test_spi_master.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122
  1. /*
  2. Tests for the spi_master device driver
  3. */
  4. #include <esp_types.h>
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <malloc.h>
  8. #include <string.h>
  9. #include "freertos/FreeRTOS.h"
  10. #include "freertos/task.h"
  11. #include "freertos/semphr.h"
  12. #include "freertos/queue.h"
  13. #include "unity.h"
  14. #include "driver/spi_master.h"
  15. #include "driver/spi_slave.h"
  16. #include "esp_heap_caps.h"
  17. #include "esp_log.h"
  18. #include "soc/spi_periph.h"
  19. #include "test_utils.h"
  20. #include "test/test_common_spi.h"
  21. #include "soc/gpio_periph.h"
  22. #include "sdkconfig.h"
  23. #include "../cache_utils.h"
  24. #include "soc/soc_memory_layout.h"
  25. #include "driver/spi_common_internal.h"
  26. const static char TAG[] = "test_spi";
  27. static void check_spi_pre_n_for(int clk, int pre, int n)
  28. {
  29. esp_err_t ret;
  30. spi_device_handle_t handle;
  31. spi_device_interface_config_t devcfg={
  32. .command_bits=0,
  33. .address_bits=0,
  34. .dummy_bits=0,
  35. .clock_speed_hz=clk,
  36. .duty_cycle_pos=128,
  37. .mode=0,
  38. .spics_io_num=PIN_NUM_CS,
  39. .queue_size=3
  40. };
  41. char sendbuf[16]="";
  42. spi_transaction_t t;
  43. memset(&t, 0, sizeof(t));
  44. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle);
  45. TEST_ASSERT(ret==ESP_OK);
  46. t.length=16*8;
  47. t.tx_buffer=sendbuf;
  48. ret=spi_device_transmit(handle, &t);
  49. spi_dev_t* hw = spi_periph_signal[TEST_SPI_HOST].hw;
  50. printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, hw->clock.clkdiv_pre+1, hw->clock.clkcnt_n+1);
  51. TEST_ASSERT(hw->clock.clkcnt_n+1==n);
  52. TEST_ASSERT(hw->clock.clkdiv_pre+1==pre);
  53. ret=spi_bus_remove_device(handle);
  54. TEST_ASSERT(ret==ESP_OK);
  55. }
  56. TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
  57. {
  58. spi_bus_config_t buscfg={
  59. .mosi_io_num=PIN_NUM_MOSI,
  60. .miso_io_num=PIN_NUM_MISO,
  61. .sclk_io_num=PIN_NUM_CLK,
  62. .quadwp_io_num=-1,
  63. .quadhd_io_num=-1
  64. };
  65. esp_err_t ret;
  66. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1);
  67. TEST_ASSERT(ret==ESP_OK);
  68. check_spi_pre_n_for(26000000, 1, 3);
  69. check_spi_pre_n_for(20000000, 1, 4);
  70. check_spi_pre_n_for(8000000, 1, 10);
  71. check_spi_pre_n_for(800000, 2, 50);
  72. check_spi_pre_n_for(100000, 16, 50);
  73. check_spi_pre_n_for(333333, 4, 60);
  74. check_spi_pre_n_for(900000, 2, 44);
  75. check_spi_pre_n_for(1, SOC_SPI_MAX_PRE_DIVIDER, 64); //Actually should generate the minimum clock speed, 152Hz
  76. check_spi_pre_n_for(26000000, 1, 3);
  77. ret=spi_bus_free(TEST_SPI_HOST);
  78. TEST_ASSERT(ret==ESP_OK);
  79. }
  80. static spi_device_handle_t setup_spi_bus_loopback(int clkspeed, bool dma) {
  81. spi_bus_config_t buscfg={
  82. .mosi_io_num=PIN_NUM_MOSI,
  83. .miso_io_num=PIN_NUM_MOSI,
  84. .sclk_io_num=PIN_NUM_CLK,
  85. .quadwp_io_num=-1,
  86. .quadhd_io_num=-1,
  87. .max_transfer_sz=4096*3
  88. };
  89. spi_device_interface_config_t devcfg={
  90. .command_bits=0,
  91. .address_bits=0,
  92. .dummy_bits=0,
  93. .clock_speed_hz=clkspeed,
  94. .duty_cycle_pos=128,
  95. .mode=0,
  96. .spics_io_num=PIN_NUM_CS,
  97. .queue_size=3,
  98. };
  99. esp_err_t ret;
  100. spi_device_handle_t handle;
  101. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, dma?1:0);
  102. TEST_ASSERT(ret==ESP_OK);
  103. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle);
  104. TEST_ASSERT(ret==ESP_OK);
  105. //connect MOSI to two devices breaks the output, fix it.
