uart.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #include "driver/uart_select.h"
  32. #define XOFF (char)0x13
  33. #define XON (char)0x11
  34. static const char* UART_TAG = "uart";
  35. #define UART_CHECK(a, str, ret_val) \
  36. if (!(a)) { \
  37. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  38. return (ret_val); \
  39. }
  40. #define UART_EMPTY_THRESH_DEFAULT (10)
  41. #define UART_FULL_THRESH_DEFAULT (120)
  42. #define UART_TOUT_THRESH_DEFAULT (10)
  43. #define UART_TX_IDLE_NUM_DEFAULT (0)
  44. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  45. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  46. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  47. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  48. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  49. typedef struct {
  50. uart_event_type_t type; /*!< UART TX data type */
  51. struct {
  52. int brk_len;
  53. size_t size;
  54. uint8_t data[0];
  55. } tx_data;
  56. } uart_tx_data_t;
  57. typedef struct {
  58. int wr;
  59. int rd;
  60. int len;
  61. int* data;
  62. } uart_pat_rb_t;
  63. typedef struct {
  64. uart_port_t uart_num; /*!< UART port number*/
  65. int queue_size; /*!< UART event queue size*/
  66. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  67. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  68. //rx parameters
  69. int rx_buffered_len; /*!< UART cached data length */
  70. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  71. int rx_buf_size; /*!< RX ring buffer size */
  72. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  73. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  74. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  75. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  76. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  77. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  78. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  79. uart_pat_rb_t rx_pattern_pos;
  80. //tx parameters
  81. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  82. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  83. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  84. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  85. int tx_buf_size; /*!< TX ring buffer size */
  86. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  87. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  88. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  89. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  90. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  91. uint32_t tx_len_cur;
  92. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  93. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  94. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  95. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  96. } uart_obj_t;
  97. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  98. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  99. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  100. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  101. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  102. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  103. {
  104. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  105. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  106. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  107. UART[uart_num]->conf0.bit_num = data_bit;
  108. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  109. return ESP_OK;
  110. }
  111. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  112. {
  113. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  114. *(data_bit) = UART[uart_num]->conf0.bit_num;
  115. return ESP_OK;
  116. }
  117. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  118. {
  119. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  120. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  121. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  122. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  123. if (stop_bit == UART_STOP_BITS_2) {
  124. stop_bit = UART_STOP_BITS_1;
  125. UART[uart_num]->rs485_conf.dl1_en = 1;
  126. } else {
  127. UART[uart_num]->rs485_conf.dl1_en = 0;
  128. }
  129. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  130. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  131. return ESP_OK;
  132. }
  133. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  134. {
  135. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  136. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  137. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  138. (*stop_bit) = UART_STOP_BITS_2;
  139. } else {
  140. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  141. }
  142. return ESP_OK;
  143. }
  144. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  145. {
  146. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  147. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  148. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  149. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  150. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  151. return ESP_OK;
  152. }
  153. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  154. {
  155. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  156. int val = UART[uart_num]->conf0.val;
  157. if(val & UART_PARITY_EN_M) {
  158. if(val & UART_PARITY_M) {
  159. (*parity_mode) = UART_PARITY_ODD;
  160. } else {
  161. (*parity_mode) = UART_PARITY_EVEN;
  162. }
  163. } else {
  164. (*parity_mode) = UART_PARITY_DISABLE;
  165. }
  166. return ESP_OK;
  167. }
  168. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  169. {
  170. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  171. esp_err_t ret = ESP_OK;
  172. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  173. int uart_clk_freq;
  174. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  175. /* this UART has been configured to use REF_TICK */
  176. uart_clk_freq = REF_CLK_FREQ;
  177. } else {
  178. uart_clk_freq = esp_clk_apb_freq();
  179. }
  180. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  181. if (clk_div < 16) {
  182. /* baud rate is too high for this clock frequency */
  183. ret = ESP_ERR_INVALID_ARG;
  184. } else {
  185. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  186. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  187. }
  188. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  189. return ret;
  190. }
  191. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  192. {
