!< TX ring buffer size */
  73. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  74. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  75. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  76. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  77. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  78. uint32_t tx_len_cur;
  79. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  80. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  81. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  82. } uart_obj_t;
  83. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  84. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  85. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  86. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  87. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  88. {
  89. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  90. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  91. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  92. UART[uart_num]->conf0.bit_num = data_bit;
  93. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  94. return ESP_OK;
  95. }
  96. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  97. {
  98. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  99. *(data_bit) = UART[uart_num]->conf0.bit_num;
  100. return ESP_OK;
  101. }
  102. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  103. {
  104. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  105. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  106. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  107. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  108. if (stop_bit == UART_STOP_BITS_2) {
  109. stop_bit = UART_STOP_BITS_1;
  110. UART[uart_num]->rs485_conf.dl1_en = 1;
  111. } else {
  112. UART[uart_num]->rs485_conf.dl1_en = 0;
  113. }
  114. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  115. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  116. return ESP_OK;
  117. }
  118. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  119. {
  120. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  121. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  122. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  123. (*stop_bit) = UART_STOP_BITS_2;
  124. } else {
  125. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  126. }
  127. return ESP_OK;
  128. }
  129. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  130. {
  131. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  132. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  133. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  134. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  135. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  136. return ESP_OK;
  137. }
  138. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  139. {
  140. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  141. int val = UART[uart_num]->conf0.val;
  142. if(val & UART_PARITY_EN_M) {
  143. if(val & UART_PARITY_M) {
  144. (*parity_mode) = UART_PARITY_ODD;
  145. } else {
  146. (*parity_mode) = UART_PARITY_EVEN;
  147. }
  148. } else {
  149. (*parity_mode) = UART_PARITY_DISABLE;
  150. }
  151. return ESP_OK;
  152. }
  153. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  154. {
  155. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  156. UART_CHECK((baud_rate <= UART_BITRATE_MAX), "baud_rate error", ESP_FAIL);
  157. uint32_t clk_div = (((UART_CLK_FREQ) << 4) / baud_rate);
  158. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  159. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  160. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  161. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  162. return ESP_OK;
  163. }
  164. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  165. {
  166. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  167. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  168. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  169. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  170. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  171. return ESP_OK;
  172. }
  173. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  174. {
  175. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  176. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  177. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  178. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  179. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  180. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  181. return ESP_OK;
  182. }
  183. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  184. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  185. {
  186. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  187. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  188. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  189. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  190. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  191. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  192. UART[uart_num]->conf1.rx_flow_en = 1;
  193. } else {
  194. UART[uart_num]->conf1.rx_flow_en = 0;
  195. }
  196. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  197. UART[uart_num]->conf0.tx_flow_en = 1;
  198. } else {
  199. UART[uart_num]->conf0.tx_flow_en = 0;
  200. }
  201. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  202. return ESP_OK;
  203. }
  204. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  205. {
  206. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  207. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  208. if(UART[uart_num]->conf1.rx_flow_en) {
  209. val |= UART_HW_FLOWCTRL_RTS;
  210. }
  211. if(UART[uart_num]->conf0.tx_flow_en) {
  212. val |= UART_HW_FLOWCTRL_CTS;
  213. }
  214. (*flow_ctrl) = val;
  215. return ESP_OK;
  216. }
  217. static esp_err_t uart_reset_fifo(uart_port_t uart_num)
  218. {
  219. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  220. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  221. UART[uart_num]->conf0.rxfifo_rst = 1;
  222. UART[uart_num]->conf0.rxfifo_rst = 0;
  223. UART[uart_num]->conf0.txfifo_rst = 1;
  224. UART[uart_num]->conf0.txfifo_rst = 0;
  225. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  226. return ESP_OK;
  227. }
  228. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  229. {
  230. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  231. //intr_clr register is write-only
  232. UART[uart_num]->int_clr.val = clr_mask;
  233. return ESP_OK;
  234. }
  235. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  236. {
  237. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  238. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  239. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  240. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  241. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  242. return ESP_OK;
  243. }
  244. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  245. {
  246. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  247. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  248. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  249. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  250. return ESP_OK;
  251. }
  252. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  253. {
