uart.c 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #include "driver/uart_select.h"
  32. #define XOFF (char)0x13
  33. #define XON (char)0x11
  34. static const char* UART_TAG = "uart";
  35. #define UART_CHECK(a, str, ret_val) \
  36. if (!(a)) { \
  37. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  38. return (ret_val); \
  39. }
  40. #define UART_EMPTY_THRESH_DEFAULT (10)
  41. #define UART_FULL_THRESH_DEFAULT (120)
  42. #define UART_TOUT_THRESH_DEFAULT (10)
  43. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  44. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  45. #define UART_TX_IDLE_NUM_DEFAULT (0)
  46. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  47. #define UART_MIN_WAKEUP_THRESH (2)
  48. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  49. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  50. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  51. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  52. // Check actual UART mode set
  53. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  54. typedef struct {
  55. uart_event_type_t type; /*!< UART TX data type */
  56. struct {
  57. int brk_len;
  58. size_t size;
  59. uint8_t data[0];
  60. } tx_data;
  61. } uart_tx_data_t;
  62. typedef struct {
  63. int wr;
  64. int rd;
  65. int len;
  66. int* data;
  67. } uart_pat_rb_t;
  68. typedef struct {
  69. uart_port_t uart_num; /*!< UART port number*/
  70. int queue_size; /*!< UART event queue size*/
  71. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  72. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  73. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  74. bool coll_det_flg; /*!< UART collision detection flag */
  75. //rx parameters
  76. int rx_buffered_len; /*!< UART cached data length */
  77. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  78. int rx_buf_size; /*!< RX ring buffer size */
  79. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  80. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  81. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  82. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  83. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  84. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  85. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  86. uart_pat_rb_t rx_pattern_pos;
  87. //tx parameters
  88. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  89. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  90. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  91. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  92. int tx_buf_size; /*!< TX ring buffer size */
  93. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  94. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  95. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  96. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  97. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  98. uint32_t tx_len_cur;
  99. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  100. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  101. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  102. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  103. } uart_obj_t;
  104. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  105. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  106. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  107. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  108. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  109. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  110. {
  111. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  112. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  113. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  114. UART[uart_num]->conf0.bit_num = data_bit;
  115. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  116. return ESP_OK;
  117. }
  118. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  119. {
  120. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  121. *(data_bit) = UART[uart_num]->conf0.bit_num;
  122. return ESP_OK;
  123. }
  124. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  125. {
  126. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  127. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  128. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  129. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  130. if (stop_bit == UART_STOP_BITS_2) {
  131. stop_bit = UART_STOP_BITS_1;
  132. UART[uart_num]->rs485_conf.dl1_en = 1;
  133. } else {
  134. UART[uart_num]->rs485_conf.dl1_en = 0;
  135. }
  136. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  137. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  138. return ESP_OK;
  139. }
  140. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  141. {
  142. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  143. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  144. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  145. (*stop_bit) = UART_STOP_BITS_2;
  146. } else {
  147. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  148. }
  149. return ESP_OK;
  150. }
  151. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  152. {
  153. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  154. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  155. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  156. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  157. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  158. return ESP_OK;
  159. }
  160. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  161. {
  162. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  163. int val = UART[uart_num]->conf0.val;
  164. if(val & UART_PARITY_EN_M) {
  165. if(val & UART_PARITY_M) {
  166. (*parity_mode) = UART_PARITY_ODD;
  167. } else {
  168. (*parity_mode) = UART_PARITY_EVEN;
  169. }
  170. } else {
  171. (*parity_mode) = UART_PARITY_DISABLE;
  172. }
  173. return ESP_OK;
  174. }
  175. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  176. {
  177. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  178. esp_err_t ret = ESP_OK;
  179. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  180. int uart_clk_freq;
  181. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  182. /* this UART has been configured to use REF_TICK */
  183. uart_clk_freq = REF_CLK_FREQ;
  184. } else {
  185. uart_clk_freq = esp_clk_apb_freq();
  186. }
  187. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  188. if (clk_div < 16) {
  189. /* baud rate is too high for this clock frequency */
  190. ret = ESP_ERR_INVALID_ARG;
  191. } else {
  192. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  193. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  194. }
  195. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  196. return ret;
  197. }
  198. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  199. {
  200. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  201. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  202. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  203. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  204. uint32_t uart_clk_freq = esp_clk_apb_freq();
  205. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  206. uart_clk_freq = REF_CLK_FREQ;
  207. }
  208. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  209. return ESP_OK;
  210. }
  211. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  212. {
