rmt.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <esp_types.h>
  14. #include <string.h>
  15. #include <stdlib.h>
  16. #include "freertos/FreeRTOS.h"
  17. #include "freertos/semphr.h"
  18. #include "freertos/xtensa_api.h"
  19. #include "freertos/ringbuf.h"
  20. #include "esp_intr.h"
  21. #include "esp_log.h"
  22. #include "esp_err.h"
  23. #include "esp_intr_alloc.h"
  24. #include "soc/gpio_sig_map.h"
  25. #include "soc/rmt_struct.h"
  26. #include "driver/periph_ctrl.h"
  27. #include "driver/rmt.h"
  28. #include <sys/lock.h>
  29. #define RMT_SOUCCE_CLK_APB (APB_CLK_FREQ) /*!< RMT source clock is APB_CLK */
  30. #define RMT_SOURCE_CLK_REF (1 * 1000000) /*!< not used yet */
  31. #define RMT_SOURCE_CLK(select) ((select == RMT_BASECLK_REF) ? (RMT_SOURCE_CLK_REF) : (RMT_SOUCCE_CLK_APB)) /*! RMT source clock frequency */
  32. #define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
  33. #define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
  34. #define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
  35. #define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
  36. #define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
  37. #define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
  38. #define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
  39. #define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
  40. #define RMT_MODE_ERROR_STR "RMT MODE ERROR"
  41. #define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
  42. #define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
  43. #define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
  44. #define RMT_PSRAM_BUFFER_WARN_STR "Using buffer allocated from psram"
  45. #define RMT_TRANSLATOR_NULL_STR "RMT translator is null"
  46. #define RMT_TRANSLATOR_UNINIT_STR "RMT translator not init"
  47. static const char* RMT_TAG = "rmt";
  48. static uint8_t s_rmt_driver_channels; // Bitmask (bits 0-7) of installed drivers' channels
  49. static rmt_isr_handle_t s_rmt_driver_intr_handle;
  50. #define RMT_CHECK(a, str, ret_val) \
  51. if (!(a)) { \
  52. ESP_LOGE(RMT_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  53. return (ret_val); \
  54. }
  55. // Spinlock for protecting concurrent register-level access only
  56. static portMUX_TYPE rmt_spinlock = portMUX_INITIALIZER_UNLOCKED;
  57. // Mutex lock for protecting concurrent register/unregister of RMT channels' ISR
  58. static _lock_t rmt_driver_isr_lock;
  59. typedef struct {
  60. size_t tx_offset;
  61. size_t tx_len_rem;
  62. size_t tx_sub_len;
  63. bool translator;
  64. bool wait_done; //Mark whether wait tx done.
  65. rmt_channel_t channel;
  66. const rmt_item32_t* tx_data;
  67. xSemaphoreHandle tx_sem;
  68. #if CONFIG_SPIRAM_USE_MALLOC
  69. int intr_alloc_flags;
  70. StaticSemaphore_t tx_sem_buffer;
  71. #endif
  72. rmt_item32_t* tx_buf;
  73. RingbufHandle_t rx_buf;
  74. sample_to_rmt_t sample_to_rmt;
  75. size_t sample_size_remain;
  76. const uint8_t *sample_cur;
  77. } rmt_obj_t;
  78. rmt_obj_t* p_rmt_obj[RMT_CHANNEL_MAX] = {0};
  79. // Event called when transmission is ended
  80. static rmt_tx_end_callback_t rmt_tx_end_callback;
  81. static void rmt_set_tx_wrap_en(rmt_channel_t channel, bool en)
  82. {
  83. portENTER_CRITICAL(&rmt_spinlock);
  84. RMT.apb_conf.mem_tx_wrap_en = en;
  85. portEXIT_CRITICAL(&rmt_spinlock);
  86. }
  87. static void rmt_set_data_mode(rmt_data_mode_t data_mode)
  88. {
  89. portENTER_CRITICAL(&rmt_spinlock);
  90. RMT.apb_conf.fifo_mask = data_mode;
  91. portEXIT_CRITICAL(&rmt_spinlock);
  92. }
  93. esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
  94. {
  95. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  96. RMT.conf_ch[channel].conf0.div_cnt = div_cnt;
  97. return ESP_OK;
  98. }
  99. esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t* div_cnt)
  100. {
  101. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  102. RMT_CHECK(div_cnt != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  103. *div_cnt = RMT.conf_ch[channel].conf0.div_cnt;
  104. return ESP_OK;
  105. }
  106. esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
  107. {
  108. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  109. RMT.conf_ch[channel].conf0.idle_thres = thresh;