  254. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  255. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  256. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  257. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  258. UART[uart_num]->at_cmd_char.data = pattern_chr;
  259. UART[uart_num]->at_cmd_char.char_num = chr_num;
  260. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  261. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  262. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  263. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  264. }
  265. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  266. {
  267. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  268. }
  269. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  270. {
  271. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  272. }
  273. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  274. {
  275. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  276. }
  277. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  278. {
  279. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  280. }
  281. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  282. {
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  285. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  286. UART[uart_num]->int_clr.txfifo_empty = 1;
  287. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  288. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  289. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  290. return ESP_OK;
  291. }
  292. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  293. {
  294. int ret;
  295. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  296. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  297. switch(uart_num) {
  298. case UART_NUM_1:
  299. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  300. break;
  301. case UART_NUM_2:
  302. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  303. break;
  304. case UART_NUM_0:
  305. default:
  306. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  307. break;
  308. }
  309. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  310. return ret;
  311. }
  312. esp_err_t uart_isr_free(uart_port_t uart_num)
  313. {
  314. esp_err_t ret;
  315. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  316. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  317. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  318. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  319. p_uart_obj[uart_num]->intr_handle=NULL;
  320. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  321. return ret;
  322. }
  323. //internal signal can be output to multiple GPIO pads
  324. //only one GPIO pad can connect with input signal
  325. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  326. {
  327. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  328. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  329. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  330. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  331. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  332. int tx_sig, rx_sig, rts_sig, cts_sig;
  333. switch(uart_num) {
  334. case UART_NUM_0:
  335. tx_sig = U0TXD_OUT_IDX;
  336. rx_sig = U0RXD_IN_IDX;
  337. rts_sig = U0RTS_OUT_IDX;
  338. cts_sig = U0CTS_IN_IDX;
  339. break;
  340. case UART_NUM_1:
  341. tx_sig = U1TXD_OUT_IDX;
  342. rx_sig = U1RXD_IN_IDX;
  343. rts_sig = U1RTS_OUT_IDX;
  344. cts_sig = U1CTS_IN_IDX;
  345. break;
  346. case UART_NUM_2:
  347. tx_sig = U2TXD_OUT_IDX;
  348. rx_sig = U2RXD_IN_IDX;
  349. rts_sig = U2RTS_OUT_IDX;
  350. cts_sig = U2CTS_IN_IDX;
  351. break;
  352. case UART_NUM_MAX:
  353. default:
  354. tx_sig = U0TXD_OUT_IDX;
  355. rx_sig = U0RXD_IN_IDX;
  356. rts_sig = U0RTS_OUT_IDX;
  357. cts_sig = U0CTS_IN_IDX;
  358. break;
  359. }
  360. if(tx_io_num >= 0) {
  361. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  362. gpio_set_level(tx_io_num, 1);
  363. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  364. }
  365. if(rx_io_num >= 0) {
  366. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  367. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  368. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  369. gpio_matrix_in(rx_io_num, rx_sig, 0);
  370. }
  371. if(rts_io_num >= 0) {
  372. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  373. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  374. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  375. }
  376. if(cts_io_num >= 0) {
  377. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  378. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  379. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  380. gpio_matrix_in(cts_io_num, cts_sig, 0);
  381. }
  382. return ESP_OK;
  383. }
  384. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  385. {
  386. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  387. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  388. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  389. UART[uart_num]->conf0.sw_rts = level & 0x1;
  390. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  391. return ESP_OK;
  392. }
  393. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  394. {
  395. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  396. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  397. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  398. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  399. return ESP_OK;
  400. }
  401. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  402. {
  403. esp_err_t r;
  404. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  405. UART_CHECK((uart_config), "param null", ESP_FAIL);
  406. if(uart_num == UART_NUM_0) {
  407. periph_module_enable(PERIPH_UART0_MODULE);
  408. } else if(uart_num == UART_NUM_1) {
  409. periph_module_enable(PERIPH_UART1_MODULE);
  410. } else if(uart_num == UART_NUM_2) {
  411. periph_module_enable(PERIPH_UART2_MODULE);
  412. }
  413. r=uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  414. if (r!=ESP_OK) return r;
  415. r=uart_set_baudrate(uart_num, uart_config->baud_rate);
  416. if (r!=ESP_OK) return r;
  417. UART[uart_num]->conf0.val = (
  418. (uart_config->parity << UART_PARITY_S)
  419. | (uart_config->data_bits << UART_BIT_NUM_S)
  420. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  421. | UART_TICK_REF_ALWAYS_ON_M);
  422. r=uart_set_stop_bits(uart_num, uart_config->stop_bits);
  423. return r;
  424. }
  425. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  426. {
  427. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  428. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  429. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  430. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  431. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  432. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  433. UART[uart_num]->conf1.rx_tout_en = 1;
  434. } else {
  435. UART[uart_num]->conf1.rx_tout_en = 0;
  436. }
  437. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  438. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  439. }
  440. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  441. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  442. }
  443. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  444. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  445. return ESP_OK;
  446. }
  447. //internal isr handler for default driver code.