  193. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  194. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  195. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  196. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  197. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  198. return ESP_OK;
  199. }
  200. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  201. {
  202. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  203. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  204. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  205. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  206. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  207. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  208. return ESP_OK;
  209. }
  210. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  211. {
  212. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  213. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  214. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  215. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  216. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  217. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  218. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  219. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  220. UART[uart_num]->swfc_conf.xon_char = XON;
  221. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  222. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  223. return ESP_OK;
  224. }
  225. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  226. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  227. {
  228. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  229. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  230. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  231. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  232. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  233. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  234. UART[uart_num]->conf1.rx_flow_en = 1;
  235. } else {
  236. UART[uart_num]->conf1.rx_flow_en = 0;
  237. }
  238. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  239. UART[uart_num]->conf0.tx_flow_en = 1;
  240. } else {
  241. UART[uart_num]->conf0.tx_flow_en = 0;
  242. }
  243. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  244. return ESP_OK;
  245. }
  246. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  247. {
  248. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  249. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  250. if(UART[uart_num]->conf1.rx_flow_en) {
  251. val |= UART_HW_FLOWCTRL_RTS;
  252. }
  253. if(UART[uart_num]->conf0.tx_flow_en) {
  254. val |= UART_HW_FLOWCTRL_CTS;
  255. }
  256. (*flow_ctrl) = val;
  257. return ESP_OK;
  258. }
  259. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  260. {
  261. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  262. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  263. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  264. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  265. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  266. READ_PERI_REG(UART_FIFO_REG(uart_num));
  267. }
  268. return ESP_OK;
  269. }
  270. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  271. {
  272. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  273. //intr_clr register is write-only
  274. UART[uart_num]->int_clr.val = clr_mask;
  275. return ESP_OK;
  276. }
  277. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  278. {
  279. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  280. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  281. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  282. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  283. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  284. return ESP_OK;
  285. }
  286. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  287. {
  288. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  289. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  290. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  291. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  292. return ESP_OK;
  293. }
  294. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  295. {
  296. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  297. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  298. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  299. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  300. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  301. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  302. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  303. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  304. free(pdata);
  305. }
  306. return ESP_OK;
  307. }
  308. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  309. {
  310. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  311. esp_err_t ret = ESP_OK;
  312. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  313. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  314. int next = p_pos->wr + 1;
  315. if (next >= p_pos->len) {
  316. next = 0;
  317. }
  318. if (next == p_pos->rd) {
  319. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  320. ret = ESP_FAIL;
  321. } else {
  322. p_pos->data[p_pos->wr] = pos;
  323. p_pos->wr = next;
  324. ret = ESP_OK;
  325. }
  326. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  327. return ret;
  328. }
  329. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  330. {
  331. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  332. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  333. return ESP_ERR_INVALID_STATE;
  334. } else {
  335. esp_err_t ret = ESP_OK;
  336. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  337. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  338. if (p_pos->rd == p_pos->wr) {
  339. ret = ESP_FAIL;
  340. } else {
  341. p_pos->rd++;
  342. }
  343. if (p_pos->rd >= p_pos->len) {
  344. p_pos->rd = 0;
  345. }
  346. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  347. return ret;
  348. }
  349. }
  350. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  351. {
  352. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  353. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  354. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  355. int rd = p_pos->rd;
  356. while(rd != p_pos->wr) {
  357. p_pos->data[rd] -= diff_len;
  358. int rd_rec = rd;
  359. rd ++;
  360. if (rd >= p_pos->len) {
  361. rd = 0;
  362. }
  363. if (p_pos->data[rd_rec] < 0) {
