test_efuse.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945
  1. /*
  2. * SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdio.h>
  7. #include <ctype.h>
  8. #include <errno.h>
  9. #include <stdlib.h>
  10. #include <stdio.h>
  11. #include "unity.h"
  12. #include "esp_log.h"
  13. #include <string.h>
  14. #include "esp_efuse.h"
  15. #include "esp_efuse_table.h"
  16. #include "esp_efuse_utility.h"
  17. #include "esp_efuse_test_table.h"
  18. #include "bootloader_random.h"
  19. #include "freertos/FreeRTOS.h"
  20. #include "freertos/task.h"
  21. #include "freertos/semphr.h"
  22. #include "test_utils.h"
  23. #include "sdkconfig.h"
  24. #include "esp_rom_efuse.h"
  25. #include "bootloader_common.h"
  26. static const char* TAG = "efuse_test";
  27. static void test_read_blob(void)
  28. {
  29. esp_efuse_utility_update_virt_blocks();
  30. esp_efuse_utility_debug_dump_blocks();
  31. uint8_t mac[6];
  32. ESP_LOGI(TAG, "1. Read MAC address");
  33. memset(mac, 0, sizeof(mac));
  34. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  35. TEST_ASSERT_EQUAL_INT(sizeof(mac) * 8, esp_efuse_get_field_size(ESP_EFUSE_MAC_FACTORY));
  36. ESP_LOGI(TAG, "MAC: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  37. #ifdef CONFIG_IDF_TARGET_ESP32
  38. ESP_LOGI(TAG, "2. Check CRC by MAC");
  39. uint8_t crc;
  40. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY_CRC, &crc, 8));
  41. TEST_ASSERT_EQUAL_HEX8(crc, esp_rom_efuse_mac_address_crc8(mac, sizeof(mac)));
  42. #endif // CONFIG_IDF_TARGET_ESP32
  43. ESP_LOGI(TAG, "3. Test check args");
  44. uint32_t test_var;
  45. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, NULL, 1));
  46. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &test_var, 0));
  47. uint8_t half_byte;
  48. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &half_byte, 4));
  49. TEST_ASSERT_EQUAL_HEX8(mac[0]&0x0F, half_byte);
  50. uint8_t buff[7] = {0x59};
  51. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &buff, sizeof(buff) * 8));
  52. TEST_ASSERT_TRUE_MESSAGE(memcmp(mac, buff, sizeof(mac)) == 0, "Operation read blob is not success");
  53. TEST_ASSERT_EQUAL_HEX8(0, buff[6]);
  54. }
  55. TEST_CASE("efuse test read_field_blob", "[efuse]")
  56. {
  57. test_read_blob();
  58. }
  59. static void test_read_cnt(void)
  60. {
  61. esp_efuse_utility_update_virt_blocks();
  62. esp_efuse_utility_debug_dump_blocks();
  63. ESP_LOGI(TAG, "1. Test check args");
  64. size_t cnt;
  65. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_cnt(ESP_EFUSE_MAC_FACTORY, NULL));
  66. ESP_LOGI(TAG, "2. Read MAC address");
  67. uint8_t mac[6];
  68. memset(mac, 0, sizeof(mac));
  69. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, 48));
  70. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_MAC_FACTORY, &cnt));
  71. size_t cnt_summ = 0;
  72. for (int i = 0; i < sizeof(mac); ++i) {
  73. cnt_summ += __builtin_popcount(mac[i]);
  74. }
  75. TEST_ASSERT_EQUAL_INT(cnt_summ, cnt);
  76. }
  77. TEST_CASE("efuse test read_field_cnt", "[efuse]")
  78. {
  79. test_read_cnt();
  80. }
  81. // If using efuse is real, then turn off writing tests.