  106. spitest_gpio_output_sel(PIN_NUM_MOSI, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  107. printf("Bus/dev inited.\n");
  108. return handle;
  109. }
  110. static int spi_test(spi_device_handle_t handle, int num_bytes) {
  111. esp_err_t ret;
  112. int x;
  113. bool success = true;
  114. srand(num_bytes);
  115. char *sendbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
  116. char *recvbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
  117. for (x=0; x<num_bytes; x++) {
  118. sendbuf[x]=rand()&0xff;
  119. recvbuf[x]=0x55;
  120. }
  121. spi_transaction_t t;
  122. memset(&t, 0, sizeof(t));
  123. t.length=num_bytes*8;
  124. t.tx_buffer=sendbuf;
  125. t.rx_buffer=recvbuf;
  126. t.addr=0xA00000000000000FL;
  127. t.cmd=0x55;
  128. printf("Transmitting %d bytes...\n", num_bytes);
  129. ret=spi_device_transmit(handle, &t);
  130. TEST_ASSERT(ret==ESP_OK);
  131. srand(num_bytes);
  132. for (x=0; x<num_bytes; x++) {
  133. if (sendbuf[x]!=(rand()&0xff)) {
  134. printf("Huh? Sendbuf corrupted at byte %d\n", x);
  135. TEST_ASSERT(0);
  136. }
  137. if (sendbuf[x]!=recvbuf[x]) break;
  138. }
  139. if (x!=num_bytes) {
  140. int from=x-16;
  141. if (from<0) from=0;
  142. success = false;
  143. printf("Error at %d! Sent vs recved: (starting from %d)\n" , x, from);
  144. for (int i=0; i<32; i++) {
  145. if (i+from<num_bytes) printf("%02X ", sendbuf[from+i]);
  146. }
  147. printf("\n");
  148. for (int i=0; i<32; i++) {
  149. if (i+from<num_bytes) printf("%02X ", recvbuf[from+i]);
  150. }
  151. printf("\n");
  152. }
  153. if (success) printf("Success!\n");
  154. free(sendbuf);
  155. free(recvbuf);
  156. return success;
  157. }
  158. TEST_CASE("SPI Master test", "[spi]")
  159. {
  160. bool success = true;
  161. printf("Testing bus at 80KHz\n");
  162. spi_device_handle_t handle=setup_spi_bus_loopback(80000, true);
  163. success &= spi_test(handle, 16); //small
  164. success &= spi_test(handle, 21); //small, unaligned
  165. success &= spi_test(handle, 36); //aligned
  166. success &= spi_test(handle, 128); //aligned
  167. success &= spi_test(handle, 129); //unaligned
  168. success &= spi_test(handle, 4096-2); //multiple descs, edge case 1
  169. success &= spi_test(handle, 4096-1); //multiple descs, edge case 2
  170. success &= spi_test(handle, 4096*3); //multiple descs
  171. master_free_device_bus(handle);
  172. printf("Testing bus at 80KHz, non-DMA\n");
  173. handle=setup_spi_bus_loopback(80000, false);
  174. success &= spi_test(handle, 4); //aligned
  175. success &= spi_test(handle, 16); //small
  176. success &= spi_test(handle, 21); //small, unaligned
  177. success &= spi_test(handle, 32); //small
  178. success &= spi_test(handle, 47); //small, unaligned
  179. success &= spi_test(handle, 63); //small
  180. success &= spi_test(handle, 64); //small, unaligned
  181. master_free_device_bus(handle);
  182. printf("Testing bus at 26MHz\n");
  183. handle=setup_spi_bus_loopback(20000000, true);
  184. success &= spi_test(handle, 128); //DMA, aligned
  185. success &= spi_test(handle, 4096*3); //DMA, multiple descs
  186. master_free_device_bus(handle);
  187. printf("Testing bus at 900KHz\n");
  188. handle=setup_spi_bus_loopback(9000000, true);
  189. success &= spi_test(handle, 128); //DMA, aligned
  190. success &= spi_test(handle, 4096*3); //DMA, multiple descs
  191. master_free_device_bus(handle);
  192. TEST_ASSERT(success);
  193. }
  194. TEST_CASE("SPI Master test, interaction of multiple devs", "[spi]") {
  195. esp_err_t ret;
  196. bool success = true;
  197. spi_device_interface_config_t devcfg={
  198. .command_bits=0,
  199. .address_bits=0,
  200. .dummy_bits=0,
  201. .clock_speed_hz=1000000,
  202. .duty_cycle_pos=128,
  203. .mode=0,
  204. .spics_io_num=PIN_NUM_CS,
  205. .queue_size=3,
  206. };
  207. spi_device_handle_t handle1=setup_spi_bus_loopback(80000, true);
  208. spi_device_handle_t handle2;
  209. spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle2);
  210. printf("Sending to dev 1\n");
  211. success &= spi_test(handle1, 7);
  212. printf("Sending to dev 1\n");
  213. success &= spi_test(handle1, 15);
  214. printf("Sending to dev 2\n");
  215. success &= spi_test(handle2, 15);
  216. printf("Sending to dev 1\n");
  217. success &= spi_test(handle1, 32);
  218. printf("Sending to dev 2\n");
  219. success &= spi_test(handle2, 32);
  220. printf("Sending to dev 1\n");
  221. success &= spi_test(handle1, 63);
  222. printf("Sending to dev 2\n");
  223. success &= spi_test(handle2, 63);
  224. printf("Sending to dev 1\n");
  225. success &= spi_test(handle1, 5000);
  226. printf("Sending to dev 2\n");
  227. success &= spi_test(handle2, 5000);
  228. ret=spi_bus_remove_device(handle2);
  229. TEST_ASSERT(ret==ESP_OK);
  230. master_free_device_bus(handle1);
  231. TEST_ASSERT(success);
  232. }
  233. #if !DISABLED_FOR_TARGETS(ESP32C3) //There is no input-only pin on esp32c3, so this test could be ignored.