  364. p_pos->rd = rd;
  365. }
  366. }
  367. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  368. return ESP_OK;
  369. }
  370. int uart_pattern_pop_pos(uart_port_t uart_num)
  371. {
  372. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  373. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  374. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  375. int pos = -1;
  376. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  377. pos = pat_pos->data[pat_pos->rd];
  378. uart_pattern_dequeue(uart_num);
  379. }
  380. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  381. return pos;
  382. }
  383. int uart_pattern_get_pos(uart_port_t uart_num)
  384. {
  385. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  386. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  387. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  388. int pos = -1;
  389. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  390. pos = pat_pos->data[pat_pos->rd];
  391. }
  392. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  393. return pos;
  394. }
  395. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  396. {
  397. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  398. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  399. int* pdata = (int*) malloc(queue_length * sizeof(int));
  400. if(pdata == NULL) {
  401. return ESP_ERR_NO_MEM;
  402. }
  403. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  404. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  405. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  406. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  407. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  408. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  409. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  410. free(ptmp);
  411. return ESP_OK;
  412. }
  413. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  414. {
  415. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  416. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  417. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  418. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  419. UART[uart_num]->at_cmd_char.data = pattern_chr;
  420. UART[uart_num]->at_cmd_char.char_num = chr_num;
  421. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  422. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  423. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  424. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  425. }
  426. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  427. {
  428. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  429. }
  430. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  431. {
  432. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  433. }
  434. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  435. {
  436. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  437. }
  438. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  439. {
  440. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  441. }
  442. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  443. {
  444. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  445. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  446. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  447. UART[uart_num]->int_clr.txfifo_empty = 1;
  448. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  449. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  450. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  451. return ESP_OK;
  452. }
  453. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  454. {
  455. int ret;
  456. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  457. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  458. switch(uart_num) {
  459. case UART_NUM_1:
  460. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  461. break;
  462. case UART_NUM_2:
  463. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  464. break;
  465. case UART_NUM_0:
  466. default:
  467. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  468. break;
  469. }
  470. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  471. return ret;
  472. }
  473. esp_err_t uart_isr_free(uart_port_t uart_num)
  474. {
  475. esp_err_t ret;
  476. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  477. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  478. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  479. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  480. p_uart_obj[uart_num]->intr_handle=NULL;
  481. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  482. return ret;
  483. }
  484. //internal signal can be output to multiple GPIO pads
  485. //only one GPIO pad can connect with input signal
  486. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  487. {
  488. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  489. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  490. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  491. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  492. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  493. int tx_sig, rx_sig, rts_sig, cts_sig;
  494. switch(uart_num) {
  495. case UART_NUM_0:
  496. tx_sig = U0TXD_OUT_IDX;
  497. rx_sig = U0RXD_IN_IDX;
  498. rts_sig = U0RTS_OUT_IDX;
  499. cts_sig = U0CTS_IN_IDX;
  500. break;
  501. case UART_NUM_1:
  502. tx_sig = U1TXD_OUT_IDX;
  503. rx_sig = U1RXD_IN_IDX;
  504. rts_sig = U1RTS_OUT_IDX;
  505. cts_sig = U1CTS_IN_IDX;
  506. break;
  507. case UART_NUM_2:
  508. tx_sig = U2TXD_OUT_IDX;
  509. rx_sig = U2RXD_IN_IDX;
  510. rts_sig = U2RTS_OUT_IDX;
  511. cts_sig = U2CTS_IN_IDX;
  512. break;
  513. case UART_NUM_MAX:
  514. default:
  515. tx_sig = U0TXD_OUT_IDX;
  516. rx_sig = U0RXD_IN_IDX;
  517. rts_sig = U0RTS_OUT_IDX;
  518. cts_sig = U0CTS_IN_IDX;
  519. break;
  520. }
  521. if(tx_io_num >= 0) {
  522. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  523. gpio_set_level(tx_io_num, 1);
  524. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  525. }
  526. if(rx_io_num >= 0) {
  527. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  528. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  529. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  530. gpio_matrix_in(rx_io_num, rx_sig, 0);
  531. }
  532. if(rts_io_num >= 0) {
  533. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  534. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  535. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  536. }
  537. if(cts_io_num >= 0) {