  82. #ifdef CONFIG_EFUSE_VIRTUAL
  83. static void test_write_blob(void)
  84. {
  85. esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(EFUSE_BLK1);
  86. esp_efuse_utility_erase_virt_blocks();
  87. esp_efuse_utility_debug_dump_blocks();
  88. ESP_LOGI(TAG, "1. Test check args");
  89. uint16_t test1_len_8 = 0x5FAA;
  90. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_blob(ESP_EFUSE_MAC_FACTORY, &test1_len_8, 0));
  91. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, NULL, 8));
  92. TEST_ASSERT_EQUAL_HEX16(0x5FAA, test1_len_8);
  93. ESP_LOGI(TAG, "2. Test write operation");
  94. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 7));
  95. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 9));
  96. uint16_t val_read1 = 0;
  97. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST1_LEN_8, &val_read1, 8));
  98. TEST_ASSERT_EQUAL_HEX16(test1_len_8&((1 << 7) - 1), val_read1);
  99. uint16_t test1_len_8_hi = test1_len_8 & ~((1 << 7) - 1);
  100. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  101. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8_hi, 8));
  102. } else {
  103. TEST_ESP_ERR(ESP_ERR_CODING, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8_hi, 8));
  104. }
  105. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 8));
  106. val_read1 = 0;
  107. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST1_LEN_8, &val_read1, 16));
  108. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  109. TEST_ASSERT_EQUAL_HEX16(test1_len_8&0x00FF, val_read1);
  110. } else {
  111. TEST_ASSERT_EQUAL_HEX16(test1_len_8&0x007F, val_read1);
  112. }
  113. if (scheme != EFUSE_CODING_SCHEME_NONE) {
  114. esp_efuse_utility_erase_virt_blocks();
  115. ESP_LOGI(TAG, "erase virt blocks");
  116. }
  117. uint16_t test2_len_16 = 0xAA55;
  118. uint32_t val_32 = test2_len_16;
  119. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST2_LEN_16, &val_32, 17));
  120. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST2_LEN_16, &test2_len_16, 16));
  121. uint16_t test_16 = 0;
  122. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST2_LEN_16, &test_16, 16));
  123. TEST_ASSERT_EQUAL_HEX16(test2_len_16, test_16);
  124. ESP_LOGI(TAG, "3. Test field with one bit");
  125. uint8_t test5_len_1;
  126. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  127. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  128. test5_len_1 = 0;
  129. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  130. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  131. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  132. test5_len_1 = 1;
  133. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  134. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  135. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  136. test5_len_1 = 1;
  137. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  138. esp_efuse_utility_debug_dump_blocks();
  139. }
  140. TEST_CASE("efuse test write_field_blob", "[efuse]")
  141. {
  142. test_write_blob();
  143. }
  144. static void test_write_cnt(void)
  145. {
  146. esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(EFUSE_BLK1);
  147. esp_efuse_utility_erase_virt_blocks();
  148. esp_efuse_utility_debug_dump_blocks();
  149. ESP_LOGI(TAG, "1. Test check args");
  150. size_t test3_len_6 = 5;
  151. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(ESP_EFUSE_MAC_FACTORY, 0));
  152. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(NULL, 5));
  153. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 0));
  154. ESP_LOGI(TAG, "2. Test write operation");
  155. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  156. TEST_ASSERT_EQUAL_INT(0, test3_len_6);
  157. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 1));
  158. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  159. TEST_ASSERT_EQUAL_INT(1, test3_len_6);
  160. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  161. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 1));
  162. } else {
  163. esp_efuse_utility_erase_virt_blocks();
  164. ESP_LOGI(TAG, "erase virt blocks");
  165. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 2));
  166. }
  167. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  168. TEST_ASSERT_EQUAL_INT(2, test3_len_6);
  169. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  170. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 3));
  171. } else {
  172. esp_efuse_utility_erase_virt_blocks();
  173. ESP_LOGI(TAG, "erase virt blocks");
  174. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 5));
  175. }
  176. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  177. TEST_ASSERT_EQUAL_INT(5, test3_len_6);
  178. esp_efuse_utility_debug_dump_blocks();
  179. ESP_LOGI(TAG, "3. Test field is full set");
  180. int max_bits = esp_efuse_get_field_size(ESP_EFUSE_TEST4_LEN_182);
  181. size_t test4_len_182;
  182. esp_efuse_utility_debug_dump_blocks();
  183. for (int i = 0; i < max_bits / 26; ++i) {
  184. ESP_LOGD(TAG, "# %d", i);
  185. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  186. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST4_LEN_182, 26));
  187. } else {
  188. esp_efuse_utility_erase_virt_blocks();
  189. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST4_LEN_182, (i + 1) * 26));
  190. }
  191. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST4_LEN_182, &test4_len_182));
  192. esp_efuse_utility_debug_dump_blocks();
  193. TEST_ASSERT_EQUAL_INT((i + 1) * 26, test4_len_182);
  194. }
  195. esp_efuse_utility_debug_dump_blocks();
  196. ESP_LOGI(TAG, "4. Test field ESP_EFUSE_TEST4_LEN_182 is full");
  197. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_write_field_cnt(ESP_EFUSE_TEST4_LEN_182, 1));
  198. ESP_LOGI(TAG, "3. Test field with one bit");
  199. size_t test5_len_1;