  110. return ESP_OK;
  111. }
  112. esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
  113. {
  114. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  115. RMT_CHECK(thresh != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  116. *thresh = RMT.conf_ch[channel].conf0.idle_thres;
  117. return ESP_OK;
  118. }
  119. esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
  120. {
  121. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  122. RMT_CHECK(rmt_mem_num < 16, RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  123. RMT.conf_ch[channel].conf0.mem_size = rmt_mem_num;
  124. return ESP_OK;
  125. }
  126. esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t* rmt_mem_num)
  127. {
  128. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  129. RMT_CHECK(rmt_mem_num != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  130. *rmt_mem_num = RMT.conf_ch[channel].conf0.mem_size;
  131. return ESP_OK;
  132. }
  133. esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
  134. rmt_carrier_level_t carrier_level)
  135. {
  136. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  137. RMT_CHECK(carrier_level < RMT_CARRIER_LEVEL_MAX, RMT_CARRIER_ERROR_STR, ESP_ERR_INVALID_ARG);
  138. RMT.carrier_duty_ch[channel].high = high_level;
  139. RMT.carrier_duty_ch[channel].low = low_level;
  140. RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
  141. RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
  142. return ESP_OK;
  143. }
  144. esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
  145. {
  146. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  147. RMT.conf_ch[channel].conf0.mem_pd = pd_en;
  148. return ESP_OK;
  149. }
  150. esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool* pd_en)
  151. {
  152. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  153. *pd_en = (bool) RMT.conf_ch[channel].conf0.mem_pd;
  154. return ESP_OK;
  155. }
  156. esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
  157. {
  158. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  159. portENTER_CRITICAL(&rmt_spinlock);
  160. if(tx_idx_rst) {
  161. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  162. }
  163. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  164. RMT.conf_ch[channel].conf1.tx_start = 1;
  165. portEXIT_CRITICAL(&rmt_spinlock);
  166. return ESP_OK;
  167. }
  168. esp_err_t rmt_tx_stop(rmt_channel_t channel)
  169. {
  170. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  171. portENTER_CRITICAL(&rmt_spinlock);
  172. RMTMEM.chan[channel].data32[0].val = 0;
  173. RMT.conf_ch[channel].conf1.tx_start = 0;
  174. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  175. RMT.conf_ch[channel].conf1.mem_rd_rst = 0;
  176. portEXIT_CRITICAL(&rmt_spinlock);
  177. return ESP_OK;
  178. }
  179. esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
  180. {
  181. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  182. portENTER_CRITICAL(&rmt_spinlock);
  183. if(rx_idx_rst) {
  184. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  185. }
  186. RMT.conf_ch[channel].conf1.rx_en = 0;
  187. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  188. RMT.conf_ch[channel].conf1.rx_en = 1;
  189. portEXIT_CRITICAL(&rmt_spinlock);
  190. return ESP_OK;
  191. }
  192. esp_err_t rmt_rx_stop(rmt_channel_t channel)
  193. {
  194. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  195. portENTER_CRITICAL(&rmt_spinlock);
  196. RMT.conf_ch[channel].conf1.rx_en = 0;
  197. portEXIT_CRITICAL(&rmt_spinlock);
  198. return ESP_OK;
  199. }
  200. esp_err_t rmt_memory_rw_rst(rmt_channel_t channel)
  201. {
  202. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  203. portENTER_CRITICAL(&rmt_spinlock);
  204. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  205. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  206. portEXIT_CRITICAL(&rmt_spinlock);
  207. return ESP_OK;
  208. }
  209. esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
  210. {
  211. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  212. RMT_CHECK(owner < RMT_MEM_OWNER_MAX, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  213. portENTER_CRITICAL(&rmt_spinlock);
  214. RMT.conf_ch[channel].conf1.mem_owner = owner;
  215. portEXIT_CRITICAL(&rmt_spinlock);