  538. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  539. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  540. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  541. gpio_matrix_in(cts_io_num, cts_sig, 0);
  542. }
  543. return ESP_OK;
  544. }
  545. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  546. {
  547. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  548. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  549. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  550. UART[uart_num]->conf0.sw_rts = level & 0x1;
  551. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  552. return ESP_OK;
  553. }
  554. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  555. {
  556. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  557. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  558. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  559. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  560. return ESP_OK;
  561. }
  562. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  563. {
  564. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  565. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  566. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  567. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  568. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  569. return ESP_OK;
  570. }
  571. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  572. {
  573. esp_err_t r;
  574. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  575. UART_CHECK((uart_config), "param null", ESP_FAIL);
  576. if(uart_num == UART_NUM_0) {
  577. periph_module_enable(PERIPH_UART0_MODULE);
  578. } else if(uart_num == UART_NUM_1) {
  579. periph_module_enable(PERIPH_UART1_MODULE);
  580. } else if(uart_num == UART_NUM_2) {
  581. periph_module_enable(PERIPH_UART2_MODULE);
  582. }
  583. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  584. if (r != ESP_OK) return r;
  585. UART[uart_num]->conf0.val =
  586. (uart_config->parity << UART_PARITY_S)
  587. | (uart_config->data_bits << UART_BIT_NUM_S)
  588. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  589. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  590. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  591. if (r != ESP_OK) return r;
  592. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  593. if (r != ESP_OK) return r;
  594. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  595. return r;
  596. }
  597. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  598. {
  599. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  600. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  601. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  602. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  603. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  604. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  605. UART[uart_num]->conf1.rx_tout_en = 1;
  606. } else {
  607. UART[uart_num]->conf1.rx_tout_en = 0;
  608. }
  609. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  610. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  611. }
  612. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  613. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  614. }
  615. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  616. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  617. return ESP_OK;
  618. }
  619. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  620. {
  621. int cnt = 0;
  622. int len = length;
  623. while (len >= 0) {
  624. if (buf[len] == pat_chr) {
  625. cnt++;
  626. } else {
  627. cnt = 0;
  628. }
  629. if (cnt >= pat_num) {
  630. break;
  631. }
  632. len --;
  633. }
  634. return len;
  635. }
  636. //internal isr handler for default driver code.
  637. static void uart_rx_intr_handler_default(void *param)
  638. {
  639. uart_obj_t *p_uart = (uart_obj_t*) param;
  640. uint8_t uart_num = p_uart->uart_num;
  641. uart_dev_t* uart_reg = UART[uart_num];
  642. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  643. uint8_t buf_idx = 0;
  644. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  645. uart_event_t uart_event;
  646. portBASE_TYPE HPTaskAwoken = 0;
  647. static uint8_t pat_flg = 0;
  648. while(uart_intr_status != 0x0) {
  649. buf_idx = 0;
  650. uart_event.type = UART_EVENT_MAX;
  651. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  652. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  653. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  654. if(p_uart->tx_waiting_brk) {
  655. continue;
  656. }
  657. //TX semaphore will only be used when tx_buf_size is zero.
  658. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  659. p_uart->tx_waiting_fifo = false;
  660. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  661. if(HPTaskAwoken == pdTRUE) {
  662. portYIELD_FROM_ISR() ;
  663. }
  664. } else {
  665. //We don't use TX ring buffer, because the size is zero.
  666. if(p_uart->tx_buf_size == 0) {
  667. continue;
  668. }
  669. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  670. bool en_tx_flg = false;
  671. //We need to put a loop here, in case all the buffer items are very short.
  672. //That would cause a watch_dog reset because empty interrupt happens so often.
  673. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  674. while(tx_fifo_rem) {
  675. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  676. size_t size;
  677. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  678. if(p_uart->tx_head) {
  679. //The first item is the data description
  680. //Get the first item to get the data information
  681. if(p_uart->tx_len_tot == 0) {
  682. p_uart->tx_ptr = NULL;
  683. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  684. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  685. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  686. p_uart->tx_brk_flg = 1;
  687. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  688. }
  689. //We have saved the data description from the 1st item, return buffer.
  690. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  691. if(HPTaskAwoken == pdTRUE) {
  692. portYIELD_FROM_ISR() ;
  693. }
  694. }else if(p_uart->tx_ptr == NULL) {
  695. //Update the TX item pointer, we will need this to return item to buffer.
  696. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  697. en_tx_flg = true;
  698. p_uart->tx_len_cur = size;
  699. }
  700. }
  701. else {
  702. //Can not get data from ring buffer, return;
  703. break;
  704. }
  705. }
  706. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  707. //To fill the TX FIFO.
