bt.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <stddef.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include "sdkconfig.h"
  18. #include "esp_heap_caps.h"
  19. #include "esp_heap_caps_init.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/task.h"
  22. #include "freertos/queue.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/portmacro.h"
  26. #include "xtensa/core-macros.h"
  27. #include "esp_types.h"
  28. #include "esp_system.h"
  29. #include "esp_task.h"
  30. #include "esp_intr_alloc.h"
  31. #include "esp_attr.h"
  32. #include "esp_phy_init.h"
  33. #include "esp_bt.h"
  34. #include "esp_err.h"
  35. #include "esp_log.h"
  36. #include "esp_pm.h"
  37. #include "driver/periph_ctrl.h"
  38. #include "soc/rtc.h"
  39. #include "soc/soc_memory_layout.h"
  40. #include "esp32/clk.h"
  41. #include "esp_coexist_internal.h"
  42. #if !CONFIG_FREERTOS_UNICORE
  43. #include "esp_ipc.h"
  44. #endif
  45. #include "esp_rom_sys.h"
  46. #if CONFIG_BT_ENABLED
  47. /* Macro definition
  48. ************************************************************************
  49. */
  50. #define BTDM_LOG_TAG "BTDM_INIT"
  51. #define BTDM_INIT_PERIOD (5000) /* ms */
  52. /* Bluetooth system and controller config */
  53. #define BTDM_CFG_BT_DATA_RELEASE (1<<0)
  54. #define BTDM_CFG_HCI_UART (1<<1)
  55. #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
  56. #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
  57. #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
  58. #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
  59. /* Sleep mode */
  60. #define BTDM_MODEM_SLEEP_MODE_NONE (0)
  61. #define BTDM_MODEM_SLEEP_MODE_ORIG (1)
  62. #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
  63. /* Low Power Clock Selection */
  64. #define BTDM_LPCLK_SEL_XTAL (0)
  65. #define BTDM_LPCLK_SEL_XTAL32K (1)
  66. #define BTDM_LPCLK_SEL_RTC_SLOW (2)
  67. #define BTDM_LPCLK_SEL_8M (3)
  68. /* Sleep and wakeup interval control */
  69. #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
  70. #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
  71. #define BT_DEBUG(...)
  72. #define BT_API_CALL_CHECK(info, api_call, ret) \
  73. do{\
  74. esp_err_t __err = (api_call);\
  75. if ((ret) != __err) {\
  76. BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
  77. return __err;\
  78. }\
  79. } while(0)
  80. #define OSI_FUNCS_TIME_BLOCKING 0xffffffff
  81. #define OSI_VERSION 0x00010002
  82. #define OSI_MAGIC_VALUE 0xFADEBEAD
  83. /* SPIRAM Configuration */
  84. #if CONFIG_SPIRAM_USE_MALLOC
  85. #define BTDM_MAX_QUEUE_NUM (5)
  86. #endif
  87. /* Types definition
  88. ************************************************************************
  89. */
  90. /* VHCI function interface */
  91. typedef struct vhci_host_callback {
  92. void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
  93. int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
  94. } vhci_host_callback_t;
  95. /* Dram region */
  96. typedef struct {
  97. esp_bt_mode_t mode;
  98. intptr_t start;
  99. intptr_t end;
  100. } btdm_dram_available_region_t;
  101. /* PSRAM configuration */
  102. #if CONFIG_SPIRAM_USE_MALLOC
  103. typedef struct {
  104. QueueHandle_t handle;
  105. void *storage;
  106. void *buffer;
  107. } btdm_queue_item_t;
  108. #endif
  109. /* OSI function */
  110. struct osi_funcs_t {
  111. uint32_t _version;
  112. xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
  113. void (*_ints_on)(unsigned int mask);
  114. void (*_interrupt_disable)(void);
  115. void (*_interrupt_restore)(void);
  116. void (*_task_yield)(void);
  117. void (*_task_yield_from_isr)(void);
  118. void *(*_semphr_create)(uint32_t max, uint32_t init);
  119. void (*_semphr_delete)(void *semphr);
  120. int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
  121. int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
  122. int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
  123. int32_t (*_semphr_give)(void *semphr);
  124. void *(*_mutex_create)(void);
  125. void (*_mutex_delete)(void *mutex);
  126. int32_t (*_mutex_lock)(void *mutex);
  127. int32_t (*_mutex_unlock)(void *mutex);
  128. void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
  129. void (* _queue_delete)(void *queue);
  130. int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
  131. int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
  132. int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
  133. int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
  134. int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  135. void (* _task_delete)(void *task_handle);
  136. bool (* _is_in_isr)(void);
  137. int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
  138. void *(* _malloc)(uint32_t size);
  139. void *(* _malloc_internal)(uint32_t size);
  140. void (* _free)(void *p);
  141. int32_t (* _read_efuse_mac)(uint8_t mac[6]);
  142. void (* _srand)(unsigned int seed);
  143. int (* _rand)(void);
  144. uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
  145. uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
  146. bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
  147. void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
  148. void (* _btdm_sleep_enter_phase2)(void);
  149. void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
  150. void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
  151. void (* _btdm_sleep_exit_phase3)(void); /* called from task */
  152. bool (* _coex_bt_wakeup_request)(void);
  153. void (* _coex_bt_wakeup_request_end)(void);
  154. int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration);
  155. int (* _coex_bt_release)(uint32_t event);
  156. int (* _coex_register_bt_cb)(coex_func_cb_t cb);
  157. uint32_t (* _coex_bb_reset_lock)(void);
  158. void (* _coex_bb_reset_unlock)(uint32_t restore);
  159. uint32_t _magic;
  160. };
  161. typedef void (*workitem_handler_t)(void* arg);
  162. /* External functions or values
  163. ************************************************************************
  164. */
  165. /* not for user call, so don't put to include file */
  166. /* OSI */
  167. extern int btdm_osi_funcs_register(void *osi_funcs);
  168. /* Initialise and De-initialise */
  169. extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
  170. extern void btdm_controller_deinit(void);
  171. extern int btdm_controller_enable(esp_bt_mode_t mode);
  172. extern void btdm_controller_disable(void);
  173. extern uint8_t btdm_controller_get_mode(void);
  174. extern const char *btdm_controller_get_compile_version(void);
  175. extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
  176. extern int btdm_dispatch_work_to_controller(workitem_handler_t callback, void *arg, bool blocking);