  234. static esp_err_t test_master_pins(int mosi, int miso, int sclk, int cs)
  235. {
  236. esp_err_t ret;
  237. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  238. cfg.mosi_io_num = mosi;
  239. cfg.miso_io_num = miso;
  240. cfg.sclk_io_num = sclk;
  241. spi_device_interface_config_t master_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  242. master_cfg.spics_io_num = cs;
  243. ret = spi_bus_initialize(TEST_SPI_HOST, &cfg, 1);
  244. if (ret != ESP_OK) return ret;
  245. spi_device_handle_t spi;
  246. ret = spi_bus_add_device(TEST_SPI_HOST, &master_cfg, &spi);
  247. if (ret != ESP_OK) {
  248. spi_bus_free(TEST_SPI_HOST);
  249. return ret;
  250. }
  251. master_free_device_bus(spi);
  252. return ESP_OK;
  253. }
  254. static esp_err_t test_slave_pins(int mosi, int miso, int sclk, int cs)
  255. {
  256. esp_err_t ret;
  257. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  258. cfg.mosi_io_num = mosi;
  259. cfg.miso_io_num = miso;
  260. cfg.sclk_io_num = sclk;
  261. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  262. slave_cfg.spics_io_num = cs;
  263. ret = spi_slave_initialize(TEST_SLAVE_HOST, &cfg, &slave_cfg, TEST_DMA_CHAN_SLAVE);
  264. if (ret != ESP_OK) return ret;
  265. spi_slave_free(TEST_SLAVE_HOST);
  266. return ESP_OK;
  267. }
  268. TEST_CASE("spi placed on input-only pins", "[spi]")
  269. {
  270. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  271. TEST_ASSERT(test_master_pins(INPUT_ONLY_PIN, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS) != ESP_OK);
  272. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, INPUT_ONLY_PIN, PIN_NUM_CLK, PIN_NUM_CS));
  273. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, INPUT_ONLY_PIN, PIN_NUM_CS) != ESP_OK);
  274. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, INPUT_ONLY_PIN) != ESP_OK);
  275. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  276. TEST_ESP_OK(test_slave_pins(INPUT_ONLY_PIN, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  277. TEST_ASSERT(test_slave_pins(PIN_NUM_MOSI, INPUT_ONLY_PIN, PIN_NUM_CLK, PIN_NUM_CS) != ESP_OK);
  278. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, INPUT_ONLY_PIN, PIN_NUM_CS));
  279. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, INPUT_ONLY_PIN));
  280. }
  281. //There is no input-only pin on esp32c3, so this test could be ignored.
  282. #endif //#if !DISABLED_FOR_TARGETS(ESP32C3)
  283. TEST_CASE("spi bus setting with different pin configs", "[spi]")
  284. {
  285. spi_bus_config_t cfg;
  286. uint32_t flags_o;
  287. uint32_t flags_expected;
  288. ESP_LOGI(TAG, "test 6 iomux output pins...");
  289. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_QUAD;
  290. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  291. .max_transfer_sz = 8, .flags = flags_expected};
  292. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  293. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  294. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  295. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  296. ESP_LOGI(TAG, "test 4 iomux output pins...");
  297. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_DUAL;
  298. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  299. .max_transfer_sz = 8, .flags = flags_expected};
  300. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  301. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  302. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  303. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  304. ESP_LOGI(TAG, "test 6 output pins...");
  305. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_QUAD | SPICOMMON_BUSFLAG_GPIO_PINS;
  306. //swap MOSI and MISO
  307. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  308. .max_transfer_sz = 8, .flags = flags_expected};
  309. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  310. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  311. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  312. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  313. ESP_LOGI(TAG, "test 4 output pins...");
  314. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  315. //swap MOSI and MISO
  316. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  317. .max_transfer_sz = 8, .flags = flags_expected};
  318. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  319. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  320. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  321. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  322. #if !DISABLED_FOR_TARGETS(ESP32C3) //There is no input-only pin on esp32c3, so this test could be ignored.
  323. ESP_LOGI(TAG, "test master 5 output pins and MOSI on input-only pin...");
  324. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD | SPICOMMON_BUSFLAG_GPIO_PINS;
  325. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  326. .max_transfer_sz = 8, .flags = flags_expected};
  327. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  328. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  329. ESP_LOGI(TAG, "test slave 5 output pins and MISO on input-only pin...");
  330. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD | SPICOMMON_BUSFLAG_GPIO_PINS;
  331. cfg = (spi_bus_config_t){.mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  332. .max_transfer_sz = 8, .flags = flags_expected};
  333. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  334. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  335. ESP_LOGI(TAG, "test master 3 output pins and MOSI on input-only pin...");
  336. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_GPIO_PINS;
  337. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  338. .max_transfer_sz = 8, .flags = flags_expected};
  339. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  340. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  341. ESP_LOGI(TAG, "test slave 3 output pins and MISO on input-only pin...");
  342. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_GPIO_PINS;
  343. cfg = (spi_bus_config_t){.mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  344. .max_transfer_sz = 8, .flags = flags_expected};
  345. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  346. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  347. #endif
  348. ESP_LOGI(TAG, "check native flag for 6 output pins...");
  349. flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
  350. //swap MOSI and MISO
  351. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  352. .max_transfer_sz = 8, .flags = flags_expected};
  353. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  354. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  355. ESP_LOGI(TAG, "check native flag for 4 output pins...");
  356. flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
  357. //swap MOSI and MISO
  358. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  359. .max_transfer_sz = 8, .flags = flags_expected};
  360. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  361. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  362. #if !DISABLED_FOR_TARGETS(ESP32C3) //There is no input-only pin on esp32c3, so this test could be ignored.