  448. static void uart_rx_intr_handler_default(void *param)
  449. {
  450. uart_obj_t *p_uart = (uart_obj_t*) param;
  451. uint8_t uart_num = p_uart->uart_num;
  452. uart_dev_t* uart_reg = UART[uart_num];
  453. uint8_t buf_idx = 0;
  454. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  455. int rx_fifo_len = 0;
  456. uart_event_t uart_event;
  457. portBASE_TYPE HPTaskAwoken = 0;
  458. while(uart_intr_status != 0x0) {
  459. buf_idx = 0;
  460. uart_event.type = UART_EVENT_MAX;
  461. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  462. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  463. uart_reg->int_ena.txfifo_empty = 0;
  464. uart_reg->int_clr.txfifo_empty = 1;
  465. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  466. if(p_uart->tx_waiting_brk) {
  467. continue;
  468. }
  469. //TX semaphore will only be used when tx_buf_size is zero.
  470. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  471. p_uart->tx_waiting_fifo = false;
  472. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  473. if(HPTaskAwoken == pdTRUE) {
  474. portYIELD_FROM_ISR() ;
  475. }
  476. }
  477. else {
  478. //We don't use TX ring buffer, because the size is zero.
  479. if(p_uart->tx_buf_size == 0) {
  480. continue;
  481. }
  482. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  483. bool en_tx_flg = false;
  484. //We need to put a loop here, in case all the buffer items are very short.
  485. //That would cause a watch_dog reset because empty interrupt happens so often.
  486. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  487. while(tx_fifo_rem) {
  488. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  489. size_t size;
  490. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  491. if(p_uart->tx_head) {
  492. //The first item is the data description
  493. //Get the first item to get the data information
  494. if(p_uart->tx_len_tot == 0) {
  495. p_uart->tx_ptr = NULL;
  496. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  497. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  498. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  499. p_uart->tx_brk_flg = 1;
  500. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  501. }
  502. //We have saved the data description from the 1st item, return buffer.
  503. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  504. if(HPTaskAwoken == pdTRUE) {
  505. portYIELD_FROM_ISR() ;
  506. }
  507. }else if(p_uart->tx_ptr == NULL) {
  508. //Update the TX item pointer, we will need this to return item to buffer.
  509. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  510. en_tx_flg = true;
  511. p_uart->tx_len_cur = size;
  512. }
  513. }
  514. else {
  515. //Can not get data from ring buffer, return;
  516. break;
  517. }
  518. }
  519. if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  520. //To fill the TX FIFO.
  521. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  522. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  523. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  524. }
  525. p_uart->tx_len_tot -= send_len;
  526. p_uart->tx_len_cur -= send_len;
  527. tx_fifo_rem -= send_len;
  528. if(p_uart->tx_len_cur == 0) {
  529. //Return item to ring buffer.
  530. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  531. if(HPTaskAwoken == pdTRUE) {
  532. portYIELD_FROM_ISR() ;
  533. }
  534. p_uart->tx_head = NULL;
  535. p_uart->tx_ptr = NULL;
  536. //Sending item done, now we need to send break if there is a record.
  537. //Set TX break signal after FIFO is empty
  538. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  539. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  540. uart_reg->int_ena.tx_brk_done = 0;
  541. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  542. uart_reg->conf0.txd_brk = 1;
  543. uart_reg->int_clr.tx_brk_done = 1;
  544. uart_reg->int_ena.tx_brk_done = 1;
  545. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  546. p_uart->tx_waiting_brk = 1;
  547. } else {
  548. //enable TX empty interrupt
  549. en_tx_flg = true;
  550. }
  551. } else {
  552. //enable TX empty interrupt
  553. en_tx_flg = true;
  554. }
  555. }
  556. }
  557. if(en_tx_flg) {
  558. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  559. uart_reg->int_clr.txfifo_empty = 1;
  560. uart_reg->int_ena.txfifo_empty = 1;
  561. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  562. }
  563. }
  564. }
  565. else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
  566. if(p_uart->rx_buffer_full_flg == false) {
  567. //Get the buffer from the FIFO
  568. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  569. p_uart->rx_stash_len = rx_fifo_len;
  570. //We have to read out all data in RX FIFO to clear the interrupt signal
  571. while(buf_idx < rx_fifo_len) {
  572. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  573. }
  574. //After Copying the Data From FIFO ,Clear intr_status
  575. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  576. uart_reg->int_clr.rxfifo_tout = 1;
  577. uart_reg->int_clr.rxfifo_full = 1;
  578. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  579. uart_event.size = rx_fifo_len;
  580. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  581. //Mainly for applications that uses flow control or small ring buffer.