  216. return ESP_OK;
  217. }
  218. esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t* owner)
  219. {
  220. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  221. RMT_CHECK(owner != NULL, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  222. *owner = (rmt_mem_owner_t) RMT.conf_ch[channel].conf1.mem_owner;
  223. return ESP_OK;
  224. }
  225. esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
  226. {
  227. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  228. portENTER_CRITICAL(&rmt_spinlock);
  229. RMT.conf_ch[channel].conf1.tx_conti_mode = loop_en;
  230. portEXIT_CRITICAL(&rmt_spinlock);
  231. return ESP_OK;
  232. }
  233. esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool* loop_en)
  234. {
  235. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  236. *loop_en = (bool) RMT.conf_ch[channel].conf1.tx_conti_mode;
  237. return ESP_OK;
  238. }
  239. esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
  240. {
  241. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  242. portENTER_CRITICAL(&rmt_spinlock);
  243. RMT.conf_ch[channel].conf1.rx_filter_en = rx_filter_en;
  244. RMT.conf_ch[channel].conf1.rx_filter_thres = thresh;
  245. portEXIT_CRITICAL(&rmt_spinlock);
  246. return ESP_OK;
  247. }
  248. esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
  249. {
  250. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  251. RMT_CHECK(base_clk < RMT_BASECLK_MAX, RMT_BASECLK_ERROR_STR, ESP_ERR_INVALID_ARG);
  252. portENTER_CRITICAL(&rmt_spinlock);
  253. RMT.conf_ch[channel].conf1.ref_always_on = base_clk;
  254. portEXIT_CRITICAL(&rmt_spinlock);
  255. return ESP_OK;
  256. }
  257. esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t* src_clk)
  258. {
  259. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  260. *src_clk = (rmt_source_clk_t) (RMT.conf_ch[channel].conf1.ref_always_on);
  261. return ESP_OK;
  262. }
  263. esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
  264. {
  265. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  266. RMT_CHECK(level < RMT_IDLE_LEVEL_MAX, "RMT IDLE LEVEL ERR", ESP_ERR_INVALID_ARG);
  267. portENTER_CRITICAL(&rmt_spinlock);
  268. RMT.conf_ch[channel].conf1.idle_out_en = idle_out_en;
  269. RMT.conf_ch[channel].conf1.idle_out_lv = level;
  270. portEXIT_CRITICAL(&rmt_spinlock);
  271. return ESP_OK;
  272. }
  273. esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t* status)
  274. {
  275. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  276. *status = RMT.status_ch[channel];
  277. return ESP_OK;
  278. }
  279. rmt_data_mode_t rmt_get_data_mode()
  280. {
  281. return (rmt_data_mode_t) (RMT.apb_conf.fifo_mask);
  282. }
  283. void rmt_set_intr_enable_mask(uint32_t mask)
  284. {
  285. portENTER_CRITICAL(&rmt_spinlock);
  286. RMT.int_ena.val |= mask;
  287. portEXIT_CRITICAL(&rmt_spinlock);
  288. }
  289. void rmt_clr_intr_enable_mask(uint32_t mask)
  290. {
  291. portENTER_CRITICAL(&rmt_spinlock);
  292. RMT.int_ena.val &= (~mask);
  293. portEXIT_CRITICAL(&rmt_spinlock);
  294. }
  295. esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
  296. {
  297. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  298. if(en) {
  299. rmt_set_intr_enable_mask(BIT(channel * 3 + 1));
  300. } else {
  301. rmt_clr_intr_enable_mask(BIT(channel * 3 + 1));
  302. }
  303. return ESP_OK;
  304. }
  305. esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
  306. {
  307. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  308. if(en) {
  309. rmt_set_intr_enable_mask(BIT(channel * 3 + 2));
  310. } else {
  311. rmt_clr_intr_enable_mask(BIT(channel * 3 + 2));
  312. }
  313. return ESP_OK;
  314. }
  315. esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
  316. {
  317. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  318. if(en) {
  319. rmt_set_intr_enable_mask(BIT(channel * 3));
  320. } else {
  321. rmt_clr_intr_enable_mask(BIT(channel * 3));
  322. }
  323. return ESP_OK;
  324. }
  325. esp_err_t rmt_set_tx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  326. {
  327. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  328. if(en) {
  329. RMT_CHECK(evt_thresh <= 256, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