  363. ESP_LOGI(TAG, "check dual flag for master 5 output pins and MISO/MOSI on input-only pin...");
  364. flags_expected = SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  365. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  366. .max_transfer_sz = 8, .flags = flags_expected};
  367. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  368. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  369. cfg = (spi_bus_config_t){.mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  370. .max_transfer_sz = 8, .flags = flags_expected};
  371. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  372. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  373. ESP_LOGI(TAG, "check dual flag for master 3 output pins and MISO/MOSI on input-only pin...");
  374. flags_expected = SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  375. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  376. .max_transfer_sz = 8, .flags = flags_expected};
  377. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  378. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  379. cfg = (spi_bus_config_t){.mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  380. .max_transfer_sz = 8, .flags = flags_expected};
  381. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  382. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  383. #endif
  384. ESP_LOGI(TAG, "check sclk flag...");
  385. flags_expected = SPICOMMON_BUSFLAG_SCLK;
  386. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = -1, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  387. .max_transfer_sz = 8, .flags = flags_expected};
  388. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  389. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  390. ESP_LOGI(TAG, "check mosi flag...");
  391. flags_expected = SPICOMMON_BUSFLAG_MOSI;
  392. cfg = (spi_bus_config_t){.mosi_io_num = -1, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  393. .max_transfer_sz = 8, .flags = flags_expected};
  394. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  395. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  396. ESP_LOGI(TAG, "check miso flag...");
  397. flags_expected = SPICOMMON_BUSFLAG_MISO;
  398. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = -1, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  399. .max_transfer_sz = 8, .flags = flags_expected};
  400. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  401. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  402. ESP_LOGI(TAG, "check quad flag...");
  403. flags_expected = SPICOMMON_BUSFLAG_QUAD;
  404. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  405. .max_transfer_sz = 8, .flags = flags_expected};
  406. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  407. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  408. cfg = (spi_bus_config_t){.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = -1,
  409. .max_transfer_sz = 8, .flags = flags_expected};
  410. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  411. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  412. }
  413. TEST_CASE("SPI Master no response when switch from host1 (HSPI) to host2 (VSPI)", "[spi]")
  414. {
  415. //spi config
  416. spi_bus_config_t bus_config;
  417. spi_device_interface_config_t device_config;
  418. spi_device_handle_t spi;
  419. spi_host_device_t host;
  420. memset(&bus_config, 0, sizeof(spi_bus_config_t));
  421. memset(&device_config, 0, sizeof(spi_device_interface_config_t));
  422. bus_config.miso_io_num = -1;
  423. bus_config.mosi_io_num = PIN_NUM_MOSI;
  424. bus_config.sclk_io_num = PIN_NUM_CLK;
  425. bus_config.quadwp_io_num = -1;
  426. bus_config.quadhd_io_num = -1;
  427. device_config.clock_speed_hz = 50000;
  428. device_config.mode = 0;
  429. device_config.spics_io_num = -1;
  430. device_config.queue_size = 1;
  431. device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
  432. struct spi_transaction_t transaction = {
  433. .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
  434. .length = 16,
  435. .rx_buffer = NULL,
  436. .tx_data = {0x04, 0x00}
  437. };
  438. //initialize for first host
  439. host = TEST_SPI_HOST;
  440. TEST_ASSERT(spi_bus_initialize(host, &bus_config, GET_DMA_CHAN(host)) == ESP_OK);
  441. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  442. printf("before first xmit\n");
  443. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  444. printf("after first xmit\n");
  445. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  446. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  447. //for second host and failed before
  448. host = TEST_SLAVE_HOST;
  449. TEST_ASSERT(spi_bus_initialize(host, &bus_config, GET_DMA_CHAN(host)) == ESP_OK);
  450. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  451. printf("before second xmit\n");
  452. // the original version (bit mis-written) stucks here.
  453. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  454. // test case success when see this.
  455. printf("after second xmit\n");