  177. /* Sleep */
  178. extern void btdm_controller_enable_sleep(bool enable);
  179. extern void btdm_controller_set_sleep_mode(uint8_t mode);
  180. extern uint8_t btdm_controller_get_sleep_mode(void);
  181. extern bool btdm_power_state_active(void);
  182. extern void btdm_wakeup_request(void);
  183. extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting);
  184. /* Low Power Clock */
  185. extern bool btdm_lpclk_select_src(uint32_t sel);
  186. extern bool btdm_lpclk_set_div(uint32_t div);
  187. /* VHCI */
  188. extern bool API_vhci_host_check_send_available(void);
  189. extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
  190. extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
  191. /* TX power */
  192. extern int ble_txpwr_set(int power_type, int power_level);
  193. extern int ble_txpwr_get(int power_type);
  194. extern int bredr_txpwr_set(int min_power_level, int max_power_level);
  195. extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
  196. extern void bredr_sco_datapath_set(uint8_t data_path);
  197. extern void btdm_controller_scan_duplicate_list_clear(void);
  198. /* Coexistence */
  199. extern int coex_bt_request(uint32_t event, uint32_t latency, uint32_t duration);
  200. extern int coex_bt_release(uint32_t event);
  201. extern int coex_register_bt_cb(coex_func_cb_t cb);
  202. extern uint32_t coex_bb_reset_lock(void);
  203. extern void coex_bb_reset_unlock(uint32_t restore);
  204. extern void coex_ble_adv_priority_high_set(bool high);
  205. extern char _bss_start_btdm;
  206. extern char _bss_end_btdm;
  207. extern char _data_start_btdm;
  208. extern char _data_end_btdm;
  209. extern uint32_t _data_start_btdm_rom;
  210. extern uint32_t _data_end_btdm_rom;
  211. extern uint32_t _bt_bss_start;
  212. extern uint32_t _bt_bss_end;
  213. extern uint32_t _nimble_bss_start;
  214. extern uint32_t _nimble_bss_end;
  215. extern uint32_t _btdm_bss_start;
  216. extern uint32_t _btdm_bss_end;
  217. extern uint32_t _bt_data_start;
  218. extern uint32_t _bt_data_end;
  219. extern uint32_t _nimble_data_start;
  220. extern uint32_t _nimble_data_end;
  221. extern uint32_t _btdm_data_start;
  222. extern uint32_t _btdm_data_end;
  223. /* Local Function Declare
  224. *********************************************************************
  225. */
  226. #if CONFIG_SPIRAM_USE_MALLOC
  227. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue);
  228. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue);
  229. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  230. static void IRAM_ATTR interrupt_disable(void);
  231. static void IRAM_ATTR interrupt_restore(void);
  232. static void IRAM_ATTR task_yield_from_isr(void);
  233. static void *semphr_create_wrapper(uint32_t max, uint32_t init);
  234. static void semphr_delete_wrapper(void *semphr);
  235. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw);
  236. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw);
  237. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
  238. static int32_t semphr_give_wrapper(void *semphr);
  239. static void *mutex_create_wrapper(void);
  240. static void mutex_delete_wrapper(void *mutex);
  241. static int32_t mutex_lock_wrapper(void *mutex);
  242. static int32_t mutex_unlock_wrapper(void *mutex);
  243. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
  244. static void queue_delete_wrapper(void *queue);
  245. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
  246. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
  247. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
  248. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
  249. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  250. static void task_delete_wrapper(void *task_handle);
  251. static bool IRAM_ATTR is_in_isr_wrapper(void);
  252. static void IRAM_ATTR cause_sw_intr(void *arg);
  253. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
  254. static void *malloc_internal_wrapper(size_t size);
  255. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]);
  256. static void IRAM_ATTR srand_wrapper(unsigned int seed);
  257. static int IRAM_ATTR rand_wrapper(void);
  258. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles);
  259. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us);
  260. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt);
  261. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
  262. static void btdm_sleep_enter_phase2_wrapper(void);
  263. static void btdm_sleep_exit_phase3_wrapper(void);
  264. static bool coex_bt_wakeup_request(void);
  265. static void coex_bt_wakeup_request_end(void);
  266. static int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration);
  267. static int coex_bt_release_wrapper(uint32_t event);
  268. static int coex_register_bt_cb_wrapper(coex_func_cb_t cb);
  269. static uint32_t coex_bb_reset_lock_wrapper(void);
  270. static void coex_bb_reset_unlock_wrapper(uint32_t restore);
  271. /* Local variable definition
  272. ***************************************************************************
  273. */
  274. /* OSI funcs */
  275. static const struct osi_funcs_t osi_funcs_ro = {
  276. ._version = OSI_VERSION,
  277. ._set_isr = xt_set_interrupt_handler,
  278. ._ints_on = xt_ints_on,
  279. ._interrupt_disable = interrupt_disable,
  280. ._interrupt_restore = interrupt_restore,
  281. ._task_yield = vPortYield,
  282. ._task_yield_from_isr = task_yield_from_isr,
  283. ._semphr_create = semphr_create_wrapper,
  284. ._semphr_delete = semphr_delete_wrapper,
  285. ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
  286. ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
  287. ._semphr_take = semphr_take_wrapper,
  288. ._semphr_give = semphr_give_wrapper,
  289. ._mutex_create = mutex_create_wrapper,
  290. ._mutex_delete = mutex_delete_wrapper,
  291. ._mutex_lock = mutex_lock_wrapper,
  292. ._mutex_unlock = mutex_unlock_wrapper,
  293. ._queue_create = queue_create_wrapper,
  294. ._queue_delete = queue_delete_wrapper,
  295. ._queue_send = queue_send_wrapper,
  296. ._queue_send_from_isr = queue_send_from_isr_wrapper,
  297. ._queue_recv = queue_recv_wrapper,
  298. ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
  299. ._task_create = task_create_wrapper,
  300. ._task_delete = task_delete_wrapper,
  301. ._is_in_isr = is_in_isr_wrapper,
  302. ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
  303. ._malloc = malloc,
  304. ._malloc_internal = malloc_internal_wrapper,
  305. ._free = free,
  306. ._read_efuse_mac = read_mac_wrapper,
  307. ._srand = srand_wrapper,
  308. ._rand = rand_wrapper,
  309. ._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
  310. ._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
  311. ._btdm_sleep_check_duration = btdm_sleep_check_duration,