  213. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  214. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  215. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  216. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  217. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  218. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  219. return ESP_OK;
  220. }
  221. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  222. {
  223. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  224. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  225. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  226. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  227. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  228. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  229. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  230. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  231. UART[uart_num]->swfc_conf.xon_char = XON;
  232. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  233. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  234. return ESP_OK;
  235. }
  236. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  237. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  238. {
  239. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  240. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  241. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  242. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  243. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  244. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  245. UART[uart_num]->conf1.rx_flow_en = 1;
  246. } else {
  247. UART[uart_num]->conf1.rx_flow_en = 0;
  248. }
  249. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  250. UART[uart_num]->conf0.tx_flow_en = 1;
  251. } else {
  252. UART[uart_num]->conf0.tx_flow_en = 0;
  253. }
  254. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  255. return ESP_OK;
  256. }
  257. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  258. {
  259. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  260. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  261. if(UART[uart_num]->conf1.rx_flow_en) {
  262. val |= UART_HW_FLOWCTRL_RTS;
  263. }
  264. if(UART[uart_num]->conf0.tx_flow_en) {
  265. val |= UART_HW_FLOWCTRL_CTS;
  266. }
  267. (*flow_ctrl) = val;
  268. return ESP_OK;
  269. }
  270. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  271. {
  272. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  273. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  274. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  275. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  276. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  277. READ_PERI_REG(UART_FIFO_REG(uart_num));
  278. }
  279. return ESP_OK;
  280. }
  281. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  282. {
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. //intr_clr register is write-only
  285. UART[uart_num]->int_clr.val = clr_mask;
  286. return ESP_OK;
  287. }
  288. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  289. {
  290. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  291. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  292. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  293. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  294. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  295. return ESP_OK;
  296. }
  297. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  298. {
  299. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  300. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  301. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  302. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  303. return ESP_OK;
  304. }
  305. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  306. {
  307. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  308. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  309. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  310. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  311. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  312. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  313. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  314. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  315. free(pdata);
  316. }
  317. return ESP_OK;
  318. }
  319. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  320. {
  321. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  322. esp_err_t ret = ESP_OK;
  323. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  324. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  325. int next = p_pos->wr + 1;
  326. if (next >= p_pos->len) {
  327. next = 0;
  328. }
  329. if (next == p_pos->rd) {
  330. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  331. ret = ESP_FAIL;
  332. } else {
  333. p_pos->data[p_pos->wr] = pos;
  334. p_pos->wr = next;
  335. ret = ESP_OK;
  336. }
  337. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  338. return ret;
  339. }
  340. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  341. {
  342. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  343. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  344. return ESP_ERR_INVALID_STATE;
  345. } else {
  346. esp_err_t ret = ESP_OK;
  347. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  348. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  349. if (p_pos->rd == p_pos->wr) {
  350. ret = ESP_FAIL;
  351. } else {
  352. p_pos->rd++;
  353. }
  354. if (p_pos->rd >= p_pos->len) {
  355. p_pos->rd = 0;
  356. }
  357. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  358. return ret;
  359. }
  360. }
  361. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  362. {
  363. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  364. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  365. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  366. int rd = p_pos->rd;
  367. while(rd != p_pos->wr) {
  368. p_pos->data[rd] -= diff_len;
  369. int rd_rec = rd;
  370. rd ++;
  371. if (rd >= p_pos->len) {
  372. rd = 0;
  373. }
  374. if (p_pos->data[rd_rec] < 0) {
  375. p_pos->rd = rd;
  376. }
  377. }
  378. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  379. return ESP_OK;
  380. }
  381. int uart_pattern_pop_pos(uart_port_t uart_num)
  382. {
  383. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  384. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  385. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  386. int pos = -1;
  387. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  388. pos = pat_pos->data[pat_pos->rd];
  389. uart_pattern_dequeue(uart_num);
  390. }
  391. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  392. return pos;
  393. }
  394. int uart_pattern_get_pos(uart_port_t uart_num)
  395. {
  396. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  397. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  398. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  399. int pos = -1;
  400. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  401. pos = pat_pos->data[pat_pos->rd];
  402. }
  403. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  404. return pos;
  405. }
  406. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  407. {
  408. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  409. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  410. int* pdata = (int*) malloc(queue_length * sizeof(int));
  411. if(pdata == NULL) {
  412. return ESP_ERR_NO_MEM;
  413. }