  456. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  457. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  458. }
  459. DRAM_ATTR static uint32_t data_dram[80]={0};
  460. //force to place in code area.
  461. static const uint8_t data_drom[320+3] = {
  462. 0xD8, 0xD1, 0x0A, 0xB8, 0xCE, 0x67, 0x1B, 0x11, 0x17, 0xA0, 0xDA, 0x89, 0x55, 0xC1, 0x40, 0x0F, 0x55, 0xEB, 0xF7, 0xEC, 0xF0, 0x3C, 0x0F, 0x4D, 0x2B, 0x9E, 0xBF, 0xCD, 0x57, 0x2C, 0x48, 0x1A,
  463. 0x8B, 0x47, 0xC5, 0x01, 0x0C, 0x05, 0x80, 0x30, 0xF4, 0xEA, 0xE5, 0x92, 0x56, 0x97, 0x98, 0x78, 0x21, 0x34, 0xA1, 0xBC, 0xAE, 0x93, 0x7E, 0x96, 0x08, 0xE6, 0x54, 0x6A, 0x6C, 0x67, 0xCF, 0x58,
  464. 0xEE, 0x15, 0xA8, 0xB6, 0x32, 0x8C, 0x85, 0xF7, 0xE9, 0x88, 0x5E, 0xB1, 0x76, 0xE4, 0xB2, 0xC7, 0x0F, 0x57, 0x51, 0x7A, 0x2F, 0xAB, 0x12, 0xC3, 0x37, 0x99, 0x4E, 0x67, 0x75, 0x28, 0xE4, 0x1D,
  465. 0xF8, 0xBA, 0x22, 0xCB, 0xA1, 0x18, 0x4C, 0xAB, 0x5F, 0xC9, 0xF3, 0xA2, 0x39, 0x92, 0x44, 0xE6, 0x7B, 0xE3, 0xD0, 0x16, 0xC5, 0xC2, 0xCB, 0xD9, 0xC0, 0x7F, 0x06, 0xBF, 0x3E, 0xCE, 0xE1, 0x26,
  466. 0xD5, 0x3C, 0xAD, 0x0E, 0xC1, 0xC7, 0x7D, 0x0D, 0x56, 0x85, 0x6F, 0x32, 0xC8, 0x63, 0x8D, 0x12, 0xAB, 0x1E, 0x81, 0x7B, 0xF4, 0xF1, 0xA9, 0xAF, 0xD9, 0x74, 0x60, 0x05, 0x3D, 0xCC, 0x0C, 0x34,
  467. 0x11, 0x44, 0xAE, 0x2A, 0x13, 0x2F, 0x04, 0xC3, 0x59, 0xF0, 0x54, 0x07, 0xBA, 0x26, 0xD9, 0xFB, 0x80, 0x95, 0xC0, 0x14, 0xFA, 0x27, 0xEF, 0xD3, 0x58, 0xB8, 0xE4, 0xA2, 0xE3, 0x5E, 0x94, 0xB3,
  468. 0xCD, 0x2C, 0x4F, 0xAC, 0x3B, 0xD1, 0xCA, 0xBE, 0x61, 0x71, 0x7B, 0x62, 0xEB, 0xF0, 0xFC, 0xEF, 0x22, 0xB7, 0x3F, 0x56, 0x65, 0x19, 0x61, 0x73, 0x1A, 0x4D, 0xE4, 0x23, 0xE5, 0x3A, 0x91, 0x5C,
  469. 0xE6, 0x1B, 0x5F, 0x0E, 0x10, 0x94, 0x7C, 0x9F, 0xCF, 0x75, 0xB3, 0xEB, 0x42, 0x4C, 0xCF, 0xFE, 0xAF, 0x68, 0x62, 0x3F, 0x9A, 0x3C, 0x81, 0x3E, 0x7A, 0x45, 0x92, 0x79, 0x91, 0x4F, 0xFF, 0xDE,
  470. 0x25, 0x18, 0x33, 0xB9, 0xA9, 0x3A, 0x3F, 0x1F, 0x4F, 0x4B, 0x5C, 0x71, 0x82, 0x75, 0xB0, 0x1F, 0xE9, 0x98, 0xA3, 0xE2, 0x65, 0xBB, 0xCA, 0x4F, 0xB7, 0x1D, 0x23, 0x43, 0x16, 0x73, 0xBD, 0x83,
  471. 0x70, 0x22, 0x7D, 0x0A, 0x6D, 0xD3, 0x77, 0x73, 0xD0, 0xF4, 0x06, 0xB2, 0x19, 0x8C, 0xFF, 0x58, 0xE4, 0xDB, 0xE9, 0xEC, 0x89, 0x6A, 0xF4, 0x0E, 0x67, 0x12, 0xEC, 0x11, 0xD2, 0x1F, 0x8D, 0xD7,
  472. };
  473. TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
  474. {
  475. #ifdef CONFIG_SPIRAM
  476. //test psram if enabled
  477. ESP_LOGI(TAG, "testing PSRAM...");
  478. uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_SPIRAM);
  479. TEST_ASSERT(esp_ptr_external_ram(data_malloc));
  480. #else
  481. uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_DMA);
  482. TEST_ASSERT(esp_ptr_in_dram(data_malloc));
  483. #endif
  484. TEST_ASSERT(data_malloc != NULL);
  485. TEST_ASSERT(esp_ptr_in_dram(data_dram));
  486. TEST_ASSERT(esp_ptr_in_drom(data_drom));
  487. ESP_LOGI(TAG, "dram: %p", data_dram);
  488. ESP_LOGI(TAG, "drom: %p, malloc: %p", data_drom, data_malloc);
  489. #ifndef CONFIG_ESP32C3_MEMPROT_FEATURE
  490. uint32_t* data_iram = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_EXEC);
  491. TEST_ASSERT(data_iram != NULL);
  492. TEST_ASSERT(esp_ptr_executable(data_iram) || esp_ptr_in_iram(data_iram) || esp_ptr_in_diram_iram(data_iram));
  493. ESP_LOGI(TAG, "iram: %p", data_iram);
  494. #endif
  495. srand(52);
  496. for (int i = 0; i < 320/4; i++) {
  497. #ifndef CONFIG_ESP32C3_MEMPROT_FEATURE
  498. data_iram[i] = rand();
  499. #endif
  500. data_dram[i] = rand();
  501. data_malloc[i] = rand();
  502. }
  503. esp_err_t ret;
  504. spi_device_handle_t spi;
  505. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  506. buscfg.miso_io_num = PIN_NUM_MOSI;
  507. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  508. //Initialize the SPI bus
  509. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1);
  510. TEST_ASSERT(ret==ESP_OK);
  511. //Attach the LCD to the SPI bus
  512. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi);
  513. TEST_ASSERT(ret==ESP_OK);
  514. //connect MOSI to two devices breaks the output, fix it.
  515. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  516. #define TEST_REGION_SIZE 5
  517. static spi_transaction_t trans[TEST_REGION_SIZE];
  518. int x;
  519. memset(trans, 0, sizeof(trans));
  520. #ifndef CONFIG_ESP32C3_MEMPROT_FEATURE
  521. trans[0].length = 320*8,
  522. trans[0].tx_buffer = data_iram;
  523. trans[0].rx_buffer = data_malloc+1;
  524. trans[1].length = 320*8,
  525. trans[1].tx_buffer = data_dram;
  526. trans[1].rx_buffer = data_iram;
  527. trans[2].length = 320*8,
  528. trans[2].tx_buffer = data_drom;
  529. trans[2].rx_buffer = data_iram;
  530. #endif
  531. trans[3].length = 320*8,
  532. trans[3].tx_buffer = data_malloc+2;
  533. trans[3].rx_buffer = data_dram;
  534. trans[4].length = 4*8,
  535. trans[4].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
  536. uint32_t* ptr = (uint32_t*)trans[4].rx_data;
  537. *ptr = 0x54545454;
  538. ptr = (uint32_t*)trans[4].tx_data;
  539. *ptr = 0xbc124960;
  540. //Queue all transactions.