  312. ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
  313. ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
  314. ._btdm_sleep_exit_phase1 = NULL,
  315. ._btdm_sleep_exit_phase2 = NULL,
  316. ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
  317. ._coex_bt_wakeup_request = coex_bt_wakeup_request,
  318. ._coex_bt_wakeup_request_end = coex_bt_wakeup_request_end,
  319. ._coex_bt_request = coex_bt_request_wrapper,
  320. ._coex_bt_release = coex_bt_release_wrapper,
  321. ._coex_register_bt_cb = coex_register_bt_cb_wrapper,
  322. ._coex_bb_reset_lock = coex_bb_reset_lock_wrapper,
  323. ._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper,
  324. ._magic = OSI_MAGIC_VALUE,
  325. };
  326. /* the mode column will be modified by release function to indicate the available region */
  327. static btdm_dram_available_region_t btdm_dram_available_region[] = {
  328. //following is .data
  329. {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
  330. //following is memory which HW will use
  331. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
  332. {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
  333. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
  334. {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
  335. //following is .bss
  336. {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
  337. {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
  338. };
  339. /* Reserve the full memory region used by Bluetooth Controller,
  340. * some may be released later at runtime. */
  341. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
  342. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
  343. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
  344. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
  345. static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
  346. static uint8_t own_bda[6];
  347. #if CONFIG_SPIRAM_USE_MALLOC
  348. static DRAM_ATTR btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM];
  349. static DRAM_ATTR SemaphoreHandle_t btdm_queue_table_mux = NULL;
  350. #endif /* #if CONFIG_SPIRAM_USE_MALLOC */
  351. /* Static variable declare */
  352. // timestamp when PHY/RF was switched on
  353. static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
  354. static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  355. static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
  356. // measured average low power clock period in micro seconds
  357. static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
  358. static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
  359. #if CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_ORIG
  360. // used low power clock
  361. static DRAM_ATTR uint8_t btdm_lpclk_sel;
  362. #endif /* #ifdef CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_ORIG */
  363. static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL;
  364. #ifdef CONFIG_PM_ENABLE
  365. static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
  366. static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
  367. static bool s_pm_lock_acquired = true;
  368. static DRAM_ATTR bool s_btdm_allow_light_sleep;
  369. // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
  370. static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
  371. static void btdm_slp_tmr_callback(void *arg);
  372. #endif /* #ifdef CONFIG_PM_ENABLE */
  373. static inline void btdm_check_and_init_bb(void)
  374. {
  375. /* init BT-BB if PHY/RF has been switched off since last BT-BB init */
  376. int64_t latest_ts = esp_phy_rf_get_on_ts();
  377. if (latest_ts != s_time_phy_rf_just_enabled ||
  378. s_time_phy_rf_just_enabled == 0) {
  379. btdm_rf_bb_init_phase2();
  380. s_time_phy_rf_just_enabled = latest_ts;
  381. }
  382. }
  383. #if CONFIG_SPIRAM_USE_MALLOC
  384. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue)
  385. {
  386. if (!btdm_queue_table_mux || !queue) {
  387. return NULL;
  388. }
  389. bool ret = false;
  390. btdm_queue_item_t *item;
  391. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  392. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  393. item = &btdm_queue_table[i];
  394. if (item->handle == NULL) {
  395. memcpy(item, queue, sizeof(btdm_queue_item_t));
  396. ret = true;
  397. break;
  398. }
  399. }
  400. xSemaphoreGive(btdm_queue_table_mux);
  401. return ret;
  402. }
  403. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue)
  404. {
  405. if (!btdm_queue_table_mux || !queue) {
  406. return false;
  407. }
  408. bool ret = false;
  409. btdm_queue_item_t *item;
  410. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  411. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  412. item = &btdm_queue_table[i];
  413. if (item->handle == queue->handle) {
  414. memcpy(queue, item, sizeof(btdm_queue_item_t));
  415. memset(item, 0, sizeof(btdm_queue_item_t));
  416. ret = true;
  417. break;
  418. }
  419. }
  420. xSemaphoreGive(btdm_queue_table_mux);
  421. return ret;
  422. }
  423. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  424. static void IRAM_ATTR interrupt_disable(void)
  425. {
  426. if (xPortInIsrContext()) {
  427. portENTER_CRITICAL_ISR(&global_int_mux);
  428. } else {
  429. portENTER_CRITICAL(&global_int_mux);
  430. }
  431. }
  432. static void IRAM_ATTR interrupt_restore(void)
  433. {
  434. if (xPortInIsrContext()) {
  435. portEXIT_CRITICAL_ISR(&global_int_mux);
  436. } else {
  437. portEXIT_CRITICAL(&global_int_mux);
  438. }
  439. }
  440. static void IRAM_ATTR task_yield_from_isr(void)
  441. {
  442. portYIELD_FROM_ISR();
  443. }
  444. static void *semphr_create_wrapper(uint32_t max, uint32_t init)
  445. {
  446. #if !CONFIG_SPIRAM_USE_MALLOC
  447. return (void *)xSemaphoreCreateCounting(max, init);
  448. #else
  449. StaticQueue_t *queue_buffer = NULL;
  450. QueueHandle_t handle = NULL;
  451. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  452. if (!queue_buffer) {
  453. goto error;
  454. }
  455. handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer);
  456. if (!handle) {
  457. goto error;
  458. }
  459. btdm_queue_item_t item = {
  460. .handle = handle,
  461. .storage = NULL,
  462. .buffer = queue_buffer,
  463. };
  464. if (!btdm_queue_generic_register(&item)) {
  465. goto error;
  466. }
  467. return handle;
  468. error:
  469. if (handle) {
  470. vSemaphoreDelete(handle);
  471. }
  472. if (queue_buffer) {
  473. free(queue_buffer);
  474. }
  475. return NULL;
  476. #endif
  477. }
  478. static void semphr_delete_wrapper(void *semphr)
  479. {
  480. #if !CONFIG_SPIRAM_USE_MALLOC
  481. vSemaphoreDelete(semphr);
  482. #else
  483. btdm_queue_item_t item = {
  484. .handle = semphr,
  485. .storage = NULL,