  414. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  415. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  416. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  417. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  418. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  419. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  420. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  421. free(ptmp);
  422. return ESP_OK;
  423. }
  424. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  425. {
  426. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  427. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  428. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  429. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  430. UART[uart_num]->at_cmd_char.data = pattern_chr;
  431. UART[uart_num]->at_cmd_char.char_num = chr_num;
  432. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  433. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  434. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  435. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  436. }
  437. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  438. {
  439. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  440. }
  441. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  442. {
  443. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  444. }
  445. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  446. {
  447. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  448. }
  449. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  450. {
  451. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  452. }
  453. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  454. {
  455. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  456. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  457. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  458. UART[uart_num]->int_clr.txfifo_empty = 1;
  459. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  460. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  461. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  462. return ESP_OK;
  463. }
  464. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  465. {
  466. int ret;
  467. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  468. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  469. switch(uart_num) {
  470. case UART_NUM_1:
  471. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  472. break;
  473. case UART_NUM_2:
  474. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  475. break;
  476. case UART_NUM_0:
  477. default:
  478. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  479. break;
  480. }
  481. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  482. return ret;
  483. }
  484. esp_err_t uart_isr_free(uart_port_t uart_num)
  485. {
  486. esp_err_t ret;
  487. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  488. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  489. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  490. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  491. p_uart_obj[uart_num]->intr_handle=NULL;
  492. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  493. return ret;
  494. }
  495. //internal signal can be output to multiple GPIO pads
  496. //only one GPIO pad can connect with input signal
  497. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  498. {
  499. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  500. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  501. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  502. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  503. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  504. int tx_sig, rx_sig, rts_sig, cts_sig;
  505. switch(uart_num) {
  506. case UART_NUM_0:
  507. tx_sig = U0TXD_OUT_IDX;
  508. rx_sig = U0RXD_IN_IDX;
  509. rts_sig = U0RTS_OUT_IDX;
  510. cts_sig = U0CTS_IN_IDX;
  511. break;
  512. case UART_NUM_1:
  513. tx_sig = U1TXD_OUT_IDX;
  514. rx_sig = U1RXD_IN_IDX;
  515. rts_sig = U1RTS_OUT_IDX;
  516. cts_sig = U1CTS_IN_IDX;
  517. break;
  518. case UART_NUM_2:
  519. tx_sig = U2TXD_OUT_IDX;
  520. rx_sig = U2RXD_IN_IDX;
  521. rts_sig = U2RTS_OUT_IDX;
  522. cts_sig = U2CTS_IN_IDX;
  523. break;
  524. case UART_NUM_MAX:
  525. default:
  526. tx_sig = U0TXD_OUT_IDX;
  527. rx_sig = U0RXD_IN_IDX;
  528. rts_sig = U0RTS_OUT_IDX;
  529. cts_sig = U0CTS_IN_IDX;
  530. break;
  531. }
  532. if(tx_io_num >= 0) {
  533. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  534. gpio_set_level(tx_io_num, 1);
  535. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  536. }
  537. if(rx_io_num >= 0) {
  538. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  539. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  540. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  541. gpio_matrix_in(rx_io_num, rx_sig, 0);
  542. }
  543. if(rts_io_num >= 0) {
  544. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  545. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  546. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  547. }
  548. if(cts_io_num >= 0) {
  549. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  550. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  551. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  552. gpio_matrix_in(cts_io_num, cts_sig, 0);
  553. }
  554. return ESP_OK;
  555. }
  556. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  557. {
  558. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  559. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  560. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  561. UART[uart_num]->conf0.sw_rts = level & 0x1;
  562. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  563. return ESP_OK;
  564. }
  565. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  566. {
  567. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  568. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  569. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  570. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  571. return ESP_OK;
  572. }
  573. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  574. {
  575. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  576. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  577. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  578. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  579. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  580. return ESP_OK;
  581. }
  582. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  583. {
  584. esp_err_t r;
  585. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  586. UART_CHECK((uart_config), "param null", ESP_FAIL);
  587. if(uart_num == UART_NUM_0) {
  588. periph_module_enable(PERIPH_UART0_MODULE);
  589. } else if(uart_num == UART_NUM_1) {
  590. periph_module_enable(PERIPH_UART1_MODULE);
  591. } else if(uart_num == UART_NUM_2) {
  592. periph_module_enable(PERIPH_UART2_MODULE);
  593. }
  594. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  595. if (r != ESP_OK) return r;
  596. UART[uart_num]->conf0.val =
  597. (uart_config->parity << UART_PARITY_S)
  598. | (uart_config->data_bits << UART_BIT_NUM_S)
  599. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  600. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  601. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  602. if (r != ESP_OK) return r;
  603. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  604. if (r != ESP_OK) return r;
  605. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  606. //A hardware reset does not reset the fifo,
  607. //so we need to reset the fifo manually.