  541. #ifndef CONFIG_ESP32C3_MEMPROT_FEATURE
  542. for (x=0; x<TEST_REGION_SIZE; x++) {
  543. #else
  544. for (x=3; x<TEST_REGION_SIZE; x++) {
  545. #endif
  546. ESP_LOGI(TAG, "transmitting %d...", x);
  547. ret=spi_device_transmit(spi,&trans[x]);
  548. TEST_ASSERT(ret==ESP_OK);
  549. if (trans[x].flags & SPI_TRANS_USE_RXDATA) {
  550. TEST_ASSERT_EQUAL_HEX8_ARRAY(trans[x].tx_data, trans[x].rx_data, 4);
  551. } else {
  552. TEST_ASSERT_EQUAL_HEX32_ARRAY(trans[x].tx_buffer, trans[x].rx_buffer, trans[x].length / 8 /4);
  553. }
  554. }
  555. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  556. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  557. free(data_malloc);
  558. #ifndef CONFIG_ESP32C3_MEMPROT_FEATURE
  559. free(data_iram);
  560. #endif
  561. }
  562. //this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
  563. // 1. RX buffer not aligned (start and end)
  564. // 2. not setting rx_buffer
  565. // 3. setting rx_length != length
  566. TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
  567. {
  568. uint8_t tx_buf[320]={0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
  569. uint8_t rx_buf[320];
  570. esp_err_t ret;
  571. spi_device_handle_t spi;
  572. spi_bus_config_t buscfg={
  573. .miso_io_num=PIN_NUM_MOSI,
  574. .mosi_io_num=PIN_NUM_MOSI,
  575. .sclk_io_num=PIN_NUM_CLK,
  576. .quadwp_io_num=-1,
  577. .quadhd_io_num=-1
  578. };
  579. spi_device_interface_config_t devcfg={
  580. .clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
  581. .mode=0, //SPI mode 0
  582. .spics_io_num=PIN_NUM_CS, //CS pin
  583. .queue_size=7, //We want to be able to queue 7 transactions at a time
  584. .pre_cb=NULL,
  585. };
  586. //Initialize the SPI bus
  587. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1);
  588. TEST_ASSERT(ret==ESP_OK);
  589. //Attach the LCD to the SPI bus
  590. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi);
  591. TEST_ASSERT(ret==ESP_OK);
  592. //connect MOSI to two devices breaks the output, fix it.
  593. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  594. memset(rx_buf, 0x66, 320);
  595. for ( int i = 0; i < 8; i ++ ) {
  596. memset( rx_buf, 0x66, sizeof(rx_buf));
  597. spi_transaction_t t = {};
  598. t.length = 8*(i+1);
  599. t.rxlength = 0;
  600. t.tx_buffer = tx_buf+2*i;
  601. t.rx_buffer = rx_buf + i;
  602. if ( i == 1 ) {
  603. //test set no start
  604. t.rx_buffer = NULL;
  605. } else if ( i == 2 ) {
  606. //test rx length != tx_length
  607. t.rxlength = t.length - 8;
  608. }
  609. spi_device_transmit( spi, &t );
  610. for( int i = 0; i < 16; i ++ ) {
  611. printf("%02X ", rx_buf[i]);
  612. }
  613. printf("\n");
  614. if ( i == 1 ) {
  615. // no rx, skip check
  616. } else if ( i == 2 ) {
  617. //test rx length = tx length-1
  618. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8-1 );
  619. } else {
  620. //normal check
  621. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8 );
  622. }
  623. }
  624. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  625. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  626. }
  627. #if !DISABLED_FOR_TARGETS(ESP32C3) //There is only one GPSPI controller, so single-board test is disabled.
  628. static uint8_t bitswap(uint8_t in)
  629. {
  630. uint8_t out = 0;
  631. for (int i = 0; i < 8; i++) {
  632. out = out >> 1;
  633. if (in&0x80) out |= 0x80;
  634. in = in << 1;
  635. }
  636. return out;
  637. }
  638. void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first)
  639. {
  640. spi_device_handle_t spi;
  641. ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first?"LSB":"MSB");
  642. //initial master, mode 0, 1MHz
  643. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  644. buscfg.quadhd_io_num = UNCONNECTED_PIN;
  645. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1));
  646. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  647. devcfg.clock_speed_hz = 1*1000*1000;
  648. if (lsb_first) devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST;
  649. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  650. //connecting pins to two peripherals breaks the output, fix it.
  651. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  652. spitest_gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  653. spitest_gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  654. spitest_gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  655. for (int i= 0; i < 8; i++) {
  656. //prepare slave tx data
  657. slave_txdata_t slave_txdata = (slave_txdata_t) {
  658. .start = spitest_slave_send + 4*(i%3),
  659. .len = 256,
  660. };
  661. xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY);
  662. vTaskDelay(50);
  663. //prepare master tx data
  664. int cmd_bits = (i+1)*2;
  665. int addr_bits =
  666. #ifdef CONFIG_IDF_TARGET_ESP32
  667. 56-8*i;
  668. #elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  669. //ESP32S2 only supportes up to 32 bits address
  670. 28-4*i;
  671. #endif
  672. int round_up = (cmd_bits+addr_bits+7)/8*8;
  673. addr_bits = round_up - cmd_bits;
  674. spi_transaction_ext_t trans = (spi_transaction_ext_t) {
  675. .base = {
  676. .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
  677. .addr = 0x456789abcdef0123,
  678. .cmd = 0x9876,
  679. },
  680. .command_bits = cmd_bits,
  681. .address_bits = addr_bits,
  682. };
  683. ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
  684. ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits);
  685. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&trans));
  686. //wait for both master and slave end
  687. size_t rcv_len;
  688. slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY);
  689. rcv_len-=8;
  690. uint8_t *buffer = rcv_data->data;
  691. ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
  692. TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len+7)/8);
  693. TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits+addr_bits);
  694. ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len);