  486. .buffer = NULL,
  487. };
  488. if (btdm_queue_generic_deregister(&item)) {
  489. vSemaphoreDelete(item.handle);
  490. free(item.buffer);
  491. }
  492. return;
  493. #endif
  494. }
  495. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
  496. {
  497. return (int32_t)xSemaphoreTakeFromISR(semphr, hptw);
  498. }
  499. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
  500. {
  501. return (int32_t)xSemaphoreGiveFromISR(semphr, hptw);
  502. }
  503. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
  504. {
  505. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  506. return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY);
  507. } else {
  508. return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
  509. }
  510. }
  511. static int32_t semphr_give_wrapper(void *semphr)
  512. {
  513. return (int32_t)xSemaphoreGive(semphr);
  514. }
  515. static void *mutex_create_wrapper(void)
  516. {
  517. #if CONFIG_SPIRAM_USE_MALLOC
  518. StaticQueue_t *queue_buffer = NULL;
  519. QueueHandle_t handle = NULL;
  520. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  521. if (!queue_buffer) {
  522. goto error;
  523. }
  524. handle = xSemaphoreCreateMutexStatic(queue_buffer);
  525. if (!handle) {
  526. goto error;
  527. }
  528. btdm_queue_item_t item = {
  529. .handle = handle,
  530. .storage = NULL,
  531. .buffer = queue_buffer,
  532. };
  533. if (!btdm_queue_generic_register(&item)) {
  534. goto error;
  535. }
  536. return handle;
  537. error:
  538. if (handle) {
  539. vSemaphoreDelete(handle);
  540. }
  541. if (queue_buffer) {
  542. free(queue_buffer);
  543. }
  544. return NULL;
  545. #else
  546. return (void *)xSemaphoreCreateMutex();
  547. #endif
  548. }
  549. static void mutex_delete_wrapper(void *mutex)
  550. {
  551. #if !CONFIG_SPIRAM_USE_MALLOC
  552. vSemaphoreDelete(mutex);
  553. #else
  554. btdm_queue_item_t item = {
  555. .handle = mutex,
  556. .storage = NULL,
  557. .buffer = NULL,
  558. };
  559. if (btdm_queue_generic_deregister(&item)) {
  560. vSemaphoreDelete(item.handle);
  561. free(item.buffer);
  562. }
  563. return;
  564. #endif
  565. }
  566. static int32_t mutex_lock_wrapper(void *mutex)
  567. {
  568. return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
  569. }
  570. static int32_t mutex_unlock_wrapper(void *mutex)
  571. {
  572. return (int32_t)xSemaphoreGive(mutex);
  573. }
  574. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
  575. {
  576. #if CONFIG_SPIRAM_USE_MALLOC
  577. StaticQueue_t *queue_buffer = NULL;
  578. uint8_t *queue_storage = NULL;
  579. QueueHandle_t handle = NULL;
  580. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  581. if (!queue_buffer) {
  582. goto error;
  583. }
  584. queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  585. if (!queue_storage ) {
  586. goto error;
  587. }
  588. handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer);
  589. if (!handle) {
  590. goto error;
  591. }
  592. btdm_queue_item_t item = {
  593. .handle = handle,
  594. .storage = queue_storage,
  595. .buffer = queue_buffer,
  596. };
  597. if (!btdm_queue_generic_register(&item)) {
  598. goto error;
  599. }
  600. return handle;
  601. error:
  602. if (handle) {
  603. vQueueDelete(handle);
  604. }
  605. if (queue_storage) {
  606. free(queue_storage);
  607. }
  608. if (queue_buffer) {
  609. free(queue_buffer);
  610. }
  611. return NULL;
  612. #else
  613. return (void *)xQueueCreate(queue_len, item_size);
  614. #endif
  615. }
  616. static void queue_delete_wrapper(void *queue)
  617. {
  618. #if !CONFIG_SPIRAM_USE_MALLOC
  619. vQueueDelete(queue);
  620. #else
  621. btdm_queue_item_t item = {
  622. .handle = queue,
  623. .storage = NULL,
  624. .buffer = NULL,
  625. };
  626. if (btdm_queue_generic_deregister(&item)) {
  627. vQueueDelete(item.handle);
  628. free(item.storage);
  629. free(item.buffer);
  630. }
  631. return;
  632. #endif
  633. }
  634. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
  635. {
  636. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  637. return (int32_t)xQueueSend(queue, item, portMAX_DELAY);
  638. } else {
  639. return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
  640. }
  641. }
  642. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
  643. {
  644. return (int32_t)xQueueSendFromISR(queue, item, hptw);
  645. }
  646. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
  647. {
  648. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  649. return (int32_t)xQueueReceive(queue, item, portMAX_DELAY);
  650. } else {
  651. return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
  652. }
  653. }
  654. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
  655. {
  656. return (int32_t)xQueueReceiveFromISR(queue, item, hptw);
  657. }
  658. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
  659. {
  660. return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
  661. }
  662. static void task_delete_wrapper(void *task_handle)
  663. {
  664. vTaskDelete(task_handle);
  665. }
  666. static bool IRAM_ATTR is_in_isr_wrapper(void)
  667. {
  668. return !xPortCanYield();
  669. }
  670. static void IRAM_ATTR cause_sw_intr(void *arg)
  671. {
  672. /* just convert void * to int, because the width is the same */
  673. uint32_t intr_no = (uint32_t)arg;
  674. XTHAL_SET_INTSET((1<<intr_no));
  675. }
  676. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
  677. {
  678. esp_err_t err = ESP_OK;
  679. #if CONFIG_FREERTOS_UNICORE
  680. cause_sw_intr((void *)intr_no);
  681. #else /* CONFIG_FREERTOS_UNICORE */
  682. if (xPortGetCoreID() == core_id) {
  683. cause_sw_intr((void *)intr_no);
  684. } else {
  685. err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
  686. }
  687. #endif /* !CONFIG_FREERTOS_UNICORE */
  688. return err;
  689. }
  690. static void *malloc_internal_wrapper(size_t size)
  691. {
  692. return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
  693. }
  694. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
  695. {
  696. return esp_read_mac(mac, ESP_MAC_BT);
  697. }
  698. static void IRAM_ATTR srand_wrapper(unsigned int seed)
  699. {
  700. /* empty function */
  701. }
  702. static int IRAM_ATTR rand_wrapper(void)
  703. {
  704. return (int)esp_random();
  705. }
  706. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
  707. {
  708. // The number of lp cycles should not lead to overflow. Thrs: 100s
  709. // clock measurement is conducted
  710. uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
  711. us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
  712. return (uint32_t)us;
  713. }
  714. /*
  715. * @brief Converts a duration in slots into a number of low power clock cycles.