  708. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  709. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  710. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  711. }
  712. p_uart->tx_len_tot -= send_len;
  713. p_uart->tx_len_cur -= send_len;
  714. tx_fifo_rem -= send_len;
  715. if (p_uart->tx_len_cur == 0) {
  716. //Return item to ring buffer.
  717. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  718. if(HPTaskAwoken == pdTRUE) {
  719. portYIELD_FROM_ISR() ;
  720. }
  721. p_uart->tx_head = NULL;
  722. p_uart->tx_ptr = NULL;
  723. //Sending item done, now we need to send break if there is a record.
  724. //Set TX break signal after FIFO is empty
  725. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  726. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  727. uart_reg->int_ena.tx_brk_done = 0;
  728. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  729. uart_reg->conf0.txd_brk = 1;
  730. uart_reg->int_clr.tx_brk_done = 1;
  731. uart_reg->int_ena.tx_brk_done = 1;
  732. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  733. p_uart->tx_waiting_brk = 1;
  734. } else {
  735. //enable TX empty interrupt
  736. en_tx_flg = true;
  737. }
  738. } else {
  739. //enable TX empty interrupt
  740. en_tx_flg = true;
  741. }
  742. }
  743. }
  744. if (en_tx_flg) {
  745. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  746. uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  747. }
  748. }
  749. }
  750. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  751. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  752. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  753. ) {
  754. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  755. if(pat_flg == 1) {
  756. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  757. pat_flg = 0;
  758. }
  759. if (p_uart->rx_buffer_full_flg == false) {
  760. //We have to read out all data in RX FIFO to clear the interrupt signal
  761. while (buf_idx < rx_fifo_len) {
  762. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  763. }
  764. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  765. int pat_num = uart_reg->at_cmd_char.char_num;
  766. int pat_idx = -1;
  767. //Get the buffer from the FIFO
  768. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  769. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  770. uart_event.type = UART_PATTERN_DET;
  771. uart_event.size = rx_fifo_len;
  772. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  773. } else {
  774. //After Copying the Data From FIFO ,Clear intr_status
  775. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  776. uart_event.type = UART_DATA;
  777. uart_event.size = rx_fifo_len;
  778. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  779. if (p_uart->uart_select_notif_callback) {
  780. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  781. }
  782. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  783. }
  784. p_uart->rx_stash_len = rx_fifo_len;
  785. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  786. //Mainly for applications that uses flow control or small ring buffer.
  787. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  788. uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  789. if (uart_event.type == UART_PATTERN_DET) {
  790. if (rx_fifo_len < pat_num) {
  791. //some of the characters are read out in last interrupt
  792. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  793. } else {
  794. uart_pattern_enqueue(uart_num,
  795. pat_idx <= -1 ?
  796. //can not find the pattern in buffer,
  797. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  798. // find the pattern in buffer
  799. p_uart->rx_buffered_len + pat_idx);
  800. }
  801. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  802. ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
  803. }
  804. }
  805. uart_event.type = UART_BUFFER_FULL;
  806. p_uart->rx_buffer_full_flg = true;
  807. } else {
  808. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  809. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  810. if (rx_fifo_len < pat_num) {
  811. //some of the characters are read out in last interrupt
  812. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  813. } else if(pat_idx >= 0) {
  814. // find pattern in statsh buffer.
  815. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  816. }
  817. }
  818. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  819. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  820. }
  821. if(HPTaskAwoken == pdTRUE) {
  822. portYIELD_FROM_ISR() ;
  823. }
  824. } else {
  825. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  826. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  827. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  828. uart_reg->int_clr.at_cmd_char_det = 1;
  829. uart_event.type = UART_PATTERN_DET;
  830. uart_event.size = rx_fifo_len;
  831. pat_flg = 1;
  832. }
  833. }
  834. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  835. // When fifo overflows, we reset the fifo.