  582. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  583. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  584. uart_reg->int_ena.rxfifo_full = 0;
  585. uart_reg->int_ena.rxfifo_tout = 0;
  586. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  587. p_uart->rx_buffer_full_flg = true;
  588. uart_event.type = UART_BUFFER_FULL;
  589. } else {
  590. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  591. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  592. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  593. uart_event.type = UART_DATA;
  594. }
  595. if(HPTaskAwoken == pdTRUE) {
  596. portYIELD_FROM_ISR() ;
  597. }
  598. } else {
  599. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  600. uart_reg->int_ena.rxfifo_full = 0;
  601. uart_reg->int_ena.rxfifo_tout = 0;
  602. uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
  603. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  604. uart_event.type = UART_BUFFER_FULL;
  605. }
  606. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  607. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  608. uart_reg->conf0.rxfifo_rst = 1;
  609. uart_reg->conf0.rxfifo_rst = 0;
  610. uart_reg->int_clr.rxfifo_ovf = 1;
  611. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  612. uart_event.type = UART_FIFO_OVF;
  613. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  614. uart_reg->int_clr.brk_det = 1;
  615. uart_event.type = UART_BREAK;
  616. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  617. uart_reg->int_clr.frm_err = 1;
  618. uart_event.type = UART_FRAME_ERR;
  619. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  620. uart_reg->int_clr.parity_err = 1;
  621. uart_event.type = UART_PARITY_ERR;
  622. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  623. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  624. uart_reg->conf0.txd_brk = 0;
  625. uart_reg->int_ena.tx_brk_done = 0;
  626. uart_reg->int_clr.tx_brk_done = 1;
  627. if(p_uart->tx_brk_flg == 1) {
  628. uart_reg->int_ena.txfifo_empty = 1;
  629. }
  630. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  631. if(p_uart->tx_brk_flg == 1) {
  632. p_uart->tx_brk_flg = 0;
  633. p_uart->tx_waiting_brk = 0;
  634. } else {
  635. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  636. if(HPTaskAwoken == pdTRUE) {
  637. portYIELD_FROM_ISR() ;
  638. }
  639. }
  640. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  641. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  642. uart_reg->int_ena.tx_brk_idle_done = 0;
  643. uart_reg->int_clr.tx_brk_idle_done = 1;
  644. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  645. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  646. uart_reg->int_clr.at_cmd_char_det = 1;
  647. uart_event.type = UART_PATTERN_DET;
  648. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  649. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  650. uart_reg->int_ena.tx_done = 0;
  651. uart_reg->int_clr.tx_done = 1;
  652. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  653. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  654. if(HPTaskAwoken == pdTRUE) {
  655. portYIELD_FROM_ISR() ;
  656. }
  657. } else {
  658. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  659. uart_event.type = UART_EVENT_MAX;
  660. }
  661. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  662. xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
  663. if(HPTaskAwoken == pdTRUE) {
  664. portYIELD_FROM_ISR() ;
  665. }
  666. }
  667. uart_intr_status = uart_reg->int_st.val;
  668. }
  669. }
  670. /**************************************************************/
  671. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  672. {
  673. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  674. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  675. BaseType_t res;
  676. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  677. //Take tx_mux
  678. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  679. if(res == pdFALSE) {
  680. return ESP_ERR_TIMEOUT;
  681. }
  682. ticks_to_wait = ticks_end - xTaskGetTickCount();
  683. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  684. ticks_to_wait = ticks_end - xTaskGetTickCount();
  685. if(UART[uart_num]->status.txfifo_cnt == 0) {
  686. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  687. return ESP_OK;
  688. }
  689. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  690. //take 2nd tx_done_sem, wait given from ISR
  691. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  692. if(res == pdFALSE) {
  693. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  694. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  695. return ESP_ERR_TIMEOUT;
  696. }
  697. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  698. return ESP_OK;
  699. }
  700. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  701. {
  702. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  703. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  704. UART[uart_num]->conf0.txd_brk = 1;
  705. UART[uart_num]->int_clr.tx_brk_done = 1;
  706. UART[uart_num]->int_ena.tx_brk_done = 1;
  707. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  708. return ESP_OK;
  709. }
  710. //Fill UART tx_fifo and return a number,
  711. //This function by itself is not thread-safe, always call from within a muxed section.