  716. */
  717. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
  718. {
  719. // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
  720. // Compute the sleep duration in us to low power clock cycles, with calibration result applied
  721. // clock measurement is conducted
  722. uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
  723. return (uint32_t)cycles;
  724. }
  725. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
  726. {
  727. if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
  728. return false;
  729. }
  730. /* wake up in advance considering the delay in enabling PHY/RF */
  731. *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
  732. return true;
  733. }
  734. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
  735. {
  736. #ifdef CONFIG_PM_ENABLE
  737. // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
  738. uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
  739. #define BTDM_MIN_TIMER_UNCERTAINTY_US (500)
  740. assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
  741. // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
  742. // and set the timer in advance
  743. uint32_t uncertainty = (us_to_sleep >> 11);
  744. if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
  745. uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
  746. }
  747. if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
  748. ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
  749. }
  750. #endif
  751. }
  752. static void btdm_sleep_enter_phase2_wrapper(void)
  753. {
  754. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  755. esp_phy_disable();
  756. #ifdef CONFIG_PM_ENABLE
  757. if (s_pm_lock_acquired) {
  758. esp_pm_lock_release(s_pm_lock);
  759. s_pm_lock_acquired = false;
  760. }
  761. #endif
  762. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  763. esp_phy_disable();
  764. // pause bluetooth baseband
  765. periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
  766. }
  767. }
  768. static void btdm_sleep_exit_phase3_wrapper(void)
  769. {
  770. #ifdef CONFIG_PM_ENABLE
  771. if (!s_pm_lock_acquired) {
  772. s_pm_lock_acquired = true;
  773. esp_pm_lock_acquire(s_pm_lock);
  774. }
  775. #endif
  776. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  777. esp_phy_enable();
  778. btdm_check_and_init_bb();
  779. #ifdef CONFIG_PM_ENABLE
  780. esp_timer_stop(s_btdm_slp_tmr);
  781. #endif
  782. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  783. // resume bluetooth baseband
  784. periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
  785. esp_phy_enable();
  786. }
  787. }
  788. #ifdef CONFIG_PM_ENABLE
  789. static void btdm_slp_tmr_customer_callback(void * arg)
  790. {
  791. (void)(arg);
  792. if (!s_pm_lock_acquired) {
  793. s_pm_lock_acquired = true;
  794. esp_pm_lock_acquire(s_pm_lock);
  795. }
  796. }
  797. static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
  798. {
  799. (void)(arg);
  800. btdm_dispatch_work_to_controller(btdm_slp_tmr_customer_callback, NULL, true);
  801. }
  802. #endif
  803. #define BTDM_ASYNC_WAKEUP_REQ_HCI 0
  804. #define BTDM_ASYNC_WAKEUP_REQ_COEX 1
  805. #define BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA 2
  806. #define BTDM_ASYNC_WAKEUP_REQMAX 3
  807. static void btdm_wakeup_request_callback(void * arg)
  808. {
  809. (void)(arg);
  810. #if CONFIG_PM_ENABLE
  811. if (!s_pm_lock_acquired) {
  812. s_pm_lock_acquired = true;
  813. esp_pm_lock_acquire(s_pm_lock);
  814. }
  815. esp_timer_stop(s_btdm_slp_tmr);
  816. #endif
  817. btdm_wakeup_request();
  818. semphr_give_wrapper(s_wakeup_req_sem);
  819. }
  820. static bool async_wakeup_request(int event)
  821. {
  822. bool do_wakeup_request = false;
  823. switch (event) {
  824. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  825. btdm_in_wakeup_requesting_set(true);
  826. // NO break
  827. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  828. if (!btdm_power_state_active()) {
  829. do_wakeup_request = true;
  830. btdm_dispatch_work_to_controller(btdm_wakeup_request_callback, NULL, true);
  831. semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING);
  832. }
  833. break;
  834. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  835. if (!btdm_power_state_active()) {
  836. do_wakeup_request = true;
  837. #if CONFIG_PM_ENABLE
  838. if (!s_pm_lock_acquired) {
  839. s_pm_lock_acquired = true;
  840. esp_pm_lock_acquire(s_pm_lock);
  841. }
  842. esp_timer_stop(s_btdm_slp_tmr);
  843. #endif
  844. btdm_wakeup_request();
  845. }
  846. break;
  847. default:
  848. return false;
  849. }
  850. return do_wakeup_request;
  851. }
  852. static void async_wakeup_request_end(int event)
  853. {
  854. bool request_lock = false;
  855. switch (event) {
  856. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  857. request_lock = true;
  858. break;
  859. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  860. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  861. request_lock = false;
  862. break;
  863. default:
  864. return;
  865. }
  866. if (request_lock) {
  867. btdm_in_wakeup_requesting_set(false);
  868. }
  869. return;
  870. }
  871. static bool coex_bt_wakeup_request(void)
  872. {
  873. return async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_COEX);
  874. }
  875. static void coex_bt_wakeup_request_end(void)
  876. {
  877. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_COEX);
  878. return;
  879. }
  880. int IRAM_ATTR coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration)
  881. {
  882. #if CONFIG_SW_COEXIST_ENABLE
  883. return coex_bt_request(event, latency, duration);
  884. #else
  885. return 0;
  886. #endif
  887. }
  888. int IRAM_ATTR coex_bt_release_wrapper(uint32_t event)
  889. {
  890. #if CONFIG_SW_COEXIST_ENABLE
  891. return coex_bt_release(event);
  892. #else
  893. return 0;
  894. #endif
  895. }
  896. int coex_register_bt_cb_wrapper(coex_func_cb_t cb)
  897. {
  898. #if CONFIG_SW_COEXIST_ENABLE
  899. return coex_register_bt_cb(cb);
  900. #else
  901. return 0;
  902. #endif
  903. }
  904. uint32_t IRAM_ATTR coex_bb_reset_lock_wrapper(void)
  905. {
  906. #if CONFIG_SW_COEXIST_ENABLE
  907. return coex_bb_reset_lock();