  836. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  837. uart_reset_rx_fifo(uart_num);
  838. uart_reg->int_clr.rxfifo_ovf = 1;
  839. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  840. uart_event.type = UART_FIFO_OVF;
  841. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  842. if (p_uart->uart_select_notif_callback) {
  843. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  844. }
  845. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  846. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  847. uart_reg->int_clr.brk_det = 1;
  848. uart_event.type = UART_BREAK;
  849. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  850. uart_reg->int_clr.frm_err = 1;
  851. uart_event.type = UART_FRAME_ERR;
  852. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  853. if (p_uart->uart_select_notif_callback) {
  854. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  855. }
  856. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  857. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  858. uart_reg->int_clr.parity_err = 1;
  859. uart_event.type = UART_PARITY_ERR;
  860. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  861. if (p_uart->uart_select_notif_callback) {
  862. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  863. }
  864. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  865. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  866. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  867. uart_reg->conf0.txd_brk = 0;
  868. uart_reg->int_ena.tx_brk_done = 0;
  869. uart_reg->int_clr.tx_brk_done = 1;
  870. if(p_uart->tx_brk_flg == 1) {
  871. uart_reg->int_ena.txfifo_empty = 1;
  872. }
  873. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  874. if(p_uart->tx_brk_flg == 1) {
  875. p_uart->tx_brk_flg = 0;
  876. p_uart->tx_waiting_brk = 0;
  877. } else {
  878. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  879. if(HPTaskAwoken == pdTRUE) {
  880. portYIELD_FROM_ISR() ;
  881. }
  882. }
  883. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  884. uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  885. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  886. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  887. uart_reg->int_clr.at_cmd_char_det = 1;
  888. uart_event.type = UART_PATTERN_DET;
  889. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  890. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  891. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  892. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  893. if(HPTaskAwoken == pdTRUE) {
  894. portYIELD_FROM_ISR() ;
  895. }
  896. } else {
  897. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  898. uart_event.type = UART_EVENT_MAX;
  899. }
  900. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  901. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  902. ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
  903. }
  904. if(HPTaskAwoken == pdTRUE) {
  905. portYIELD_FROM_ISR() ;
  906. }
  907. }
  908. uart_intr_status = uart_reg->int_st.val;
  909. }
  910. }
  911. /**************************************************************/
  912. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  913. {
  914. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  915. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  916. BaseType_t res;
  917. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  918. //Take tx_mux
  919. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  920. if(res == pdFALSE) {
  921. return ESP_ERR_TIMEOUT;
  922. }
  923. ticks_to_wait = ticks_end - xTaskGetTickCount();
  924. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  925. ticks_to_wait = ticks_end - xTaskGetTickCount();
  926. if(UART[uart_num]->status.txfifo_cnt == 0) {
  927. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  928. return ESP_OK;
  929. }
  930. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  931. //take 2nd tx_done_sem, wait given from ISR
  932. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  933. if(res == pdFALSE) {
  934. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  935. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  936. return ESP_ERR_TIMEOUT;
  937. }
  938. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  939. return ESP_OK;
  940. }
  941. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  942. {
  943. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  944. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  945. UART[uart_num]->conf0.txd_brk = 1;
  946. UART[uart_num]->int_clr.tx_brk_done = 1;
  947. UART[uart_num]->int_ena.tx_brk_done = 1;
  948. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  949. return ESP_OK;
  950. }
  951. //Fill UART tx_fifo and return a number,
  952. //This function by itself is not thread-safe, always call from within a muxed section.