  330. portENTER_CRITICAL(&rmt_spinlock);
  331. RMT.tx_lim_ch[channel].limit = evt_thresh;
  332. portEXIT_CRITICAL(&rmt_spinlock);
  333. rmt_set_tx_wrap_en(channel, true);
  334. rmt_set_intr_enable_mask(BIT(channel + 24));
  335. } else {
  336. rmt_clr_intr_enable_mask(BIT(channel + 24));
  337. }
  338. return ESP_OK;
  339. }
  340. esp_err_t rmt_set_pin(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num)
  341. {
  342. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  343. RMT_CHECK(mode < RMT_MODE_MAX, RMT_MODE_ERROR_STR, ESP_ERR_INVALID_ARG);
  344. RMT_CHECK(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) || (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))),
  345. RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
  346. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], 2);
  347. if(mode == RMT_MODE_TX) {
  348. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  349. gpio_matrix_out(gpio_num, RMT_SIG_OUT0_IDX + channel, 0, 0);
  350. } else {
  351. gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
  352. gpio_matrix_in(gpio_num, RMT_SIG_IN0_IDX + channel, 0);
  353. }
  354. return ESP_OK;
  355. }
  356. esp_err_t rmt_config(const rmt_config_t* rmt_param)
  357. {
  358. uint8_t mode = rmt_param->rmt_mode;
  359. uint8_t channel = rmt_param->channel;
  360. uint8_t gpio_num = rmt_param->gpio_num;
  361. uint8_t mem_cnt = rmt_param->mem_block_num;
  362. int clk_div = rmt_param->clk_div;
  363. uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
  364. bool carrier_en = rmt_param->tx_config.carrier_en;
  365. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  366. RMT_CHECK(GPIO_IS_VALID_GPIO(gpio_num), RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
  367. RMT_CHECK((mem_cnt + channel <= 8 && mem_cnt > 0), RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  368. RMT_CHECK((clk_div > 0), RMT_CLK_DIV_ERROR_STR, ESP_ERR_INVALID_ARG);
  369. if (mode == RMT_MODE_TX) {
  370. RMT_CHECK((!carrier_en || carrier_freq_hz > 0), "RMT carrier frequency can't be zero", ESP_ERR_INVALID_ARG);
  371. }
  372. periph_module_enable(PERIPH_RMT_MODULE);
  373. RMT.conf_ch[channel].conf0.div_cnt = clk_div;
  374. /*Visit data use memory not FIFO*/
  375. rmt_set_data_mode(RMT_DATA_MODE_MEM);
  376. /*Reset tx/rx memory index */
  377. portENTER_CRITICAL(&rmt_spinlock);
  378. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  379. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  380. portEXIT_CRITICAL(&rmt_spinlock);
  381. if(mode == RMT_MODE_TX) {
  382. uint32_t rmt_source_clk_hz = 0;
  383. uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
  384. uint8_t carrier_level = rmt_param->tx_config.carrier_level;
  385. uint8_t idle_level = rmt_param->tx_config.idle_level;
  386. portENTER_CRITICAL(&rmt_spinlock);
  387. RMT.conf_ch[channel].conf1.tx_conti_mode = rmt_param->tx_config.loop_en;
  388. /*Memory set block number*/
  389. RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
  390. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  391. /*We use APB clock in this version, which is 80Mhz, later we will release system reference clock*/
  392. RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
  393. rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
  394. /*Set idle level */
  395. RMT.conf_ch[channel].conf1.idle_out_en = rmt_param->tx_config.idle_output_en;
  396. RMT.conf_ch[channel].conf1.idle_out_lv = idle_level;
  397. /*Set carrier*/
  398. RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
  399. if (carrier_en) {
  400. uint32_t duty_div, duty_h, duty_l;
  401. duty_div = rmt_source_clk_hz / carrier_freq_hz;
  402. duty_h = duty_div * carrier_duty_percent / 100;
  403. duty_l = duty_div - duty_h;
  404. RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
  405. RMT.carrier_duty_ch[channel].high = duty_h;
  406. RMT.carrier_duty_ch[channel].low = duty_l;
  407. } else {
  408. RMT.conf_ch[channel].conf0.carrier_out_lv = 0;
  409. RMT.carrier_duty_ch[channel].high = 0;
  410. RMT.carrier_duty_ch[channel].low = 0;
  411. }
  412. portEXIT_CRITICAL(&rmt_spinlock);
  413. ESP_LOGD(RMT_TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Carrier_Hz %u|Duty %u",
  414. channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
  415. }