  908. #else
  909. return 0;
  910. #endif
  911. }
  912. void IRAM_ATTR coex_bb_reset_unlock_wrapper(uint32_t restore)
  913. {
  914. #if CONFIG_SW_COEXIST_ENABLE
  915. coex_bb_reset_unlock(restore);
  916. #endif
  917. }
  918. bool esp_vhci_host_check_send_available(void)
  919. {
  920. return API_vhci_host_check_send_available();
  921. }
  922. void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
  923. {
  924. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_HCI);
  925. API_vhci_host_send_packet(data, len);
  926. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_HCI);
  927. }
  928. esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
  929. {
  930. return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
  931. }
  932. static uint32_t btdm_config_mask_load(void)
  933. {
  934. uint32_t mask = 0x0;
  935. #if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4
  936. mask |= BTDM_CFG_HCI_UART;
  937. #endif
  938. #if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1
  939. mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
  940. #endif
  941. #if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED
  942. mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
  943. #endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */
  944. mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
  945. mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
  946. return mask;
  947. }
  948. static void btdm_controller_mem_init(void)
  949. {
  950. /* initialise .data section */
  951. memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
  952. ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
  953. //initial em, .bss section
  954. for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  955. if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
  956. memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
  957. ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
  958. }
  959. }
  960. }
  961. static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
  962. {
  963. int ret = heap_caps_add_region(start, end);
  964. /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
  965. * is too small to fit a heap. This cannot be termed as a fatal error and hence
  966. * we replace it by ESP_OK
  967. */
  968. if (ret == ESP_ERR_INVALID_SIZE) {
  969. return ESP_OK;
  970. }
  971. return ret;
  972. }
  973. esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
  974. {
  975. bool update = true;
  976. intptr_t mem_start=(intptr_t) NULL, mem_end=(intptr_t) NULL;
  977. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  978. return ESP_ERR_INVALID_STATE;
  979. }
  980. //already released
  981. if (!(mode & btdm_dram_available_region[0].mode)) {
  982. return ESP_ERR_INVALID_STATE;
  983. }
  984. for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  985. //skip the share mode, idle mode and other mode
  986. if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
  987. || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
  988. //clear the bit of the mode which will be released
  989. btdm_dram_available_region[i].mode &= ~mode;
  990. continue;
  991. } else {
  992. //clear the bit of the mode which will be released
  993. btdm_dram_available_region[i].mode &= ~mode;
  994. }
  995. if (update) {
  996. mem_start = btdm_dram_available_region[i].start;
  997. mem_end = btdm_dram_available_region[i].end;
  998. update = false;
  999. }
  1000. if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
  1001. mem_end = btdm_dram_available_region[i].end;
  1002. if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
  1003. && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
  1004. && mem_end == btdm_dram_available_region[i+1].start) {
  1005. continue;
  1006. } else {
  1007. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  1008. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1009. update = true;
  1010. }
  1011. } else {
  1012. mem_end = btdm_dram_available_region[i].end;
  1013. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  1014. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1015. update = true;
  1016. }
  1017. }
  1018. if (mode == ESP_BT_MODE_BTDM) {
  1019. mem_start = (intptr_t)&_btdm_bss_start;
  1020. mem_end = (intptr_t)&_btdm_bss_end;
  1021. if (mem_start != mem_end) {
  1022. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1023. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1024. }
  1025. mem_start = (intptr_t)&_btdm_data_start;
  1026. mem_end = (intptr_t)&_btdm_data_end;
  1027. if (mem_start != mem_end) {
  1028. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1029. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1030. }
  1031. }
  1032. return ESP_OK;
  1033. }
  1034. esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
  1035. {
  1036. int ret;
  1037. intptr_t mem_start, mem_end;
  1038. ret = esp_bt_controller_mem_release(mode);
  1039. if (ret != ESP_OK) {
  1040. return ret;
  1041. }
  1042. if (mode == ESP_BT_MODE_BTDM) {
  1043. mem_start = (intptr_t)&_bt_bss_start;
  1044. mem_end = (intptr_t)&_bt_bss_end;
  1045. if (mem_start != mem_end) {
  1046. ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1047. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1048. }
  1049. mem_start = (intptr_t)&_bt_data_start;
  1050. mem_end = (intptr_t)&_bt_data_end;
  1051. if (mem_start != mem_end) {
  1052. ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1053. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1054. }
  1055. mem_start = (intptr_t)&_nimble_bss_start;
  1056. mem_end = (intptr_t)&_nimble_bss_end;
  1057. if (mem_start != mem_end) {
  1058. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1059. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1060. }
  1061. mem_start = (intptr_t)&_nimble_data_start;
  1062. mem_end = (intptr_t)&_nimble_data_end;
  1063. if (mem_start != mem_end) {
  1064. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1065. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1066. }
  1067. }
  1068. return ESP_OK;
  1069. }
  1070. esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
  1071. {
  1072. esp_err_t err;
  1073. uint32_t btdm_cfg_mask = 0;