  200. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST5_LEN_1, &test5_len_1));
  201. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  202. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  203. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  204. if (scheme != EFUSE_CODING_SCHEME_NONE) {
  205. esp_efuse_utility_erase_virt_blocks();
  206. ESP_LOGI(TAG, "erase virt blocks");
  207. }
  208. test5_len_1 = 1;
  209. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST5_LEN_1, test5_len_1));
  210. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST5_LEN_1, &test5_len_1));
  211. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  212. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  213. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  214. test5_len_1 = 1;
  215. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_write_field_cnt(ESP_EFUSE_TEST5_LEN_1, test5_len_1));
  216. esp_efuse_utility_debug_dump_blocks();
  217. ESP_LOGI(TAG, "4. Test field test2_len_16");
  218. size_t test2_len_16 = 11;
  219. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST2_LEN_16, test2_len_16));
  220. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST2_LEN_16, &test2_len_16));
  221. TEST_ASSERT_EQUAL_HEX16(11, test2_len_16);
  222. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST2_LEN_16, &test2_len_16, 16));
  223. TEST_ASSERT_EQUAL_HEX16(0x07FF, test2_len_16);
  224. esp_efuse_utility_debug_dump_blocks();
  225. }
  226. TEST_CASE("efuse test write_field_cnt", "[efuse]")
  227. {
  228. test_write_cnt();
  229. }
  230. TEST_CASE("efuse test single bit functions", "[efuse]")
  231. {
  232. esp_efuse_utility_erase_virt_blocks();
  233. esp_efuse_utility_debug_dump_blocks();
  234. uint8_t test_bit;
  235. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test_bit, 1));
  236. TEST_ASSERT_EQUAL_HEX8(0, test_bit);
  237. test_bit = esp_efuse_read_field_bit(ESP_EFUSE_TEST5_LEN_1);
  238. TEST_ASSERT_EQUAL_HEX8(0, test_bit);
  239. TEST_ESP_OK(esp_efuse_write_field_bit(ESP_EFUSE_TEST5_LEN_1));
  240. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test_bit, 1));
  241. TEST_ASSERT_EQUAL_HEX8(1, test_bit);
  242. test_bit = esp_efuse_read_field_bit(ESP_EFUSE_TEST5_LEN_1);
  243. TEST_ASSERT_EQUAL_HEX8(1, test_bit);
  244. // Can write the bit again and it's a no-op
  245. TEST_ESP_OK(esp_efuse_write_field_bit(ESP_EFUSE_TEST5_LEN_1));
  246. TEST_ASSERT_EQUAL_HEX8(1, esp_efuse_read_field_bit(ESP_EFUSE_TEST5_LEN_1));
  247. esp_efuse_utility_debug_dump_blocks();
  248. }
  249. void cut_tail_arr(uint8_t *arr, int num_used_bits, size_t count_bits)
  250. {
  251. if ((num_used_bits + count_bits) % 8) {
  252. int start_used_item = (num_used_bits - 1) / 8;
  253. int last_used_item = ((num_used_bits + count_bits) - 1) / 8;
  254. int shift = 0;
  255. int mask = num_used_bits + count_bits;
  256. if (last_used_item == start_used_item) {
  257. shift = (num_used_bits) % 8;
  258. mask = count_bits;
  259. }
  260. arr[last_used_item] &= ((1 << (mask % 8)) - 1) << shift;
  261. }
  262. }
  263. void cut_start_arr(uint8_t *arr, size_t num_used_bits)
  264. {
  265. if (num_used_bits % 8) {
  266. int start_used_item = (num_used_bits - 1) / 8;
  267. arr[start_used_item] &= ~((1 << (num_used_bits % 8)) - 1);
  268. }
  269. }
  270. void get_part_arr(uint8_t *arr_in, uint8_t *arr_out, int num_used_bits, int count_bits)
  271. {
  272. int num_items = esp_efuse_utility_get_number_of_items(num_used_bits + count_bits, 8);
  273. memcpy(arr_out, arr_in, num_items);
  274. memset(arr_out, 0, num_used_bits / 8);
  275. cut_start_arr(arr_out, num_used_bits);
  276. cut_tail_arr(arr_out, num_used_bits, count_bits);
  277. }
  278. void fill_part_arr(uint8_t *arr_in, uint8_t *arr_out, int count_bits)
  279. {
  280. int num_items = esp_efuse_utility_get_number_of_items(count_bits, 8);
  281. memcpy(arr_out, arr_in, num_items);
  282. cut_tail_arr(arr_out, 0, count_bits);
  283. }
  284. // Writes a random array to efuse, then reads and compares it.
  285. void test_blob(const esp_efuse_desc_t* field[], uint8_t *arr_w, uint8_t *arr_r, uint8_t *arr_temp, int arr_size, size_t field_size)
  286. {
  287. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_w, arr_size, ESP_LOG_INFO);
  288. TEST_ESP_OK(esp_efuse_write_field_blob(field, arr_w, field_size));
  289. memset(arr_r, 0, arr_size);
  290. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  291. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_r, arr_size, ESP_LOG_INFO);
  292. esp_efuse_utility_debug_dump_blocks();
  293. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_w, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  294. int count_once = 0;
  295. for (int i = 0; i < arr_size; ++i) {
  296. count_once += __builtin_popcount(arr_w[i]);
  297. }
  298. size_t num_bits_r = 0;
  299. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  300. TEST_ASSERT_EQUAL_INT(count_once, num_bits_r);
  301. size_t num_bits_w = field_size - count_once;
  302. if (num_bits_w == 0) {
  303. esp_efuse_utility_erase_virt_blocks();
  304. num_bits_w = field_size;
  305. }
  306. TEST_ESP_OK(esp_efuse_write_field_cnt(field, num_bits_w));
  307. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  308. esp_efuse_utility_debug_dump_blocks();
  309. TEST_ASSERT_EQUAL_INT(field_size, num_bits_r);
  310. memset(arr_r, 0, arr_size);
  311. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  312. memset(arr_temp, 0xFF, arr_size);
  313. cut_tail_arr(arr_temp, 0, field_size);
  314. esp_efuse_utility_debug_dump_blocks();
  315. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_temp, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  316. }
  317. // Records a random number of bits (as "1") in the efuse field, then reads and compares.