  953. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  954. {
  955. uint8_t i = 0;
  956. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  957. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  958. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  959. for(i = 0; i < copy_cnt; i++) {
  960. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  961. }
  962. return copy_cnt;
  963. }
  964. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  965. {
  966. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  967. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  968. UART_CHECK(buffer, "buffer null", (-1));
  969. if(len == 0) {
  970. return 0;
  971. }
  972. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  973. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  974. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  975. return tx_len;
  976. }
  977. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  978. {
  979. if(size == 0) {
  980. return 0;
  981. }
  982. size_t original_size = size;
  983. //lock for uart_tx
  984. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  985. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  986. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  987. int offset = 0;
  988. uart_tx_data_t evt;
  989. evt.tx_data.size = size;
  990. evt.tx_data.brk_len = brk_len;
  991. if(brk_en) {
  992. evt.type = UART_DATA_BREAK;
  993. } else {
  994. evt.type = UART_DATA;
  995. }
  996. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  997. while(size > 0) {
  998. int send_size = size > max_size / 2 ? max_size / 2 : size;
  999. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1000. size -= send_size;
  1001. offset += send_size;
  1002. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1003. }
  1004. } else {
  1005. while(size) {
  1006. //semaphore for tx_fifo available
  1007. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1008. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1009. if(sent < size) {
  1010. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1011. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1012. }
  1013. size -= sent;
  1014. src += sent;
  1015. }
  1016. }
  1017. if(brk_en) {
  1018. uart_set_break(uart_num, brk_len);
  1019. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1020. }
  1021. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1022. }
  1023. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1024. return original_size;
  1025. }
  1026. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1027. {
  1028. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1029. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1030. UART_CHECK(src, "buffer null", (-1));
  1031. return uart_tx_all(uart_num, src, size, 0, 0);
  1032. }
  1033. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1034. {
  1035. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1036. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1037. UART_CHECK((size > 0), "uart size error", (-1));
  1038. UART_CHECK((src), "uart data null", (-1));
  1039. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1040. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1041. }
  1042. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1043. {
  1044. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1045. UART_CHECK((buf), "uart data null", (-1));
  1046. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1047. uint8_t* data = NULL;
  1048. size_t size;
  1049. size_t copy_len = 0;
  1050. int len_tmp;
  1051. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1052. return -1;
  1053. }
  1054. while(length) {
  1055. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1056. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1057. if(data) {
  1058. p_uart_obj[uart_num]->rx_head_ptr = data;
  1059. p_uart_obj[uart_num]->rx_ptr = data;
  1060. p_uart_obj[uart_num]->rx_cur_remain = size;
  1061. } else {
  1062. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1063. return copy_len;
  1064. }
  1065. }
  1066. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1067. len_tmp = length;
  1068. } else {
  1069. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1070. }
  1071. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1072. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1073. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1074. uart_pattern_queue_update(uart_num, len_tmp);
  1075. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1076. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1077. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1078. copy_len += len_tmp;
  1079. length -= len_tmp;
  1080. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1081. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1082. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1083. p_uart_obj[uart_num]->rx_ptr = NULL;
  1084. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1085. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1086. if(res == pdTRUE) {
  1087. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1088. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1089. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1090. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1091. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1092. }
  1093. }
  1094. }
  1095. }
  1096. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1097. return copy_len;
  1098. }
  1099. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1100. {
  1101. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1102. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1103. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1104. return ESP_OK;
  1105. }
  1106. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1107. esp_err_t uart_flush_input(uart_port_t uart_num)
  1108. {
  1109. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1110. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1111. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1112. uint8_t* data;
  1113. size_t size;
  1114. //rx sem protect the ring buffer read related functions
  1115. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1116. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1117. while(true) {
  1118. if(p_uart->rx_head_ptr) {
  1119. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1120. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1121. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1122. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1123. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1124. p_uart->rx_ptr = NULL;
  1125. p_uart->rx_cur_remain = 0;
  1126. p_uart->rx_head_ptr = NULL;
  1127. }
  1128. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1129. if(data == NULL) {
  1130. break;
  1131. }