  712. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  713. {
  714. uint8_t i = 0;
  715. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  716. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  717. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  718. for(i = 0; i < copy_cnt; i++) {
  719. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  720. }
  721. return copy_cnt;
  722. }
  723. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  724. {
  725. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  726. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  727. UART_CHECK(buffer, "buffer null", (-1));
  728. if(len == 0) {
  729. return 0;
  730. }
  731. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  732. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  733. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  734. return tx_len;
  735. }
  736. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  737. {
  738. if(size == 0) {
  739. return 0;
  740. }
  741. size_t original_size = size;
  742. //lock for uart_tx
  743. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  744. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  745. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  746. int offset = 0;
  747. uart_tx_data_t evt;
  748. evt.tx_data.size = size;
  749. evt.tx_data.brk_len = brk_len;
  750. if(brk_en) {
  751. evt.type = UART_DATA_BREAK;
  752. } else {
  753. evt.type = UART_DATA;
  754. }
  755. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  756. while(size > 0) {
  757. int send_size = size > max_size / 2 ? max_size / 2 : size;
  758. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  759. size -= send_size;
  760. offset += send_size;
  761. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  762. }
  763. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  764. } else {
  765. while(size) {
  766. //semaphore for tx_fifo available
  767. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  768. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  769. if(sent < size) {
  770. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  771. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  772. }
  773. size -= sent;
  774. src += sent;
  775. }
  776. }
  777. if(brk_en) {
  778. uart_set_break(uart_num, brk_len);
  779. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  780. }
  781. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  782. }
  783. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  784. return original_size;
  785. }
  786. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  787. {
  788. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  789. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  790. UART_CHECK(src, "buffer null", (-1));
  791. return uart_tx_all(uart_num, src, size, 0, 0);
  792. }
  793. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  794. {
  795. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  796. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  797. UART_CHECK((size > 0), "uart size error", (-1));
  798. UART_CHECK((src), "uart data null", (-1));
  799. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  800. return uart_tx_all(uart_num, src, size, 1, brk_len);
  801. }
  802. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  803. {
  804. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  805. UART_CHECK((buf), "uart_num error", (-1));
  806. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  807. uint8_t* data = NULL;
  808. size_t size;
  809. size_t copy_len = 0;
  810. int len_tmp;
  811. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  812. return -1;
  813. }
  814. while(length) {
  815. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  816. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  817. if(data) {
  818. p_uart_obj[uart_num]->rx_head_ptr = data;
  819. p_uart_obj[uart_num]->rx_ptr = data;
  820. p_uart_obj[uart_num]->rx_cur_remain = size;
  821. } else {
  822. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  823. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  824. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  825. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  826. return copy_len;
  827. }
  828. }
  829. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  830. len_tmp = length;
  831. } else {
  832. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  833. }
  834. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  835. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  836. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  837. copy_len += len_tmp;
  838. length -= len_tmp;
  839. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  840. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  841. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  842. p_uart_obj[uart_num]->rx_ptr = NULL;
  843. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  844. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  845. if(res == pdTRUE) {
  846. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  847. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  848. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  849. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  850. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  851. }
  852. }
  853. }
  854. }
  855. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  856. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  857. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  858. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  859. return copy_len;
  860. }
  861. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  862. {
  863. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  864. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  865. *size = p_uart_obj[uart_num]->rx_buffered_len;
  866. return ESP_OK;
  867. }
  868. esp_err_t uart_flush(uart_port_t uart_num)
  869. {
  870. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  871. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  872. uart_obj_t* p_uart = p_uart_obj[uart_num];
  873. uint8_t* data;
  874. size_t size;
  875. //rx sem protect the ring buffer read related functions
  876. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  877. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  878. while(true) {