  318. void test_cnt_part(const esp_efuse_desc_t* field[], uint8_t *arr_r, int arr_size, size_t field_size)
  319. {
  320. size_t num_bits_r = 0;
  321. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  322. TEST_ASSERT_EQUAL_INT(0, num_bits_r);
  323. TEST_ESP_OK(esp_efuse_write_field_cnt(field, field_size));
  324. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  325. TEST_ASSERT_EQUAL_INT(field_size, num_bits_r);
  326. esp_efuse_utility_erase_virt_blocks();
  327. int num_bits_summ_r = 0;
  328. int num_bits_w = 0;
  329. while(field_size > num_bits_summ_r) {
  330. num_bits_w = 0;
  331. while(num_bits_w == 0 || (num_bits_summ_r + num_bits_w) > field_size) {
  332. bootloader_random_enable();
  333. bootloader_fill_random(&num_bits_w, 1);
  334. bootloader_random_disable();
  335. num_bits_w = num_bits_w * field_size / 255;
  336. if (num_bits_w != 0 && (num_bits_summ_r + num_bits_w) <= field_size) {
  337. break;
  338. }
  339. }
  340. TEST_ESP_OK(esp_efuse_write_field_cnt(field, num_bits_w));
  341. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  342. num_bits_summ_r += num_bits_w;
  343. TEST_ASSERT_EQUAL_INT(num_bits_summ_r, num_bits_r);
  344. memset(arr_r, 0, arr_size);
  345. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  346. int count_once = 0;
  347. for (int i = 0; i < arr_size; ++i) {
  348. count_once += __builtin_popcount(arr_r[i]);
  349. }
  350. TEST_ASSERT_EQUAL_INT(num_bits_summ_r, count_once);
  351. ESP_LOGI(TAG, "Once bits=%d, step=%d", num_bits_summ_r, num_bits_w);
  352. }
  353. esp_efuse_utility_debug_dump_blocks();
  354. }
  355. // From a random array takes a random number of bits and write to efuse, it repeats until the entire length of the field is written down.
  356. void test_blob_part(const esp_efuse_desc_t* field[], uint8_t *arr_w, uint8_t *arr_r, uint8_t *arr_temp, int arr_size, size_t field_size)
  357. {
  358. esp_efuse_utility_debug_dump_blocks();
  359. int num_bits_summ_r = 0;
  360. int num_bits_w = 0;
  361. memset(arr_w, 0, arr_size);
  362. bootloader_random_enable();
  363. bootloader_fill_random(arr_w, arr_size);
  364. bootloader_random_disable();
  365. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_w, arr_size, ESP_LOG_INFO);
  366. while(field_size > num_bits_summ_r) {
  367. num_bits_w = 0;
  368. while(num_bits_w == 0 || (num_bits_summ_r + num_bits_w) > field_size) {
  369. bootloader_random_enable();
  370. bootloader_fill_random(&num_bits_w, 1);
  371. bootloader_random_disable();
  372. num_bits_w = num_bits_w * field_size / 255;
  373. if (num_bits_w != 0 && (num_bits_summ_r + num_bits_w) <= field_size) {
  374. break;
  375. }
  376. }
  377. ESP_LOGI(TAG, "Summ bits=%d, step=%d", num_bits_summ_r, num_bits_w);
  378. memset(arr_temp, 0, arr_size);
  379. get_part_arr(arr_w, arr_temp, num_bits_summ_r, num_bits_w);
  380. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_temp, arr_size, ESP_LOG_INFO);
  381. TEST_ESP_OK(esp_efuse_write_field_blob(field, arr_temp, field_size));
  382. memset(arr_r, 0, arr_size);
  383. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  384. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_r, arr_size, ESP_LOG_INFO);
  385. esp_efuse_utility_debug_dump_blocks();
  386. num_bits_summ_r += num_bits_w;
  387. memset(arr_temp, 0, arr_size);
  388. fill_part_arr(arr_w, arr_temp, num_bits_summ_r);
  389. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_temp, arr_size, ESP_LOG_INFO);
  390. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_temp, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  391. }
  392. }
  393. void check_efuse_table_test(int cycle)
  394. {
  395. int num_test = 0;
  396. while(1) {
  397. const esp_efuse_desc_t** field;
  398. switch (num_test++) {
  399. case 0: field = ESP_EFUSE_TEST1_LEN_8; break;
  400. case 1: field = ESP_EFUSE_TEST2_LEN_16; break;