  608. uart_reset_rx_fifo(uart_num);
  609. return r;
  610. }
  611. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  612. {
  613. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  614. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  615. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  616. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  617. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  618. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  619. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  620. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  621. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  622. } else {
  623. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  624. }
  625. UART[uart_num]->conf1.rx_tout_en = 1;
  626. } else {
  627. UART[uart_num]->conf1.rx_tout_en = 0;
  628. }
  629. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  630. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  631. }
  632. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  633. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  634. }
  635. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  636. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  637. return ESP_OK;
  638. }
  639. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  640. {
  641. int cnt = 0;
  642. int len = length;
  643. while (len >= 0) {
  644. if (buf[len] == pat_chr) {
  645. cnt++;
  646. } else {
  647. cnt = 0;
  648. }
  649. if (cnt >= pat_num) {
  650. break;
  651. }
  652. len --;
  653. }
  654. return len;
  655. }
  656. //internal isr handler for default driver code.
  657. static void uart_rx_intr_handler_default(void *param)
  658. {
  659. uart_obj_t *p_uart = (uart_obj_t*) param;
  660. uint8_t uart_num = p_uart->uart_num;
  661. uart_dev_t* uart_reg = UART[uart_num];
  662. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  663. uint8_t buf_idx = 0;
  664. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  665. uart_event_t uart_event;
  666. portBASE_TYPE HPTaskAwoken = 0;
  667. static uint8_t pat_flg = 0;
  668. while(uart_intr_status != 0x0) {
  669. buf_idx = 0;
  670. uart_event.type = UART_EVENT_MAX;
  671. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  672. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  673. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  674. if(p_uart->tx_waiting_brk) {
  675. continue;
  676. }
  677. //TX semaphore will only be used when tx_buf_size is zero.
  678. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  679. p_uart->tx_waiting_fifo = false;
  680. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  681. if(HPTaskAwoken == pdTRUE) {
  682. portYIELD_FROM_ISR();
  683. }
  684. } else {
  685. //We don't use TX ring buffer, because the size is zero.
  686. if(p_uart->tx_buf_size == 0) {
  687. continue;
  688. }
  689. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  690. bool en_tx_flg = false;
  691. //We need to put a loop here, in case all the buffer items are very short.
  692. //That would cause a watch_dog reset because empty interrupt happens so often.
  693. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  694. while(tx_fifo_rem) {
  695. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  696. size_t size;
  697. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  698. if(p_uart->tx_head) {
  699. //The first item is the data description
  700. //Get the first item to get the data information
  701. if(p_uart->tx_len_tot == 0) {
  702. p_uart->tx_ptr = NULL;
  703. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  704. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  705. p_uart->tx_brk_flg = 1;
  706. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  707. }
  708. //We have saved the data description from the 1st item, return buffer.
  709. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  710. if(HPTaskAwoken == pdTRUE) {
  711. portYIELD_FROM_ISR();
  712. }
  713. }else if(p_uart->tx_ptr == NULL) {
  714. //Update the TX item pointer, we will need this to return item to buffer.
  715. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  716. en_tx_flg = true;
  717. p_uart->tx_len_cur = size;
  718. }
  719. }
  720. else {
  721. //Can not get data from ring buffer, return;
  722. break;
  723. }
  724. }
  725. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  726. //To fill the TX FIFO.
  727. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  728. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  729. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  730. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  731. uart_reg->conf0.sw_rts = 0;
  732. uart_reg->int_ena.tx_done = 1;
  733. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  734. }
  735. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  736. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  737. *(p_uart->tx_ptr++) & 0xff);
  738. }
  739. p_uart->tx_len_tot -= send_len;
  740. p_uart->tx_len_cur -= send_len;
  741. tx_fifo_rem -= send_len;
  742. if (p_uart->tx_len_cur == 0) {
  743. //Return item to ring buffer.
  744. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  745. if(HPTaskAwoken == pdTRUE) {
  746. portYIELD_FROM_ISR();
  747. }
  748. p_uart->tx_head = NULL;
  749. p_uart->tx_ptr = NULL;
  750. //Sending item done, now we need to send break if there is a record.