  416. else if(RMT_MODE_RX == mode) {
  417. uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
  418. uint16_t threshold = rmt_param->rx_config.idle_threshold;
  419. portENTER_CRITICAL(&rmt_spinlock);
  420. /*clock init*/
  421. RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
  422. uint32_t rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
  423. /*memory set block number and owner*/
  424. RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
  425. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  426. /*Set idle threshold*/
  427. RMT.conf_ch[channel].conf0.idle_thres = threshold;
  428. /* Set RX filter */
  429. RMT.conf_ch[channel].conf1.rx_filter_thres = filter_cnt;
  430. RMT.conf_ch[channel].conf1.rx_filter_en = rmt_param->rx_config.filter_en;
  431. portEXIT_CRITICAL(&rmt_spinlock);
  432. ESP_LOGD(RMT_TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Thresold %u|Filter %u",
  433. channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
  434. }
  435. rmt_set_pin(channel, mode, gpio_num);
  436. return ESP_OK;
  437. }
  438. static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, const rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
  439. {
  440. portENTER_CRITICAL(&rmt_spinlock);
  441. RMT.apb_conf.fifo_mask = RMT_DATA_MODE_MEM;
  442. portEXIT_CRITICAL(&rmt_spinlock);
  443. int i;
  444. for(i = 0; i < item_num; i++) {
  445. RMTMEM.chan[channel].data32[i + mem_offset].val = item[i].val;
  446. }
  447. }
  448. esp_err_t rmt_fill_tx_items(rmt_channel_t channel, const rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
  449. {
  450. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, (0));
  451. RMT_CHECK((item != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  452. RMT_CHECK((item_num > 0), RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  453. /*Each block has 64 x 32 bits of data*/
  454. uint8_t mem_cnt = RMT.conf_ch[channel].conf0.mem_size;
  455. RMT_CHECK((mem_cnt * RMT_MEM_ITEM_NUM >= item_num), RMT_WR_MEM_OVF_ERROR_STR, ESP_ERR_INVALID_ARG);
  456. rmt_fill_memory(channel, item, item_num, mem_offset);
  457. return ESP_OK;
  458. }
  459. esp_err_t rmt_isr_register(void (*fn)(void*), void * arg, int intr_alloc_flags, rmt_isr_handle_t *handle)
  460. {
  461. RMT_CHECK((fn != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  462. RMT_CHECK(s_rmt_driver_channels == 0, "RMT driver installed, can not install generic ISR handler", ESP_FAIL);
  463. return esp_intr_alloc(ETS_RMT_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  464. }
  465. esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)
  466. {
  467. return esp_intr_free(handle);
  468. }
  469. static int IRAM_ATTR rmt_get_mem_len(rmt_channel_t channel)
  470. {
  471. int block_num = RMT.conf_ch[channel].conf0.mem_size;
  472. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  473. volatile rmt_item32_t* data = RMTMEM.chan[channel].data32;
  474. int idx;
  475. for(idx = 0; idx < item_block_len; idx++) {
  476. if(data[idx].duration0 == 0) {
  477. return idx;
  478. } else if(data[idx].duration1 == 0) {
  479. return idx + 1;
  480. }
  481. }
  482. return idx;
  483. }
  484. static void IRAM_ATTR rmt_driver_isr_default(void* arg)
  485. {
  486. uint32_t intr_st = RMT.int_st.val;
  487. uint32_t i = 0;
  488. uint8_t channel;
  489. portBASE_TYPE HPTaskAwoken = 0;
  490. for(i = 0; i < 32; i++) {
  491. if(i < 24) {
  492. if(intr_st & BIT(i)) {
  493. channel = i / 3;
  494. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  495. if(NULL == p_rmt) {
  496. RMT.int_clr.val = BIT(i);
  497. continue;
  498. }
  499. switch(i % 3) {
  500. //TX END
  501. case 0:
  502. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  503. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  504. RMT.conf_ch[channel].conf1.mem_rd_rst = 0;
  505. p_rmt->tx_data = NULL;
  506. p_rmt->tx_len_rem = 0;
  507. p_rmt->tx_offset = 0;
  508. p_rmt->tx_sub_len = 0;
  509. if(rmt_tx_end_callback.function != NULL) {
  510. rmt_tx_end_callback.function(channel, rmt_tx_end_callback.arg);
  511. }
  512. break;
  513. //RX_END
  514. case 1:
  515. RMT.conf_ch[channel].conf1.rx_en = 0;
  516. int item_len = rmt_get_mem_len(channel);
  517. //change memory owner to protect data.