  401. case 2: field = ESP_EFUSE_TEST3_LEN_6; break;
  402. case 3: field = ESP_EFUSE_TEST4_LEN_182; break;
  403. case 4: field = ESP_EFUSE_TEST5_LEN_1; break;
  404. case 5: field = ESP_EFUSE_TEST6_LEN_17; break;
  405. default:
  406. return;
  407. break;
  408. }
  409. size_t field_size = esp_efuse_get_field_size(field);
  410. int arr_size = esp_efuse_utility_get_number_of_items(field_size, 8);
  411. uint8_t *arr_w = (uint8_t *) malloc(arr_size);
  412. uint8_t *arr_r = (uint8_t *) malloc(arr_size);
  413. uint8_t *arr_temp = (uint8_t *) malloc(arr_size);
  414. ESP_LOGI(TAG, "Test#%d", num_test);
  415. for (int c = 1; c <= cycle; ++c) {
  416. ESP_LOGI(TAG, "Cycle#%d/%d", c, cycle);
  417. memset(arr_w, 0, arr_size);
  418. bootloader_random_enable();
  419. bootloader_fill_random(arr_w, arr_size);
  420. bootloader_random_disable();
  421. cut_tail_arr(arr_w, 0, field_size);
  422. esp_efuse_utility_erase_virt_blocks();
  423. ESP_LOGI(TAG, "1) blob write/read");
  424. test_blob(field, arr_w, arr_r, arr_temp, arr_size, field_size);
  425. esp_efuse_utility_erase_virt_blocks();
  426. ESP_LOGI(TAG, "2) cnt part write/read");
  427. test_cnt_part(field, arr_r, arr_size, field_size);
  428. esp_efuse_utility_erase_virt_blocks();
  429. ESP_LOGI(TAG, "3) blob part write/read");
  430. test_blob_part(field, arr_w, arr_r, arr_temp, arr_size, field_size);
  431. }
  432. free(arr_temp);
  433. free(arr_r);
  434. free(arr_w);
  435. }
  436. }
  437. TEST_CASE("efuse esp_efuse_table_test", "[efuse]")
  438. {
  439. esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(EFUSE_BLK2);
  440. if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
  441. check_efuse_table_test(2);
  442. } else {
  443. ESP_LOGI(TAG, "This test is applicable only to the EFUSE_CODING_SCHEME_NONE. Skip this test.");
  444. }
  445. }
  446. TEST_CASE("Test esp_efuse_read_block esp_efuse_write_block functions", "[efuse]")
  447. {
  448. int count_useful_reg = 0;
  449. esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(EFUSE_BLK2);
  450. if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
  451. printf("EFUSE_CODING_SCHEME_NONE\n");
  452. count_useful_reg = 8;
  453. }
  454. #if CONFIG_IDF_TARGET_ESP32
  455. if (coding_scheme == EFUSE_CODING_SCHEME_3_4) {
  456. printf("EFUSE_CODING_SCHEME_3_4\n");
  457. count_useful_reg = 6;
  458. } else if (coding_scheme == EFUSE_CODING_SCHEME_REPEAT) {
  459. printf("EFUSE_CODING_SCHEME_REPEAT\n");
  460. count_useful_reg = 4;
  461. }
  462. #else
  463. if (coding_scheme == EFUSE_CODING_SCHEME_RS) {
  464. printf("EFUSE_CODING_SCHEME_RS\n");
  465. count_useful_reg = 8;
  466. }
  467. #endif
  468. esp_efuse_utility_reset();
  469. esp_efuse_utility_erase_virt_blocks();
  470. uint8_t src_key[32] = { 0 };
  471. uint8_t dst_key[32] = { 0 };
  472. int offset_in_bits = 0;
  473. for (int i = 0; i < count_useful_reg * 4; ++i) {
  474. src_key[i] = 0xAB + i;
  475. }
  476. TEST_ESP_OK(esp_efuse_write_block(EFUSE_BLK2, src_key, offset_in_bits, count_useful_reg * 32));
  477. TEST_ESP_OK(esp_efuse_read_block(EFUSE_BLK2, dst_key, offset_in_bits, count_useful_reg * 32));
  478. esp_efuse_utility_debug_dump_blocks();
  479. TEST_ASSERT_EQUAL_HEX8_ARRAY(src_key, dst_key, sizeof(src_key));
  480. esp_efuse_utility_erase_virt_blocks();
  481. memset(src_key, 0, sizeof(src_key));
  482. memset(dst_key, 0, sizeof(dst_key));
  483. offset_in_bits = count_useful_reg * 32 / 2;
  484. for (int i = 0; i < count_useful_reg * 4 / 2; ++i) {
  485. src_key[i] = 0xCD + i;
  486. }
  487. TEST_ESP_OK(esp_efuse_write_block(EFUSE_BLK2, src_key, offset_in_bits, count_useful_reg * 32 / 2));
  488. TEST_ESP_OK(esp_efuse_read_block(EFUSE_BLK2, dst_key, offset_in_bits, count_useful_reg * 32 / 2));
  489. esp_efuse_utility_debug_dump_blocks();
  490. TEST_ASSERT_EQUAL_HEX8_ARRAY(src_key, dst_key, count_useful_reg * 4 / 2);