  1074. //if all the bt available memory was already released, cannot initialize bluetooth controller
  1075. if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
  1076. return ESP_ERR_INVALID_STATE;
  1077. }
  1078. osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
  1079. if (osi_funcs_p == NULL) {
  1080. return ESP_ERR_NO_MEM;
  1081. }
  1082. memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
  1083. if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
  1084. return ESP_ERR_INVALID_ARG;
  1085. }
  1086. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  1087. return ESP_ERR_INVALID_STATE;
  1088. }
  1089. if (cfg == NULL) {
  1090. return ESP_ERR_INVALID_ARG;
  1091. }
  1092. if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
  1093. || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
  1094. return ESP_ERR_INVALID_ARG;
  1095. }
  1096. //overwrite some parameters
  1097. cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF;
  1098. cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
  1099. read_mac_wrapper(own_bda);
  1100. if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
  1101. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
  1102. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
  1103. return ESP_ERR_INVALID_ARG;
  1104. }
  1105. ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
  1106. #if CONFIG_SPIRAM_USE_MALLOC
  1107. btdm_queue_table_mux = xSemaphoreCreateMutex();
  1108. if (btdm_queue_table_mux == NULL) {
  1109. return ESP_ERR_NO_MEM;
  1110. }
  1111. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1112. #endif
  1113. s_wakeup_req_sem = semphr_create_wrapper(1, 0);
  1114. if (s_wakeup_req_sem == NULL) {
  1115. err = ESP_ERR_NO_MEM;
  1116. goto error;
  1117. }
  1118. btdm_controller_mem_init();
  1119. periph_module_enable(PERIPH_BT_MODULE);
  1120. #ifdef CONFIG_PM_ENABLE
  1121. s_btdm_allow_light_sleep = false;
  1122. #endif
  1123. // set default sleep clock cycle and its fractional bits
  1124. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1125. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1126. #if CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_ORIG
  1127. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1128. #if CONFIG_BTDM_CTRL_LPCLK_SEL_EXT_32K_XTAL
  1129. // check whether or not EXT_CRYS is working
  1130. if (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_32K_XTAL) {
  1131. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // set default value
  1132. #ifdef CONFIG_PM_ENABLE
  1133. s_btdm_allow_light_sleep = true;
  1134. #endif
  1135. } else {
  1136. ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n"
  1137. "light sleep mode will not be able to apply when bluetooth is enabled");
  1138. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1139. }
  1140. #else
  1141. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1142. #endif
  1143. bool select_src_ret, set_div_ret;
  1144. if (btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
  1145. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
  1146. set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2 - 1);
  1147. assert(select_src_ret && set_div_ret);
  1148. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1149. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1150. } else { // btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL32K
  1151. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
  1152. set_div_ret = btdm_lpclk_set_div(0);
  1153. assert(select_src_ret && set_div_ret);
  1154. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1155. btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
  1156. (1000000 >> (15 - RTC_CLK_CAL_FRACT));
  1157. assert(btdm_lpcycle_us != 0);
  1158. }
  1159. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
  1160. #elif CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_EVED
  1161. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
  1162. #else
  1163. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1164. #endif
  1165. #ifdef CONFIG_PM_ENABLE
  1166. if (!s_btdm_allow_light_sleep) {
  1167. if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
  1168. goto error;
  1169. }
  1170. }
  1171. if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
  1172. goto error;
  1173. }
  1174. esp_timer_create_args_t create_args = {
  1175. .callback = btdm_slp_tmr_callback,
  1176. .arg = NULL,
  1177. .name = "btSlp"
  1178. };
  1179. if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
  1180. goto error;
  1181. }
  1182. s_pm_lock_acquired = true;
  1183. #endif
  1184. #if CONFIG_SW_COEXIST_ENABLE
  1185. coex_init();
  1186. #endif
  1187. btdm_cfg_mask = btdm_config_mask_load();
  1188. if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
  1189. err = ESP_ERR_NO_MEM;
  1190. goto error;
  1191. }
  1192. #ifdef CONFIG_BTDM_COEX_BLE_ADV_HIGH_PRIORITY
  1193. coex_ble_adv_priority_high_set(true);
  1194. #else
  1195. coex_ble_adv_priority_high_set(false);
  1196. #endif
  1197. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1198. return ESP_OK;
  1199. error:
  1200. #ifdef CONFIG_PM_ENABLE
  1201. if (!s_btdm_allow_light_sleep) {
  1202. if (s_light_sleep_pm_lock != NULL) {
  1203. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1204. s_light_sleep_pm_lock = NULL;
  1205. }
  1206. }
  1207. if (s_pm_lock != NULL) {
  1208. esp_pm_lock_delete(s_pm_lock);
  1209. s_pm_lock = NULL;
  1210. }
  1211. if (s_btdm_slp_tmr != NULL) {
  1212. esp_timer_delete(s_btdm_slp_tmr);
  1213. s_btdm_slp_tmr = NULL;
  1214. }
  1215. #endif
  1216. if (s_wakeup_req_sem) {
  1217. semphr_delete_wrapper(s_wakeup_req_sem);
  1218. s_wakeup_req_sem = NULL;
  1219. }
  1220. return err;
  1221. }
  1222. esp_err_t esp_bt_controller_deinit(void)
  1223. {
  1224. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1225. return ESP_ERR_INVALID_STATE;
  1226. }
  1227. btdm_controller_deinit();
  1228. periph_module_disable(PERIPH_BT_MODULE);
  1229. #ifdef CONFIG_PM_ENABLE
  1230. if (!s_btdm_allow_light_sleep) {
  1231. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1232. s_light_sleep_pm_lock = NULL;
  1233. }
  1234. esp_timer_stop(s_btdm_slp_tmr);