  751. //Set TX break signal after FIFO is empty
  752. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  753. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  754. uart_reg->int_ena.tx_brk_done = 0;
  755. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  756. uart_reg->conf0.txd_brk = 1;
  757. uart_reg->int_clr.tx_brk_done = 1;
  758. uart_reg->int_ena.tx_brk_done = 1;
  759. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  760. p_uart->tx_waiting_brk = 1;
  761. //do not enable TX empty interrupt
  762. en_tx_flg = false;
  763. } else {
  764. //enable TX empty interrupt
  765. en_tx_flg = true;
  766. }
  767. } else {
  768. //enable TX empty interrupt
  769. en_tx_flg = true;
  770. }
  771. }
  772. }
  773. if (en_tx_flg) {
  774. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  775. uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  776. }
  777. }
  778. }
  779. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  780. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  781. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  782. ) {
  783. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  784. if(pat_flg == 1) {
  785. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  786. pat_flg = 0;
  787. }
  788. if (p_uart->rx_buffer_full_flg == false) {
  789. //We have to read out all data in RX FIFO to clear the interrupt signal
  790. while (buf_idx < rx_fifo_len) {
  791. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  792. }
  793. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  794. int pat_num = uart_reg->at_cmd_char.char_num;
  795. int pat_idx = -1;
  796. //Get the buffer from the FIFO
  797. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  798. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  799. uart_event.type = UART_PATTERN_DET;
  800. uart_event.size = rx_fifo_len;
  801. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  802. } else {
  803. //After Copying the Data From FIFO ,Clear intr_status
  804. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  805. uart_event.type = UART_DATA;
  806. uart_event.size = rx_fifo_len;
  807. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  808. if (p_uart->uart_select_notif_callback) {
  809. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  810. }
  811. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  812. }
  813. p_uart->rx_stash_len = rx_fifo_len;
  814. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  815. //Mainly for applications that uses flow control or small ring buffer.
  816. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  817. uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  818. if (uart_event.type == UART_PATTERN_DET) {
  819. if (rx_fifo_len < pat_num) {
  820. //some of the characters are read out in last interrupt
  821. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  822. } else {
  823. uart_pattern_enqueue(uart_num,
  824. pat_idx <= -1 ?
  825. //can not find the pattern in buffer,
  826. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  827. // find the pattern in buffer
  828. p_uart->rx_buffered_len + pat_idx);
  829. }
  830. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  831. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  832. }
  833. }
  834. uart_event.type = UART_BUFFER_FULL;
  835. p_uart->rx_buffer_full_flg = true;
  836. } else {
  837. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  838. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  839. if (rx_fifo_len < pat_num) {
  840. //some of the characters are read out in last interrupt
  841. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  842. } else if(pat_idx >= 0) {
  843. // find pattern in statsh buffer.
  844. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  845. }
  846. }
  847. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  848. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  849. }
  850. if(HPTaskAwoken == pdTRUE) {
  851. portYIELD_FROM_ISR();
  852. }
  853. } else {
  854. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  855. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  856. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  857. uart_reg->int_clr.at_cmd_char_det = 1;
  858. uart_event.type = UART_PATTERN_DET;
  859. uart_event.size = rx_fifo_len;
  860. pat_flg = 1;
  861. }
  862. }
  863. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  864. // When fifo overflows, we reset the fifo.
  865. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  866. uart_reset_rx_fifo(uart_num);
  867. uart_reg->int_clr.rxfifo_ovf = 1;
  868. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  869. uart_event.type = UART_FIFO_OVF;
  870. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  871. if (p_uart->uart_select_notif_callback) {
  872. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  873. }
  874. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  875. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  876. uart_reg->int_clr.brk_det = 1;
  877. uart_event.type = UART_BREAK;
  878. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  879. uart_reg->int_clr.frm_err = 1;
  880. uart_event.type = UART_FRAME_ERR;
  881. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  882. if (p_uart->uart_select_notif_callback) {
  883. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  884. }
  885. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  886. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  887. uart_reg->int_clr.parity_err = 1;
  888. uart_event.type = UART_PARITY_ERR;
  889. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  890. if (p_uart->uart_select_notif_callback) {
  891. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  892. }
  893. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  894. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  895. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  896. uart_reg->conf0.txd_brk = 0;
  897. uart_reg->int_ena.tx_brk_done = 0;
  898. uart_reg->int_clr.tx_brk_done = 1;
  899. if(p_uart->tx_brk_flg == 1) {
  900. uart_reg->int_ena.txfifo_empty = 1;
  901. }
  902. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  903. if(p_uart->tx_brk_flg == 1) {
  904. p_uart->tx_brk_flg = 0;
  905. p_uart->tx_waiting_brk = 0;
  906. } else {
  907. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  908. if(HPTaskAwoken == pdTRUE) {
  909. portYIELD_FROM_ISR();
  910. }
  911. }
  912. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  913. uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  914. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  915. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  916. uart_reg->int_clr.at_cmd_char_det = 1;
  917. uart_event.type = UART_PATTERN_DET;
  918. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  919. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  920. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  921. // RS485 collision or frame error interrupt triggered
  922. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  923. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  924. uart_reset_rx_fifo(uart_num);
  925. // Set collision detection flag
  926. p_uart_obj[uart_num]->coll_det_flg = true;