  491. esp_efuse_utility_erase_virt_blocks();
  492. }
  493. TEST_CASE("Test Bits are not empty. Write operation is forbidden", "[efuse]")
  494. {
  495. esp_efuse_utility_update_virt_blocks();
  496. esp_efuse_utility_debug_dump_blocks();
  497. int count_useful_reg = 0;
  498. uint8_t r_buff[32];
  499. int st_offset = -1;
  500. int num_block;
  501. for (num_block = EFUSE_BLK1; num_block < 4; ++num_block) {
  502. memset(r_buff, 0, sizeof(r_buff));
  503. esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(num_block);
  504. if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
  505. printf("EFUSE_CODING_SCHEME_NONE. The test is not applicable.\n");
  506. count_useful_reg = 8;
  507. return;
  508. }
  509. #if CONFIG_IDF_TARGET_ESP32
  510. if (coding_scheme == EFUSE_CODING_SCHEME_3_4) {
  511. printf("EFUSE_CODING_SCHEME_3_4\n");
  512. count_useful_reg = 6;
  513. } else if (coding_scheme == EFUSE_CODING_SCHEME_REPEAT) {
  514. printf("EFUSE_CODING_SCHEME_REPEAT\n");
  515. count_useful_reg = 4;
  516. }
  517. #else
  518. if (coding_scheme == EFUSE_CODING_SCHEME_RS) {
  519. printf("EFUSE_CODING_SCHEME_RS\n");
  520. if (num_block == EFUSE_BLK1) {
  521. count_useful_reg = 6;
  522. } else {
  523. count_useful_reg = 8;
  524. }
  525. }
  526. #endif
  527. TEST_ESP_OK(esp_efuse_read_block(num_block, r_buff, 0, count_useful_reg * 32));
  528. for (int i = 0; i < count_useful_reg * 4; ++i) {
  529. if (r_buff[i] != 0) {
  530. // found used byte
  531. for (int j = 0; j < 8; ++j) {
  532. if ((r_buff[i] & (1 << j)) == 0) {
  533. // found empty bit into this byte
  534. st_offset = i * 8 + j;
  535. printf("Byte = 0x%02x. offset is = %d\n", r_buff[i], st_offset);
  536. break;
  537. }
  538. }
  539. if (st_offset != -1) {
  540. break;
  541. }
  542. }
  543. }
  544. if (st_offset != -1) {
  545. break;
  546. }
  547. }
  548. if (st_offset != -1) {
  549. // write 1 bit to empty place.
  550. uint8_t val = 1;
  551. TEST_ESP_ERR(ESP_ERR_CODING, esp_efuse_write_block(num_block, &val, st_offset, 1));
  552. } else {
  553. printf("Test skipped. It is not applicable, the device has no written bits.");
  554. }
  555. }
  556. #ifndef CONFIG_FREERTOS_UNICORE
  557. static const int delay_ms = 2000;
  558. static xSemaphoreHandle sema;
  559. static void task1(void* arg)
  560. {
  561. TEST_ESP_OK(esp_efuse_batch_write_begin());
  562. ESP_LOGI(TAG, "Start work in batch mode");
  563. xSemaphoreGive(sema);
  564. vTaskDelay((delay_ms + 100) / portTICK_PERIOD_MS);
  565. ESP_LOGI(TAG, "Finish work in batch mode");
  566. TEST_ESP_OK(esp_efuse_batch_write_cancel());
  567. vTaskDelete(NULL);
  568. }
  569. static void task2(void* arg)
  570. {
  571. xSemaphoreTake(sema, portMAX_DELAY);
  572. uint8_t mac[6];
  573. int64_t t1 = esp_timer_get_time();
  574. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  575. int64_t t2 = esp_timer_get_time();
  576. int diff_ms = (t2 - t1) / 1000;
  577. TEST_ASSERT_GREATER_THAN(delay_ms, diff_ms);
  578. ESP_LOGI(TAG, "read MAC address: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  579. xSemaphoreGive(sema);
  580. vTaskDelete(NULL);
  581. }
  582. static void task3(void* arg)
  583. {
  584. xSemaphoreTake(sema, portMAX_DELAY);
  585. size_t test3_len_6 = 2;
  586. int64_t t1 = esp_timer_get_time();
  587. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, test3_len_6));
  588. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  589. int64_t t2 = esp_timer_get_time();
  590. ESP_LOGI(TAG, "write&read test3_len_6: %d", test3_len_6);
  591. int diff_ms = (t2 - t1) / 1000;
  592. TEST_ASSERT_GREATER_THAN(delay_ms, diff_ms);
  593. TEST_ASSERT_EQUAL_INT(2, test3_len_6);
  594. xSemaphoreGive(sema);
  595. vTaskDelete(NULL);
  596. }
  597. TEST_CASE("Batch mode is thread-safe", "[efuse]")
  598. {
  599. // Batch mode blocks work with efuse on other tasks.