  518. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  519. if(p_rmt->rx_buf) {
  520. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void*) RMTMEM.chan[channel].data32, item_len * 4, &HPTaskAwoken);
  521. if(res == pdFALSE) {
  522. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER FULL");
  523. } else {
  524. }
  525. } else {
  526. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER ERROR\n");
  527. }
  528. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  529. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  530. RMT.conf_ch[channel].conf1.rx_en = 1;
  531. break;
  532. //ERR
  533. case 2:
  534. ESP_EARLY_LOGE(RMT_TAG, "RMT[%d] ERR", channel);
  535. ESP_EARLY_LOGE(RMT_TAG, "status: 0x%08x", RMT.status_ch[channel]);
  536. RMT.int_ena.val &= (~(BIT(i)));
  537. break;
  538. default:
  539. break;
  540. }
  541. RMT.int_clr.val = BIT(i);
  542. }
  543. } else {
  544. if(intr_st & (BIT(i))) {
  545. channel = i - 24;
  546. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  547. RMT.int_clr.val = BIT(i);
  548. if(p_rmt->tx_data == NULL) {
  549. //skip
  550. } else {
  551. if(p_rmt->translator) {
  552. if(p_rmt->sample_size_remain > 0) {
  553. size_t translated_size = 0;
  554. p_rmt->sample_to_rmt((void *) p_rmt->sample_cur,
  555. p_rmt->tx_buf,
  556. p_rmt->sample_size_remain,
  557. p_rmt->tx_sub_len,
  558. &translated_size,
  559. &p_rmt->tx_len_rem
  560. );
  561. p_rmt->sample_size_remain -= translated_size;
  562. p_rmt->sample_cur += translated_size;
  563. p_rmt->tx_data = p_rmt->tx_buf;
  564. } else {
  565. p_rmt->sample_cur = NULL;
  566. p_rmt->translator = false;
  567. }
  568. }
  569. const rmt_item32_t* pdata = p_rmt->tx_data;
  570. int len_rem = p_rmt->tx_len_rem;
  571. if(len_rem >= p_rmt->tx_sub_len) {
  572. rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
  573. p_rmt->tx_data += p_rmt->tx_sub_len;
  574. p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
  575. } else if(len_rem == 0) {
  576. RMTMEM.chan[channel].data32[p_rmt->tx_offset].val = 0;
  577. } else {
  578. rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
  579. RMTMEM.chan[channel].data32[p_rmt->tx_offset + len_rem].val = 0;
  580. p_rmt->tx_data += len_rem;
  581. p_rmt->tx_len_rem -= len_rem;
  582. }
  583. if(p_rmt->tx_offset == 0) {
  584. p_rmt->tx_offset = p_rmt->tx_sub_len;
  585. } else {
  586. p_rmt->tx_offset = 0;
  587. }
  588. }
  589. }
  590. }
  591. }
  592. if(HPTaskAwoken == pdTRUE) {
  593. portYIELD_FROM_ISR();
  594. }
  595. }
  596. esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
  597. {
  598. esp_err_t err = ESP_OK;
  599. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  600. RMT_CHECK((s_rmt_driver_channels & BIT(channel)) != 0, "No RMT driver for this channel", ESP_ERR_INVALID_STATE);
  601. if(p_rmt_obj[channel] == NULL) {
  602. return ESP_OK;
  603. }
  604. //Avoid blocking here(when the interrupt is disabled and do not wait tx done).
  605. if(p_rmt_obj[channel]->wait_done) {
  606. xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
  607. }
  608. rmt_set_rx_intr_en(channel, 0);
  609. rmt_set_err_intr_en(channel, 0);
  610. rmt_set_tx_intr_en(channel, 0);
  611. rmt_set_tx_thr_intr_en(channel, 0, 0xffff);
  612. _lock_acquire_recursive(&rmt_driver_isr_lock);
  613. s_rmt_driver_channels &= ~BIT(channel);
  614. if (s_rmt_driver_channels == 0) { // all channels have driver disabled
  615. err = rmt_isr_deregister(s_rmt_driver_intr_handle);
  616. s_rmt_driver_intr_handle = NULL;
  617. }
  618. _lock_release_recursive(&rmt_driver_isr_lock);
  619. if (err != ESP_OK) {
  620. return err;
  621. }
  622. if(p_rmt_obj[channel]->tx_sem) {
  623. vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
  624. p_rmt_obj[channel]->tx_sem = NULL;
  625. }
  626. if(p_rmt_obj[channel]->rx_buf) {
  627. vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
  628. p_rmt_obj[channel]->rx_buf = NULL;
  629. }
  630. if(p_rmt_obj[channel]->tx_buf) {
  631. free(p_rmt_obj[channel]->tx_buf);
  632. p_rmt_obj[channel]->tx_buf = NULL;
  633. }
  634. if(p_rmt_obj[channel]->sample_to_rmt) {
  635. p_rmt_obj[channel]->sample_to_rmt = NULL;
  636. }
  637. free(p_rmt_obj[channel]);
  638. p_rmt_obj[channel] = NULL;
  639. return ESP_OK;
  640. }
  641. esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags)
  642. {