  1235. esp_timer_delete(s_btdm_slp_tmr);
  1236. s_btdm_slp_tmr = NULL;
  1237. s_pm_lock_acquired = false;
  1238. #endif
  1239. semphr_delete_wrapper(s_wakeup_req_sem);
  1240. s_wakeup_req_sem = NULL;
  1241. #if CONFIG_SPIRAM_USE_MALLOC
  1242. vSemaphoreDelete(btdm_queue_table_mux);
  1243. btdm_queue_table_mux = NULL;
  1244. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1245. #endif
  1246. free(osi_funcs_p);
  1247. osi_funcs_p = NULL;
  1248. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  1249. btdm_lpcycle_us = 0;
  1250. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1251. return ESP_OK;
  1252. }
  1253. static void bt_shutdown(void)
  1254. {
  1255. esp_err_t ret = ESP_OK;
  1256. ESP_LOGD(BTDM_LOG_TAG, "stop/deinit bt");
  1257. ret = esp_bt_controller_disable();
  1258. if (ESP_OK != ret) {
  1259. ESP_LOGW(BTDM_LOG_TAG, "controller disable ret=%d", ret);
  1260. }
  1261. ret = esp_bt_controller_deinit();
  1262. if (ESP_OK != ret) {
  1263. ESP_LOGW(BTDM_LOG_TAG, "controller deinit ret=%d", ret);
  1264. }
  1265. return;
  1266. }
  1267. esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
  1268. {
  1269. int ret;
  1270. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1271. return ESP_ERR_INVALID_STATE;
  1272. }
  1273. //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
  1274. if (mode != btdm_controller_get_mode()) {
  1275. return ESP_ERR_INVALID_ARG;
  1276. }
  1277. #ifdef CONFIG_PM_ENABLE
  1278. if (!s_btdm_allow_light_sleep) {
  1279. esp_pm_lock_acquire(s_light_sleep_pm_lock);
  1280. }
  1281. esp_pm_lock_acquire(s_pm_lock);
  1282. #endif
  1283. esp_phy_enable();
  1284. #if CONFIG_SW_COEXIST_ENABLE
  1285. coex_enable();
  1286. #endif
  1287. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1288. btdm_controller_enable_sleep(true);
  1289. }
  1290. // inititalize bluetooth baseband
  1291. btdm_check_and_init_bb();
  1292. ret = btdm_controller_enable(mode);
  1293. if (ret != 0) {
  1294. #if CONFIG_SW_COEXIST_ENABLE
  1295. coex_disable();
  1296. #endif
  1297. esp_phy_disable();
  1298. #ifdef CONFIG_PM_ENABLE
  1299. if (!s_btdm_allow_light_sleep) {
  1300. esp_pm_lock_release(s_light_sleep_pm_lock);
  1301. }
  1302. esp_pm_lock_release(s_pm_lock);
  1303. #endif
  1304. return ESP_ERR_INVALID_STATE;
  1305. }
  1306. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
  1307. ret = esp_register_shutdown_handler(bt_shutdown);
  1308. if (ret != ESP_OK) {
  1309. ESP_LOGW(BTDM_LOG_TAG, "Register shutdown handler failed, ret = 0x%x", ret);
  1310. }
  1311. return ESP_OK;
  1312. }
  1313. esp_err_t esp_bt_controller_disable(void)
  1314. {
  1315. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1316. return ESP_ERR_INVALID_STATE;
  1317. }
  1318. // disable modem sleep and wake up from sleep mode
  1319. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1320. btdm_controller_enable_sleep(false);
  1321. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA);
  1322. while (!btdm_power_state_active()) {
  1323. esp_rom_delay_us(1000);
  1324. }
  1325. }
  1326. btdm_controller_disable();
  1327. #if CONFIG_SW_COEXIST_ENABLE
  1328. coex_disable();
  1329. #endif
  1330. esp_phy_disable();
  1331. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1332. esp_unregister_shutdown_handler(bt_shutdown);
  1333. #ifdef CONFIG_PM_ENABLE
  1334. if (!s_btdm_allow_light_sleep) {
  1335. esp_pm_lock_release(s_light_sleep_pm_lock);
  1336. }
  1337. esp_pm_lock_release(s_pm_lock);
  1338. #endif
  1339. return ESP_OK;
  1340. }
  1341. esp_bt_controller_status_t esp_bt_controller_get_status(void)
  1342. {
  1343. return btdm_controller_status;
  1344. }
  1345. uint8_t* esp_bt_get_mac(void)
  1346. {
  1347. return own_bda;
  1348. }
  1349. /* extra functions */
  1350. esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
  1351. {
  1352. if (ble_txpwr_set(power_type, power_level) != 0) {
  1353. return ESP_ERR_INVALID_ARG;
  1354. }
  1355. return ESP_OK;
  1356. }
  1357. esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
  1358. {
  1359. return (esp_power_level_t)ble_txpwr_get(power_type);
  1360. }
  1361. esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
  1362. {
  1363. esp_err_t err;
  1364. int ret;
  1365. ret = bredr_txpwr_set(min_power_level, max_power_level);
  1366. if (ret == 0) {
  1367. err = ESP_OK;
  1368. } else if (ret == -1) {
  1369. err = ESP_ERR_INVALID_ARG;
  1370. } else {
  1371. err = ESP_ERR_INVALID_STATE;
  1372. }
  1373. return err;
  1374. }
  1375. esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
  1376. {
  1377. if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
  1378. return ESP_ERR_INVALID_ARG;
  1379. }
  1380. return ESP_OK;
  1381. }
  1382. esp_err_t esp_bt_sleep_enable (void)
  1383. {
  1384. esp_err_t status;
  1385. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1386. return ESP_ERR_INVALID_STATE;
  1387. }
  1388. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG ||
  1389. btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1390. btdm_controller_enable_sleep (true);
  1391. status = ESP_OK;
  1392. } else {
  1393. status = ESP_ERR_NOT_SUPPORTED;
  1394. }
  1395. return status;
  1396. }
  1397. esp_err_t esp_bt_sleep_disable (void)
  1398. {
  1399. esp_err_t status;
  1400. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1401. return ESP_ERR_INVALID_STATE;
  1402. }
  1403. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG ||
  1404. btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1405. btdm_controller_enable_sleep (false);
  1406. status = ESP_OK;
  1407. } else {
  1408. status = ESP_ERR_NOT_SUPPORTED;
  1409. }
  1410. return status;
  1411. }
  1412. esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
  1413. {
  1414. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1415. return ESP_ERR_INVALID_STATE;
  1416. }
  1417. bredr_sco_datapath_set(data_path);
  1418. return ESP_OK;
  1419. }
  1420. esp_err_t esp_ble_scan_dupilcate_list_flush(void)
  1421. {
  1422. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1423. return ESP_ERR_INVALID_STATE;
  1424. }
  1425. btdm_controller_scan_duplicate_list_clear();
  1426. return ESP_OK;
  1427. }
  1428. #endif /* CONFIG_BT_ENABLED */