  927. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  928. uart_event.type = UART_EVENT_MAX;
  929. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  930. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  931. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  932. // If RS485 half duplex mode is enable then reset FIFO and
  933. // reset RTS pin to start receiver driver
  934. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  935. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  936. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  937. uart_reg->conf0.sw_rts = 1;
  938. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  939. }
  940. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  941. if (HPTaskAwoken == pdTRUE) {
  942. portYIELD_FROM_ISR();
  943. }
  944. } else {
  945. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  946. uart_event.type = UART_EVENT_MAX;
  947. }
  948. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  949. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  950. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  951. }
  952. if(HPTaskAwoken == pdTRUE) {
  953. portYIELD_FROM_ISR();
  954. }
  955. }
  956. uart_intr_status = uart_reg->int_st.val;
  957. }
  958. }
  959. /**************************************************************/
  960. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  961. {
  962. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  963. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  964. BaseType_t res;
  965. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  966. //Take tx_mux
  967. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  968. if(res == pdFALSE) {
  969. return ESP_ERR_TIMEOUT;
  970. }
  971. ticks_to_wait = ticks_end - xTaskGetTickCount();
  972. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  973. ticks_to_wait = ticks_end - xTaskGetTickCount();
  974. if(UART[uart_num]->status.txfifo_cnt == 0) {
  975. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  976. return ESP_OK;
  977. }
  978. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  979. //take 2nd tx_done_sem, wait given from ISR
  980. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  981. if(res == pdFALSE) {
  982. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  983. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  984. return ESP_ERR_TIMEOUT;
  985. }
  986. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  987. return ESP_OK;
  988. }
  989. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  990. {
  991. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  992. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  993. UART[uart_num]->conf0.txd_brk = 1;
  994. UART[uart_num]->int_clr.tx_brk_done = 1;
  995. UART[uart_num]->int_ena.tx_brk_done = 1;
  996. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  997. return ESP_OK;
  998. }
  999. //Fill UART tx_fifo and return a number,
  1000. //This function by itself is not thread-safe, always call from within a muxed section.
  1001. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1002. {
  1003. uint8_t i = 0;
  1004. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1005. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1006. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1007. // Set the RTS pin if RS485 mode is enabled
  1008. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1009. UART[uart_num]->conf0.sw_rts = 0;
  1010. UART[uart_num]->int_ena.tx_done = 1;
  1011. }
  1012. for (i = 0; i < copy_cnt; i++) {
  1013. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1014. }
  1015. return copy_cnt;
  1016. }
  1017. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1018. {
  1019. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1020. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1021. UART_CHECK(buffer, "buffer null", (-1));
  1022. if(len == 0) {
  1023. return 0;
  1024. }
  1025. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1026. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1027. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1028. return tx_len;
  1029. }
  1030. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1031. {
  1032. if(size == 0) {
  1033. return 0;
  1034. }
  1035. size_t original_size = size;
  1036. //lock for uart_tx
  1037. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1038. p_uart_obj[uart_num]->coll_det_flg = false;
  1039. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1040. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1041. int offset = 0;
  1042. uart_tx_data_t evt;
  1043. evt.tx_data.size = size;
  1044. evt.tx_data.brk_len = brk_len;
  1045. if(brk_en) {
  1046. evt.type = UART_DATA_BREAK;
  1047. } else {
  1048. evt.type = UART_DATA;
  1049. }
  1050. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1051. while(size > 0) {
  1052. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1053. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1054. size -= send_size;
  1055. offset += send_size;
  1056. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1057. }
  1058. } else {
  1059. while(size) {
  1060. //semaphore for tx_fifo available
  1061. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1062. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1063. if(sent < size) {
  1064. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1065. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1066. }
  1067. size -= sent;
  1068. src += sent;
  1069. }
  1070. }
  1071. if(brk_en) {
  1072. uart_set_break(uart_num, brk_len);
  1073. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1074. }
  1075. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1076. }
  1077. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1078. return original_size;
  1079. }
  1080. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1081. {
  1082. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1083. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1084. UART_CHECK(src, "buffer null", (-1));
  1085. return uart_tx_all(uart_num, src, size, 0, 0);
  1086. }
  1087. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1088. {
  1089. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1090. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1091. UART_CHECK((size > 0), "uart size error", (-1));
  1092. UART_CHECK((src), "uart data null", (-1));
  1093. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1094. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1095. }
  1096. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1097. {
  1098. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1099. UART_CHECK((buf), "uart data null", (-1));
  1100. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1101. uint8_t* data = NULL;
  1102. size_t size;
  1103. size_t copy_len = 0;
  1104. int len_tmp;
  1105. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1106. return -1;
  1107. }
  1108. while(length) {
  1109. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1110. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1111. if(data) {
  1112. p_uart_obj[uart_num]->rx_head_ptr = data;
  1113. p_uart_obj[uart_num]->rx_ptr = data;
  1114. p_uart_obj[uart_num]->rx_cur_remain = size;