  695. uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1);
  696. uint64_t addr_expected = trans.base.addr & ((1ULL<<addr_bits) - 1);
  697. uint8_t *data_ptr = buffer;
  698. uint16_t cmd_got = *(uint16_t*)data_ptr;
  699. data_ptr += cmd_bits/8;
  700. cmd_got = __builtin_bswap16(cmd_got);
  701. cmd_got = cmd_got >> (16-cmd_bits);
  702. int remain_bits = cmd_bits % 8;
  703. uint64_t addr_got = *(uint64_t*)data_ptr;
  704. data_ptr += 8;
  705. addr_got = __builtin_bswap64(addr_got);
  706. addr_got = (addr_got << remain_bits);
  707. addr_got |= (*data_ptr >> (8-remain_bits));
  708. addr_got = addr_got >> (64-addr_bits);
  709. if (lsb_first) {
  710. cmd_got = __builtin_bswap16(cmd_got);
  711. addr_got = __builtin_bswap64(addr_got);
  712. uint8_t *swap_ptr = (uint8_t*)&cmd_got;
  713. swap_ptr[0] = bitswap(swap_ptr[0]);
  714. swap_ptr[1] = bitswap(swap_ptr[1]);
  715. cmd_got = cmd_got >> (16-cmd_bits);
  716. swap_ptr = (uint8_t*)&addr_got;
  717. for (int j = 0; j < 8; j++) swap_ptr[j] = bitswap(swap_ptr[j]);
  718. addr_got = addr_got >> (64-addr_bits);
  719. }
  720. ESP_LOGI(SLAVE_TAG, "cmd_got: %04X, addr_got: %08X%08X", cmd_got, (uint32_t)(addr_got>>32), (uint32_t)addr_got);
  721. TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got);
  722. if (addr_bits > 0) {
  723. TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got);
  724. TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8);
  725. }
  726. //clean
  727. vRingbufferReturnItem(slave_context->data_received, buffer);
  728. }
  729. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  730. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  731. }
  732. TEST_CASE("SPI master variable cmd & addr test","[spi]")
  733. {
  734. spi_slave_task_context_t slave_context = {};
  735. esp_err_t err = init_slave_context( &slave_context );
  736. TEST_ASSERT( err == ESP_OK );
  737. TaskHandle_t handle_slave;
  738. xTaskCreate( spitest_slave_task, "spi_slave", 4096, &slave_context, 0, &handle_slave);
  739. //initial slave, mode 0, no dma
  740. int dma_chan = 0;
  741. int slave_mode = 0;
  742. spi_bus_config_t slv_buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  743. spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG();
  744. slvcfg.mode = slave_mode;
  745. //Initialize SPI slave interface
  746. TEST_ESP_OK( spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan) );
  747. test_cmd_addr(&slave_context, false);
  748. test_cmd_addr(&slave_context, true);
  749. vTaskDelete( handle_slave );
  750. handle_slave = 0;
  751. deinit_slave_context(&slave_context);
  752. TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
  753. ESP_LOGI(MASTER_TAG, "test passed.");
  754. }
  755. void test_dummy(spi_device_handle_t spi, int dummy_n, uint8_t* data_to_send, int len)
  756. {
  757. ESP_LOGI(TAG, "testing dummy n=%d", dummy_n);
  758. WORD_ALIGNED_ATTR uint8_t slave_buffer[len+(dummy_n+7)/8];
  759. spi_slave_transaction_t slave_t = {
  760. .tx_buffer = slave_buffer,
  761. .rx_buffer = slave_buffer,
  762. .length = len*8+((dummy_n+7)&(~8))+32, //receive more bytes to avoid slave discarding data
  763. };
  764. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  765. vTaskDelay(50);
  766. spi_transaction_ext_t t = {
  767. .base = {
  768. .tx_buffer = data_to_send,
  769. .length = (len+1)*8, //send one more byte force slave receive all data
  770. .flags = SPI_TRANS_VARIABLE_DUMMY,
  771. },
  772. .dummy_bits = dummy_n,
  773. };
  774. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&t));
  775. spi_slave_transaction_t *ret_slave;
  776. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  777. TEST_ASSERT(ret_slave == &slave_t);
  778. ESP_LOG_BUFFER_HEXDUMP("rcv", slave_buffer, len+4, ESP_LOG_INFO);
  779. int skip_cnt = dummy_n/8;
  780. int dummy_remain = dummy_n % 8;
  781. uint8_t *slave_ptr = slave_buffer;
  782. if (dummy_remain > 0) {
  783. for (int i = 0; i < len; i++) {
  784. slave_ptr[0] = (slave_ptr[skip_cnt] << dummy_remain) | (slave_ptr[skip_cnt+1] >> (8-dummy_remain));
  785. slave_ptr++;
  786. }
  787. } else {
  788. for (int i = 0; i < len; i++) {
  789. slave_ptr[0] = slave_ptr[skip_cnt];
  790. slave_ptr++;
  791. }
  792. }
  793. TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_send, slave_buffer, len);
  794. }
  795. TEST_CASE("SPI master variable dummy test", "[spi]")
  796. {
  797. spi_device_handle_t spi;
  798. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  799. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  800. dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
  801. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, 0));
  802. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  803. spi_slave_interface_config_t slave_cfg =SPI_SLAVE_TEST_DEFAULT_CONFIG();
  804. TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &bus_cfg, &slave_cfg, 0));
  805. spitest_gpio_output_sel(bus_cfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  806. spitest_gpio_output_sel(bus_cfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  807. spitest_gpio_output_sel(dev_cfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  808. spitest_gpio_output_sel(bus_cfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  809. uint8_t data_to_send[] = {0x12, 0x34, 0x56, 0x78};
  810. test_dummy(spi, 0, data_to_send, sizeof(data_to_send));
  811. test_dummy(spi, 1, data_to_send, sizeof(data_to_send));
  812. test_dummy(spi, 2, data_to_send, sizeof(data_to_send));
  813. test_dummy(spi, 3, data_to_send, sizeof(data_to_send));
  814. test_dummy(spi, 4, data_to_send, sizeof(data_to_send));
  815. test_dummy(spi, 8, data_to_send, sizeof(data_to_send));
  816. test_dummy(spi, 12, data_to_send, sizeof(data_to_send));
  817. test_dummy(spi, 16, data_to_send, sizeof(data_to_send));
  818. spi_slave_free(TEST_SLAVE_HOST);
  819. master_free_device_bus(spi);
  820. }
  821. //There is only one GPSPI controller, so single-board test is disabled.