  600. esp_efuse_utility_update_virt_blocks();
  601. esp_efuse_utility_debug_dump_blocks();
  602. sema = xSemaphoreCreateBinary();
  603. printf("\n");
  604. xTaskCreatePinnedToCore(task1, "task1", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
  605. xTaskCreatePinnedToCore(task2, "task2", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
  606. vTaskDelay(3000 / portTICK_PERIOD_MS);
  607. xSemaphoreTake(sema, portMAX_DELAY);
  608. esp_efuse_utility_reset();
  609. esp_efuse_utility_erase_virt_blocks();
  610. printf("\n");
  611. xTaskCreatePinnedToCore(task1, "task1", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
  612. xTaskCreatePinnedToCore(task3, "task3", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
  613. vTaskDelay(3000 / portTICK_PERIOD_MS);
  614. xSemaphoreTake(sema, portMAX_DELAY);
  615. printf("\n");
  616. vSemaphoreDelete(sema);
  617. esp_efuse_utility_reset();
  618. esp_efuse_utility_erase_virt_blocks();
  619. }
  620. #endif // #ifndef CONFIG_FREERTOS_UNICORE
  621. static void test_wp(esp_efuse_block_t blk, const esp_efuse_desc_t* field[])
  622. {
  623. size_t out_cnt;
  624. TEST_ESP_OK(esp_efuse_set_write_protect(blk));
  625. esp_efuse_read_field_cnt(field, &out_cnt);
  626. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  627. }
  628. static void test_rp(esp_efuse_block_t blk, const esp_efuse_desc_t* field[], bool read_first)
  629. {
  630. size_t out_cnt;
  631. if (read_first) {
  632. esp_efuse_read_field_cnt(field, &out_cnt);
  633. TEST_ASSERT_EQUAL_INT(0, out_cnt);
  634. }
  635. TEST_ESP_OK(esp_efuse_set_read_protect(blk));
  636. esp_efuse_read_field_cnt(field, &out_cnt);
  637. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  638. if (read_first) {
  639. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_set_read_protect(blk));
  640. }
  641. }
  642. TEST_CASE("Test a write/read protection", "[efuse]")
  643. {
  644. esp_efuse_utility_reset();
  645. esp_efuse_utility_erase_virt_blocks();
  646. esp_efuse_utility_debug_dump_blocks();
  647. TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, esp_efuse_set_write_protect(EFUSE_BLK0));
  648. TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, esp_efuse_set_read_protect(EFUSE_BLK0));
  649. size_t out_cnt;
  650. esp_efuse_read_field_cnt(ESP_EFUSE_WR_DIS_BLK1, &out_cnt);
  651. TEST_ASSERT_EQUAL_INT(0, out_cnt);
  652. TEST_ESP_OK(esp_efuse_set_write_protect(EFUSE_BLK1));
  653. esp_efuse_read_field_cnt(ESP_EFUSE_WR_DIS_BLK1, &out_cnt);
  654. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  655. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_set_write_protect(EFUSE_BLK1));
  656. #ifdef CONFIG_IDF_TARGET_ESP32
  657. test_wp(EFUSE_BLK2, ESP_EFUSE_WR_DIS_BLK2);
  658. test_wp(EFUSE_BLK3, ESP_EFUSE_WR_DIS_BLK3);
  659. esp_efuse_utility_debug_dump_blocks();
  660. test_rp(EFUSE_BLK1, ESP_EFUSE_RD_DIS_BLK1, true);
  661. test_rp(EFUSE_BLK2, ESP_EFUSE_RD_DIS_BLK2, false);
  662. test_rp(EFUSE_BLK3, ESP_EFUSE_RD_DIS_BLK3, false);
  663. #else
  664. test_wp(EFUSE_BLK2, ESP_EFUSE_WR_DIS_SYS_DATA_PART1);
  665. test_wp(EFUSE_BLK3, ESP_EFUSE_WR_DIS_USER_DATA);
  666. esp_efuse_utility_debug_dump_blocks();
  667. test_rp(EFUSE_BLK4, ESP_EFUSE_RD_DIS_KEY0, true);
  668. test_rp(EFUSE_BLK5, ESP_EFUSE_RD_DIS_KEY1, false);
  669. test_rp(EFUSE_BLK6, ESP_EFUSE_RD_DIS_KEY2, false);
  670. #endif
  671. esp_efuse_utility_debug_dump_blocks();
  672. esp_efuse_utility_reset();
  673. esp_efuse_utility_erase_virt_blocks();
  674. }
  675. #endif // #ifdef CONFIG_EFUSE_VIRTUAL
  676. #ifdef CONFIG_IDF_ENV_FPGA
  677. TEST_CASE("Test a real write (FPGA)", "[efuse]")
  678. {
  679. ESP_LOGI(TAG, "1. Write MAC address");
  680. esp_efuse_utility_debug_dump_blocks();
  681. uint8_t mac[6];
  682. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  683. ESP_LOGI(TAG, "MAC: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  684. uint8_t new_mac[6];
  685. if (mac[0] == 0) {
  686. new_mac[0] = 0x71;
  687. new_mac[1] = 0x62;
  688. new_mac[2] = 0x53;
  689. new_mac[3] = 0x44;
  690. new_mac[4] = 0x35;
  691. new_mac[5] = 0x26;
  692. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_MAC_FACTORY, &new_mac, sizeof(new_mac) * 8));
  693. ESP_LOGI(TAG, "new MAC: %02x:%02x:%02x:%02x:%02x:%02x", new_mac[0], new_mac[1], new_mac[2], new_mac[3], new_mac[4], new_mac[5]);