  1115. } else {
  1116. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1117. return copy_len;
  1118. }
  1119. }
  1120. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1121. len_tmp = length;
  1122. } else {
  1123. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1124. }
  1125. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1126. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1127. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1128. uart_pattern_queue_update(uart_num, len_tmp);
  1129. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1130. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1131. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1132. copy_len += len_tmp;
  1133. length -= len_tmp;
  1134. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1135. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1136. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1137. p_uart_obj[uart_num]->rx_ptr = NULL;
  1138. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1139. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1140. if(res == pdTRUE) {
  1141. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1142. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1143. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1144. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1145. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1146. }
  1147. }
  1148. }
  1149. }
  1150. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1151. return copy_len;
  1152. }
  1153. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1154. {
  1155. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1156. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1157. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1158. return ESP_OK;
  1159. }
  1160. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1161. esp_err_t uart_flush_input(uart_port_t uart_num)
  1162. {
  1163. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1164. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1165. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1166. uint8_t* data;
  1167. size_t size;
  1168. //rx sem protect the ring buffer read related functions
  1169. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1170. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1171. while(true) {
  1172. if(p_uart->rx_head_ptr) {
  1173. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1174. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1175. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1176. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1177. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1178. p_uart->rx_ptr = NULL;
  1179. p_uart->rx_cur_remain = 0;
  1180. p_uart->rx_head_ptr = NULL;
  1181. }
  1182. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1183. if(data == NULL) {
  1184. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1185. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1186. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1187. }
  1188. //We also need to clear the `rx_buffer_full_flg` here.
  1189. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1190. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1191. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1192. break;
  1193. }
  1194. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1195. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1196. uart_pattern_queue_update(uart_num, size);
  1197. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1198. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1199. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1200. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1201. if(res == pdTRUE) {
  1202. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1203. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1204. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1205. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1206. }
  1207. }
  1208. }
  1209. p_uart->rx_ptr = NULL;
  1210. p_uart->rx_cur_remain = 0;
  1211. p_uart->rx_head_ptr = NULL;
  1212. uart_reset_rx_fifo(uart_num);
  1213. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1214. xSemaphoreGive(p_uart->rx_mux);
  1215. return ESP_OK;
  1216. }
  1217. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1218. {
  1219. esp_err_t r;
  1220. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1221. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1222. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1223. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1224. if(p_uart_obj[uart_num] == NULL) {
  1225. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1226. if(p_uart_obj[uart_num] == NULL) {
  1227. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1228. return ESP_FAIL;
  1229. }
  1230. p_uart_obj[uart_num]->uart_num = uart_num;
  1231. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1232. p_uart_obj[uart_num]->coll_det_flg = false;
  1233. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1234. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1235. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1236. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1237. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1238. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1239. p_uart_obj[uart_num]->queue_size = queue_size;
  1240. p_uart_obj[uart_num]->tx_ptr = NULL;
  1241. p_uart_obj[uart_num]->tx_head = NULL;
  1242. p_uart_obj[uart_num]->tx_len_tot = 0;
  1243. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1244. p_uart_obj[uart_num]->tx_brk_len = 0;
  1245. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1246. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1247. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1248. if(uart_queue) {
  1249. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1250. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1251. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1252. } else {
  1253. p_uart_obj[uart_num]->xQueueUart = NULL;
  1254. }
  1255. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1256. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1257. p_uart_obj[uart_num]->rx_ptr = NULL;
  1258. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1259. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1260. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1261. if(tx_buffer_size > 0) {
  1262. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1263. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1264. } else {
  1265. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1266. p_uart_obj[uart_num]->tx_buf_size = 0;
  1267. }
  1268. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1269. } else {
  1270. ESP_LOGE(UART_TAG, "UART driver already installed");
  1271. return ESP_FAIL;
  1272. }
  1273. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1274. if (r!=ESP_OK) goto err;
  1275. uart_intr_config_t uart_intr = {
  1276. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1277. | UART_RXFIFO_TOUT_INT_ENA_M
  1278. | UART_FRM_ERR_INT_ENA_M
  1279. | UART_RXFIFO_OVF_INT_ENA_M
  1280. | UART_BRK_DET_INT_ENA_M
  1281. | UART_PARITY_ERR_INT_ENA_M,