  643. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  644. RMT_CHECK((s_rmt_driver_channels & BIT(channel)) == 0, "RMT driver already installed for channel", ESP_ERR_INVALID_STATE);
  645. esp_err_t err = ESP_OK;
  646. if(p_rmt_obj[channel] != NULL) {
  647. ESP_LOGD(RMT_TAG, "RMT driver already installed");
  648. return ESP_ERR_INVALID_STATE;
  649. }
  650. #if !CONFIG_SPIRAM_USE_MALLOC
  651. p_rmt_obj[channel] = (rmt_obj_t*) malloc(sizeof(rmt_obj_t));
  652. #else
  653. if( !(intr_alloc_flags & ESP_INTR_FLAG_IRAM) ) {
  654. p_rmt_obj[channel] = (rmt_obj_t*) malloc(sizeof(rmt_obj_t));
  655. } else {
  656. p_rmt_obj[channel] = (rmt_obj_t*) heap_caps_calloc(1, sizeof(rmt_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  657. }
  658. #endif
  659. if(p_rmt_obj[channel] == NULL) {
  660. ESP_LOGE(RMT_TAG, "RMT driver malloc error");
  661. return ESP_ERR_NO_MEM;
  662. }
  663. memset(p_rmt_obj[channel], 0, sizeof(rmt_obj_t));
  664. p_rmt_obj[channel]->tx_len_rem = 0;
  665. p_rmt_obj[channel]->tx_data = NULL;
  666. p_rmt_obj[channel]->channel = channel;
  667. p_rmt_obj[channel]->tx_offset = 0;
  668. p_rmt_obj[channel]->tx_sub_len = 0;
  669. p_rmt_obj[channel]->wait_done = false;
  670. p_rmt_obj[channel]->translator = false;
  671. p_rmt_obj[channel]->sample_to_rmt = NULL;
  672. if(p_rmt_obj[channel]->tx_sem == NULL) {
  673. #if !CONFIG_SPIRAM_USE_MALLOC
  674. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  675. #else
  676. p_rmt_obj[channel]->intr_alloc_flags = intr_alloc_flags;
  677. if( !(intr_alloc_flags & ESP_INTR_FLAG_IRAM) ) {
  678. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  679. } else {
  680. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinaryStatic(&p_rmt_obj[channel]->tx_sem_buffer);
  681. }
  682. #endif
  683. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  684. }
  685. if(p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
  686. p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
  687. rmt_set_rx_intr_en(channel, 1);
  688. rmt_set_err_intr_en(channel, 1);
  689. }
  690. _lock_acquire_recursive(&rmt_driver_isr_lock);
  691. if(s_rmt_driver_channels == 0) { // first RMT channel using driver
  692. err = rmt_isr_register(rmt_driver_isr_default, NULL, intr_alloc_flags, &s_rmt_driver_intr_handle);
  693. }
  694. if (err == ESP_OK) {
  695. s_rmt_driver_channels |= BIT(channel);
  696. rmt_set_tx_intr_en(channel, 1);
  697. }
  698. _lock_release_recursive(&rmt_driver_isr_lock);
  699. return err;
  700. }
  701. esp_err_t rmt_write_items(rmt_channel_t channel, const rmt_item32_t* rmt_item, int item_num, bool wait_tx_done)
  702. {
  703. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  704. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  705. RMT_CHECK(rmt_item != NULL, RMT_ADDR_ERROR_STR, ESP_FAIL);
  706. RMT_CHECK(item_num > 0, RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  707. #if CONFIG_SPIRAM_USE_MALLOC
  708. if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
  709. if( !esp_ptr_internal(rmt_item) ) {
  710. ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
  711. return ESP_ERR_INVALID_ARG;
  712. }
  713. }
  714. #endif
  715. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  716. int block_num = RMT.conf_ch[channel].conf0.mem_size;
  717. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  718. int item_sub_len = block_num * RMT_MEM_ITEM_NUM / 2;
  719. int len_rem = item_num;
  720. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  721. // fill the memory block first
  722. if(item_num >= item_block_len) {
  723. rmt_fill_memory(channel, rmt_item, item_block_len, 0);
  724. RMT.tx_lim_ch[channel].limit = item_sub_len;
  725. RMT.apb_conf.mem_tx_wrap_en = 1;
  726. len_rem -= item_block_len;
  727. RMT.conf_ch[channel].conf1.tx_conti_mode = 0;
  728. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  729. p_rmt->tx_data = rmt_item + item_block_len;
  730. p_rmt->tx_len_rem = len_rem;
  731. p_rmt->tx_offset = 0;
  732. p_rmt->tx_sub_len = item_sub_len;
  733. } else {
  734. rmt_fill_memory(channel, rmt_item, len_rem, 0);
  735. RMTMEM.chan[channel].data32[len_rem].val = 0;
  736. p_rmt->tx_len_rem = 0;
  737. }
  738. rmt_tx_start(channel, true);
  739. p_rmt->wait_done = wait_tx_done;
  740. if(wait_tx_done) {
  741. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  742. xSemaphoreGive(p_rmt->tx_sem);