  822. #endif //#if !DISABLED_FOR_TARGETS(ESP32C3)
  823. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C3)
  824. /********************************************************************************
  825. * Test SPI transaction interval
  826. ********************************************************************************/
  827. //Disabled since the check in portENTER_CRITICAL in esp_intr_enable/disable increase the delay
  828. #ifndef CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
  829. #define RECORD_TIME_PREPARE() uint32_t __t1, __t2
  830. #define RECORD_TIME_START() do {__t1 = xthal_get_ccount();}while(0)
  831. #define RECORD_TIME_END(p_time) do{__t2 = xthal_get_ccount(); *p_time = (__t2-__t1);}while(0)
  832. #ifdef CONFIG_IDF_TARGET_ESP32
  833. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
  834. #elif CONFIG_IDF_TARGET_ESP32S2
  835. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ)
  836. #elif CONFIG_IDF_TARGET_ESP32S3
  837. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ)
  838. #elif CONFIG_IDF_TARGET_ESP32C3
  839. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ)
  840. #endif
  841. static void speed_setup(spi_device_handle_t* spi, bool use_dma)
  842. {
  843. esp_err_t ret;
  844. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  845. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  846. devcfg.queue_size=8; //We want to be able to queue 7 transactions at a time
  847. //Initialize the SPI bus and the device to test
  848. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, (use_dma? GET_DMA_CHAN(TEST_SPI_HOST): 0));
  849. TEST_ASSERT(ret==ESP_OK);
  850. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi);
  851. TEST_ASSERT(ret==ESP_OK);
  852. }
  853. static void sorted_array_insert(uint32_t* array, int* size, uint32_t item)
  854. {
  855. int pos;
  856. for (pos = *size; pos>0; pos--) {
  857. if (array[pos-1] < item) break;
  858. array[pos] = array[pos-1];
  859. }
  860. array[pos]=item;
  861. (*size)++;
  862. }
  863. #define TEST_TIMES 11
  864. static IRAM_ATTR NOINLINE_ATTR void spi_transmit_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight)
  865. {
  866. RECORD_TIME_PREPARE();
  867. spi_device_transmit(spi, trans); // prime the flash cache
  868. RECORD_TIME_START();
  869. spi_device_transmit(spi, trans);
  870. RECORD_TIME_END(t_flight);
  871. }
  872. static IRAM_ATTR NOINLINE_ATTR void spi_transmit_polling_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight)
  873. {
  874. spi_flash_disable_interrupts_caches_and_other_cpu(); //this can test the code are all in the IRAM at the same time
  875. RECORD_TIME_PREPARE();
  876. spi_device_polling_transmit(spi, trans); // prime the flash cache
  877. RECORD_TIME_START();
  878. spi_device_polling_transmit(spi, trans);
  879. RECORD_TIME_END(t_flight);
  880. spi_flash_enable_interrupts_caches_and_other_cpu();
  881. }
  882. TEST_CASE("spi_speed","[spi]")
  883. {
  884. uint32_t t_flight;
  885. //to get rid of the influence of randomly interrupts, we measured the performance by median value
  886. uint32_t t_flight_sorted[TEST_TIMES];
  887. esp_err_t ret;
  888. int t_flight_num = 0;
  889. spi_device_handle_t spi;
  890. const bool use_dma = true;
  891. WORD_ALIGNED_ATTR spi_transaction_t trans = {
  892. .length = 1*8,
  893. .flags = SPI_TRANS_USE_TXDATA,
  894. };
  895. //first work with DMA
  896. speed_setup(&spi, use_dma);
  897. //record flight time by isr, with DMA
  898. t_flight_num = 0;
  899. for (int i = 0; i < TEST_TIMES; i++) {
  900. spi_transmit_measure(spi, &trans, &t_flight);
  901. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  902. }
  903. for (int i = 0; i < TEST_TIMES; i++) {
  904. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  905. }
  906. #ifndef CONFIG_SPIRAM
  907. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES+1)/2]));
  908. #endif
  909. //acquire the bus to send polling transactions faster
  910. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  911. TEST_ESP_OK(ret);
  912. //record flight time by polling and with DMA
  913. t_flight_num = 0;
  914. for (int i = 0; i < TEST_TIMES; i++) {
  915. spi_transmit_polling_measure(spi, &trans, &t_flight);
  916. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  917. }
  918. for (int i = 0; i < TEST_TIMES; i++) {
  919. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  920. }
  921. #ifndef CONFIG_SPIRAM
  922. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES+1)/2]));
  923. #endif
  924. //release the bus
  925. spi_device_release_bus(spi);
  926. master_free_device_bus(spi);
  927. speed_setup(&spi, !use_dma);
  928. //record flight time by isr, without DMA
  929. t_flight_num = 0;
  930. for (int i = 0; i < TEST_TIMES; i++) {
  931. spi_transmit_measure(spi, &trans, &t_flight);
  932. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  933. }
  934. for (int i = 0; i < TEST_TIMES; i++) {
  935. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  936. }
  937. #ifndef CONFIG_SPIRAM
  938. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES+1)/2]));
  939. #endif
  940. //acquire the bus to send polling transactions faster
  941. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  942. TEST_ESP_OK(ret);
  943. //record flight time by polling, without DMA
  944. t_flight_num = 0;
  945. for (int i = 0; i < TEST_TIMES; i++) {
  946. spi_transmit_polling_measure(spi, &trans, &t_flight);
  947. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  948. }
  949. for (int i = 0; i < TEST_TIMES; i++) {
  950. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  951. }
  952. #ifndef CONFIG_SPIRAM
  953. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING_NO_DMA, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES+1)/2]));
  954. #endif
  955. //release the bus
  956. spi_device_release_bus(spi);
  957. master_free_device_bus(spi);
  958. }
  959. #endif // CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
  960. #endif // #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C3)