  1132. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1133. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1134. uart_pattern_queue_update(uart_num, size);
  1135. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1136. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1137. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1138. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1139. if(res == pdTRUE) {
  1140. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1141. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1142. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1143. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1144. }
  1145. }
  1146. }
  1147. p_uart->rx_ptr = NULL;
  1148. p_uart->rx_cur_remain = 0;
  1149. p_uart->rx_head_ptr = NULL;
  1150. uart_reset_rx_fifo(uart_num);
  1151. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1152. xSemaphoreGive(p_uart->rx_mux);
  1153. return ESP_OK;
  1154. }
  1155. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1156. {
  1157. esp_err_t r;
  1158. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1159. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1160. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1161. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1162. if(p_uart_obj[uart_num] == NULL) {
  1163. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1164. if(p_uart_obj[uart_num] == NULL) {
  1165. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1166. return ESP_FAIL;
  1167. }
  1168. p_uart_obj[uart_num]->uart_num = uart_num;
  1169. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1170. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1171. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1172. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1173. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1174. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1175. p_uart_obj[uart_num]->queue_size = queue_size;
  1176. p_uart_obj[uart_num]->tx_ptr = NULL;
  1177. p_uart_obj[uart_num]->tx_head = NULL;
  1178. p_uart_obj[uart_num]->tx_len_tot = 0;
  1179. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1180. p_uart_obj[uart_num]->tx_brk_len = 0;
  1181. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1182. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1183. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1184. if(uart_queue) {
  1185. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1186. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1187. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1188. } else {
  1189. p_uart_obj[uart_num]->xQueueUart = NULL;
  1190. }
  1191. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1192. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1193. p_uart_obj[uart_num]->rx_ptr = NULL;
  1194. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1195. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1196. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1197. if(tx_buffer_size > 0) {
  1198. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1199. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1200. } else {
  1201. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1202. p_uart_obj[uart_num]->tx_buf_size = 0;
  1203. }
  1204. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1205. } else {
  1206. ESP_LOGE(UART_TAG, "UART driver already installed");
  1207. return ESP_FAIL;
  1208. }
  1209. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1210. if (r!=ESP_OK) goto err;
  1211. uart_intr_config_t uart_intr = {
  1212. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1213. | UART_RXFIFO_TOUT_INT_ENA_M
  1214. | UART_FRM_ERR_INT_ENA_M
  1215. | UART_RXFIFO_OVF_INT_ENA_M
  1216. | UART_BRK_DET_INT_ENA_M
  1217. | UART_PARITY_ERR_INT_ENA_M,
  1218. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1219. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1220. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1221. };
  1222. r=uart_intr_config(uart_num, &uart_intr);
  1223. if (r!=ESP_OK) goto err;
  1224. return r;
  1225. err:
  1226. uart_driver_delete(uart_num);
  1227. return r;
  1228. }
  1229. //Make sure no other tasks are still using UART before you call this function
  1230. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1231. {
  1232. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1233. if(p_uart_obj[uart_num] == NULL) {
  1234. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1235. return ESP_OK;
  1236. }
  1237. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1238. uart_disable_rx_intr(uart_num);
  1239. uart_disable_tx_intr(uart_num);
  1240. uart_pattern_link_free(uart_num);
  1241. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1242. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1243. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1244. }
  1245. if(p_uart_obj[uart_num]->tx_done_sem) {
  1246. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1247. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1248. }
  1249. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1250. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1251. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1252. }
  1253. if(p_uart_obj[uart_num]->tx_mux) {
  1254. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1255. p_uart_obj[uart_num]->tx_mux = NULL;
  1256. }
  1257. if(p_uart_obj[uart_num]->rx_mux) {
  1258. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1259. p_uart_obj[uart_num]->rx_mux = NULL;
  1260. }
  1261. if(p_uart_obj[uart_num]->xQueueUart) {
  1262. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1263. p_uart_obj[uart_num]->xQueueUart = NULL;
  1264. }
  1265. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1266. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1267. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1268. }
  1269. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1270. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1271. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1272. }
  1273. free(p_uart_obj[uart_num]);
  1274. p_uart_obj[uart_num] = NULL;
  1275. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1276. if(uart_num == UART_NUM_0) {
  1277. periph_module_disable(PERIPH_UART0_MODULE);
  1278. } else if(uart_num == UART_NUM_1) {
  1279. periph_module_disable(PERIPH_UART1_MODULE);
  1280. } else if(uart_num == UART_NUM_2) {
  1281. periph_module_disable(PERIPH_UART2_MODULE);
  1282. }
  1283. }
  1284. return ESP_OK;
  1285. }
  1286. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1287. {
  1288. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1289. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1290. }
  1291. }
  1292. portMUX_TYPE *uart_get_selectlock()
  1293. {
  1294. return &uart_selectlock;
  1295. }