  743. }
  744. return ESP_OK;
  745. }
  746. esp_err_t rmt_wait_tx_done(rmt_channel_t channel, TickType_t wait_time)
  747. {
  748. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  749. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  750. if(xSemaphoreTake(p_rmt_obj[channel]->tx_sem, wait_time) == pdTRUE) {
  751. p_rmt_obj[channel]->wait_done = false;
  752. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  753. return ESP_OK;
  754. }
  755. else {
  756. ESP_LOGE(RMT_TAG, "Timeout on wait_tx_done");
  757. return ESP_ERR_TIMEOUT;
  758. }
  759. }
  760. esp_err_t rmt_get_ringbuf_handle(rmt_channel_t channel, RingbufHandle_t* buf_handle)
  761. {
  762. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  763. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  764. RMT_CHECK(buf_handle != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  765. *buf_handle = p_rmt_obj[channel]->rx_buf;
  766. return ESP_OK;
  767. }
  768. rmt_tx_end_callback_t rmt_register_tx_end_callback(rmt_tx_end_fn_t function, void *arg)
  769. {
  770. rmt_tx_end_callback_t previous = rmt_tx_end_callback;
  771. rmt_tx_end_callback.function = function;
  772. rmt_tx_end_callback.arg = arg;
  773. return previous;
  774. }
  775. esp_err_t rmt_translator_init(rmt_channel_t channel, sample_to_rmt_t fn)
  776. {
  777. RMT_CHECK(fn != NULL, RMT_TRANSLATOR_NULL_STR, ESP_ERR_INVALID_ARG);
  778. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  779. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  780. const uint32_t block_size = RMT.conf_ch[channel].conf0.mem_size * RMT_MEM_ITEM_NUM * sizeof(rmt_item32_t);
  781. if (p_rmt_obj[channel]->tx_buf == NULL) {
  782. #if !CONFIG_SPIRAM_USE_MALLOC
  783. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  784. #else
  785. if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
  786. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  787. } else {
  788. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)heap_caps_calloc(1, block_size, MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  789. }
  790. #endif
  791. if(p_rmt_obj[channel]->tx_buf == NULL) {
  792. ESP_LOGE(RMT_TAG, "RMT translator buffer create fail");
  793. return ESP_FAIL;
  794. }
  795. }
  796. p_rmt_obj[channel]->sample_to_rmt = fn;
  797. p_rmt_obj[channel]->sample_size_remain = 0;
  798. p_rmt_obj[channel]->sample_cur = NULL;
  799. ESP_LOGD(RMT_TAG, "RMT translator init done");
  800. return ESP_OK;
  801. }
  802. esp_err_t rmt_write_sample(rmt_channel_t channel, const uint8_t *src, size_t src_size, bool wait_tx_done)
  803. {
  804. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  805. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  806. RMT_CHECK(p_rmt_obj[channel]->sample_to_rmt != NULL,RMT_TRANSLATOR_UNINIT_STR, ESP_FAIL);
  807. #if CONFIG_SPIRAM_USE_MALLOC
  808. if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
  809. if( !esp_ptr_internal(src) ) {
  810. ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
  811. return ESP_ERR_INVALID_ARG;
  812. }
  813. }
  814. #endif
  815. size_t item_num = 0;
  816. size_t translated_size = 0;
  817. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  818. const uint32_t item_block_len = RMT.conf_ch[channel].conf0.mem_size * RMT_MEM_ITEM_NUM;
  819. const uint32_t item_sub_len = item_block_len / 2;
  820. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  821. p_rmt->sample_to_rmt((void *)src, p_rmt->tx_buf, src_size, item_block_len, &translated_size, &item_num);
  822. p_rmt->sample_size_remain = src_size - translated_size;
  823. p_rmt->sample_cur = src + translated_size;
  824. rmt_fill_memory(channel, p_rmt->tx_buf, item_num, 0);
  825. if (item_num == item_block_len) {
  826. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  827. p_rmt->tx_data = p_rmt->tx_buf;
  828. p_rmt->tx_offset = 0;
  829. p_rmt->tx_sub_len = item_sub_len;
  830. p_rmt->translator = true;
  831. } else {
  832. RMTMEM.chan[channel].data32[item_num].val = 0;
  833. p_rmt->tx_len_rem = 0;
  834. p_rmt->sample_cur = NULL;
  835. p_rmt->translator = false;
  836. }
  837. rmt_tx_start(channel, true);
  838. p_rmt->wait_done = wait_tx_done;
  839. if (wait_tx_done) {
  840. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  841. xSemaphoreGive(p_rmt->tx_sem);
  842. }
  843. return ESP_OK;
  844. }