  1282. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1283. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1284. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1285. };
  1286. r=uart_intr_config(uart_num, &uart_intr);
  1287. if (r!=ESP_OK) goto err;
  1288. return r;
  1289. err:
  1290. uart_driver_delete(uart_num);
  1291. return r;
  1292. }
  1293. //Make sure no other tasks are still using UART before you call this function
  1294. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1295. {
  1296. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1297. if(p_uart_obj[uart_num] == NULL) {
  1298. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1299. return ESP_OK;
  1300. }
  1301. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1302. uart_disable_rx_intr(uart_num);
  1303. uart_disable_tx_intr(uart_num);
  1304. uart_pattern_link_free(uart_num);
  1305. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1306. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1307. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1308. }
  1309. if(p_uart_obj[uart_num]->tx_done_sem) {
  1310. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1311. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1312. }
  1313. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1314. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1315. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1316. }
  1317. if(p_uart_obj[uart_num]->tx_mux) {
  1318. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1319. p_uart_obj[uart_num]->tx_mux = NULL;
  1320. }
  1321. if(p_uart_obj[uart_num]->rx_mux) {
  1322. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1323. p_uart_obj[uart_num]->rx_mux = NULL;
  1324. }
  1325. if(p_uart_obj[uart_num]->xQueueUart) {
  1326. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1327. p_uart_obj[uart_num]->xQueueUart = NULL;
  1328. }
  1329. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1330. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1331. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1332. }
  1333. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1334. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1335. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1336. }
  1337. free(p_uart_obj[uart_num]);
  1338. p_uart_obj[uart_num] = NULL;
  1339. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1340. if(uart_num == UART_NUM_0) {
  1341. periph_module_disable(PERIPH_UART0_MODULE);
  1342. } else if(uart_num == UART_NUM_1) {
  1343. periph_module_disable(PERIPH_UART1_MODULE);
  1344. } else if(uart_num == UART_NUM_2) {
  1345. periph_module_disable(PERIPH_UART2_MODULE);
  1346. }
  1347. }
  1348. return ESP_OK;
  1349. }
  1350. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1351. {
  1352. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1353. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1354. }
  1355. }
  1356. portMUX_TYPE *uart_get_selectlock()
  1357. {
  1358. return &uart_selectlock;
  1359. }
  1360. // Set UART mode
  1361. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1362. {
  1363. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1364. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1365. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1366. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1367. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1368. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1369. }
  1370. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1371. UART[uart_num]->rs485_conf.en = 0;
  1372. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1373. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1374. UART[uart_num]->conf0.irda_en = 0;
  1375. UART[uart_num]->conf0.sw_rts = 0;
  1376. switch (mode) {
  1377. case UART_MODE_UART:
  1378. break;
  1379. case UART_MODE_RS485_COLLISION_DETECT:
  1380. // This mode allows read while transmitting that allows collision detection
  1381. p_uart_obj[uart_num]->coll_det_flg = false;
  1382. // Transmitter’s output signal loop back to the receiver’s input signal
  1383. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1384. // Transmitter should send data when its receiver is busy
  1385. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1386. UART[uart_num]->rs485_conf.en = 1;
  1387. // Enable collision detection interrupts
  1388. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1389. | UART_RXFIFO_FULL_INT_ENA
  1390. | UART_RS485_CLASH_INT_ENA
  1391. | UART_RS485_FRM_ERR_INT_ENA
  1392. | UART_RS485_PARITY_ERR_INT_ENA);
  1393. break;
  1394. case UART_MODE_RS485_APP_CTRL:
  1395. // Application software control, remove echo
  1396. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1397. UART[uart_num]->rs485_conf.en = 1;
  1398. break;
  1399. case UART_MODE_RS485_HALF_DUPLEX:
  1400. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1401. UART[uart_num]->conf0.sw_rts = 1;
  1402. UART[uart_num]->rs485_conf.en = 1;
  1403. // Must be set to 0 to automatically remove echo
  1404. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1405. // This is to void collision
  1406. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1407. break;
  1408. case UART_MODE_IRDA:
  1409. UART[uart_num]->conf0.irda_en = 1;
  1410. break;
  1411. default:
  1412. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1413. break;
  1414. }
  1415. p_uart_obj[uart_num]->uart_mode = mode;
  1416. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1417. return ESP_OK;
  1418. }
  1419. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1420. {
  1421. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1422. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1423. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1424. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1425. // transmission time of one symbol (~11 bit) on current baudrate
  1426. if (tout_thresh > 0) {
  1427. UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & UART_RX_TOUT_THRHD_V);
  1428. UART[uart_num]->conf1.rx_tout_en = 1;
  1429. } else {
  1430. UART[uart_num]->conf1.rx_tout_en = 0;
  1431. }
  1432. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1433. return ESP_OK;
  1434. }
  1435. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1436. {
  1437. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1438. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1439. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1440. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1441. "wrong mode", ESP_ERR_INVALID_ARG);
  1442. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1443. return ESP_OK;
  1444. }
  1445. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1446. {
  1447. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1448. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1449. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1450. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1451. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1452. return ESP_OK;
  1453. }
  1454. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1455. {
  1456. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1457. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1458. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1459. return ESP_OK;
  1460. }