  879. if(p_uart->rx_head_ptr) {
  880. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  881. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  882. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  883. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  884. p_uart->rx_ptr = NULL;
  885. p_uart->rx_cur_remain = 0;
  886. p_uart->rx_head_ptr = NULL;
  887. }
  888. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  889. if(data == NULL) {
  890. break;
  891. }
  892. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  893. p_uart_obj[uart_num]->rx_buffered_len -= size;
  894. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  895. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  896. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  897. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  898. if(res == pdTRUE) {
  899. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  900. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  901. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  902. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  903. }
  904. }
  905. }
  906. p_uart->rx_ptr = NULL;
  907. p_uart->rx_cur_remain = 0;
  908. p_uart->rx_head_ptr = NULL;
  909. uart_reset_fifo(uart_num);
  910. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  911. xSemaphoreGive(p_uart->rx_mux);
  912. return ESP_OK;
  913. }
  914. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  915. {
  916. esp_err_t r;
  917. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  918. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  919. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  920. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  921. if(p_uart_obj[uart_num] == NULL) {
  922. p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
  923. if(p_uart_obj[uart_num] == NULL) {
  924. ESP_LOGE(UART_TAG, "UART driver malloc error");
  925. return ESP_FAIL;
  926. }
  927. p_uart_obj[uart_num]->uart_num = uart_num;
  928. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  929. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  930. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  931. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  932. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  933. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  934. p_uart_obj[uart_num]->queue_size = queue_size;
  935. p_uart_obj[uart_num]->tx_ptr = NULL;
  936. p_uart_obj[uart_num]->tx_head = NULL;
  937. p_uart_obj[uart_num]->tx_len_tot = 0;
  938. p_uart_obj[uart_num]->tx_brk_flg = 0;
  939. p_uart_obj[uart_num]->tx_brk_len = 0;
  940. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  941. p_uart_obj[uart_num]->rx_buffered_len = 0;
  942. if(uart_queue) {
  943. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  944. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  945. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  946. } else {
  947. p_uart_obj[uart_num]->xQueueUart = NULL;
  948. }
  949. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  950. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  951. p_uart_obj[uart_num]->rx_ptr = NULL;
  952. p_uart_obj[uart_num]->rx_cur_remain = 0;
  953. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  954. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  955. if(tx_buffer_size > 0) {
  956. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  957. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  958. } else {
  959. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  960. p_uart_obj[uart_num]->tx_buf_size = 0;
  961. }
  962. } else {
  963. ESP_LOGE(UART_TAG, "UART driver already installed");
  964. return ESP_FAIL;
  965. }
  966. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  967. if (r!=ESP_OK) goto err;
  968. uart_intr_config_t uart_intr = {
  969. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  970. | UART_RXFIFO_TOUT_INT_ENA_M
  971. | UART_FRM_ERR_INT_ENA_M
  972. | UART_RXFIFO_OVF_INT_ENA_M
  973. | UART_BRK_DET_INT_ENA_M
  974. | UART_PARITY_ERR_INT_ENA_M,
  975. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  976. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  977. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  978. };
  979. r=uart_intr_config(uart_num, &uart_intr);
  980. if (r!=ESP_OK) goto err;
  981. return r;
  982. err:
  983. uart_driver_delete(uart_num);
  984. return r;
  985. }
  986. //Make sure no other tasks are still using UART before you call this function
  987. esp_err_t uart_driver_delete(uart_port_t uart_num)
  988. {
  989. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  990. if(p_uart_obj[uart_num] == NULL) {
  991. ESP_LOGI(UART_TAG, "ALREADY NULL");
  992. return ESP_OK;
  993. }
  994. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  995. uart_disable_rx_intr(uart_num);
  996. uart_disable_tx_intr(uart_num);
  997. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  998. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  999. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1000. }
  1001. if(p_uart_obj[uart_num]->tx_done_sem) {
  1002. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1003. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1004. }
  1005. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1006. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1007. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1008. }
  1009. if(p_uart_obj[uart_num]->tx_mux) {
  1010. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1011. p_uart_obj[uart_num]->tx_mux = NULL;
  1012. }
  1013. if(p_uart_obj[uart_num]->rx_mux) {
  1014. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1015. p_uart_obj[uart_num]->rx_mux = NULL;
  1016. }
  1017. if(p_uart_obj[uart_num]->xQueueUart) {
  1018. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1019. p_uart_obj[uart_num]->xQueueUart = NULL;
  1020. }
  1021. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1022. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1023. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1024. }
  1025. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1026. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1027. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1028. }
  1029. free(p_uart_obj[uart_num]);
  1030. p_uart_obj[uart_num] = NULL;
  1031. return ESP_OK;
  1032. }