  694. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  695. TEST_ASSERT_EQUAL_HEX8_ARRAY(new_mac, mac, sizeof(new_mac));
  696. esp_efuse_utility_debug_dump_blocks();
  697. }
  698. #ifndef CONFIG_IDF_TARGET_ESP32
  699. ESP_LOGI(TAG, "2. Write KEY3");
  700. uint8_t key[32] = {0};
  701. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY3, &key, 256));
  702. for (int i = 0; i < sizeof(key); ++i) {
  703. TEST_ASSERT_EQUAL_INT(0, key[i]);
  704. }
  705. uint8_t new_key[32] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
  706. 10, 11, 12, 12, 14, 15, 16, 17, 18, 19,
  707. 20, 21, 22, 22, 24, 25, 26, 27, 28, 29,
  708. 30, 31};
  709. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_KEY3, &new_key, 256));
  710. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY3, &key, 256));
  711. TEST_ASSERT_EQUAL_HEX8_ARRAY(new_key, key, sizeof(key));
  712. esp_efuse_utility_debug_dump_blocks();
  713. ESP_LOGI(TAG, "3. Set a read protection for KEY3");
  714. TEST_ESP_OK(esp_efuse_set_read_protect(EFUSE_BLK7));
  715. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY3, &key, 256));
  716. #ifndef CONFIG_EFUSE_VIRTUAL
  717. TEST_ASSERT_EACH_EQUAL_HEX8(0, key, sizeof(key));
  718. #else
  719. TEST_ASSERT_EQUAL_HEX8_ARRAY(new_key, key, sizeof(key));
  720. #endif // CONFIG_EFUSE_VIRTUAL
  721. esp_efuse_utility_debug_dump_blocks();
  722. #endif // not CONFIG_IDF_TARGET_ESP32
  723. ESP_LOGI(TAG, "4. Write SECURE_VERSION");
  724. int max_bits = esp_efuse_get_field_size(ESP_EFUSE_SECURE_VERSION);
  725. size_t read_sec_version;
  726. esp_efuse_utility_debug_dump_blocks();
  727. for (int i = 0; i < max_bits; ++i) {
  728. ESP_LOGI(TAG, "# %d", i);
  729. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_SECURE_VERSION, 1));
  730. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_SECURE_VERSION, &read_sec_version));
  731. esp_efuse_utility_debug_dump_blocks();
  732. TEST_ASSERT_EQUAL_INT(i + 1, read_sec_version);
  733. }
  734. }
  735. #endif // CONFIG_IDF_ENV_FPGA
  736. TEST_CASE("Test chip_ver_pkg APIs return the same value", "[efuse]")
  737. {
  738. esp_efuse_utility_update_virt_blocks();
  739. TEST_ASSERT_EQUAL_INT(esp_efuse_get_pkg_ver(), bootloader_common_get_chip_ver_pkg());
  740. }
  741. TEST_CASE("Test chip_revision APIs return the same value", "[efuse]")
  742. {
  743. esp_efuse_utility_update_virt_blocks();
  744. TEST_ASSERT_EQUAL_INT(esp_efuse_get_chip_ver(), bootloader_common_get_chip_revision());
  745. }
  746. #ifndef CONFIG_IDF_TARGET_ESP32
  747. #if CONFIG_IDF_ENV_FPGA || CONFIG_EFUSE_VIRTUAL
  748. TEST_CASE("Test writing order is BLK_MAX->BLK0", "[efuse]")
  749. {
  750. uint8_t new_key[32] = {33, 1, 2, 3, 4, 5, 6, 7, 8, 9,
  751. 10, 11, 12, 12, 14, 15, 16, 17, 18, 19,
  752. 20, 21, 22, 22, 24, 25, 26, 27, 28, 29,
  753. 30, 31};
  754. esp_efuse_utility_erase_virt_blocks();
  755. esp_efuse_utility_debug_dump_blocks();
  756. TEST_ESP_OK(esp_efuse_batch_write_begin());
  757. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_KEY4, &new_key, 256));
  758. // If the order of writing blocks is wrong (ex. BLK0 -> BLK_MAX)
  759. // then the write protection bit will be set early and the key was left un-updated.
  760. TEST_ESP_OK(esp_efuse_set_write_protect(EFUSE_BLK_KEY4));
  761. TEST_ESP_OK(esp_efuse_batch_write_commit());
  762. esp_efuse_utility_debug_dump_blocks();
  763. uint8_t key[32] = { 0xEE };
  764. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY4, &key, 256));
  765. TEST_ASSERT_EQUAL_HEX8_ARRAY(new_key, key, sizeof(key));
  766. }
  767. TEST_CASE("Test reading inside of batch mode in a nested way", "[efuse]")
  768. {
  769. uint8_t new_key[32] = {44, 1, 2, 3, 4, 5, 6, 7, 8, 9,
  770. 10, 11, 12, 12, 14, 15, 16, 17, 18, 19,
  771. 20, 21, 22, 22, 24, 25, 26, 27, 28, 29,
  772. 30, 31};
  773. uint8_t key[32] = { 0xEE };
  774. esp_efuse_utility_reset();
  775. esp_efuse_utility_erase_virt_blocks();
  776. esp_efuse_utility_debug_dump_blocks();
  777. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY5, &key, 256));
  778. TEST_ASSERT_EACH_EQUAL_HEX8(0, key, sizeof(key));
  779. TEST_ESP_OK(esp_efuse_batch_write_begin());
  780. TEST_ESP_OK(esp_efuse_batch_write_begin());
  781. TEST_ESP_OK(esp_efuse_batch_write_begin());
  782. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_KEY5, &new_key, 256));
  783. TEST_ESP_OK(esp_efuse_set_write_protect(EFUSE_BLK_KEY5));
  784. ESP_LOGI(TAG, "Reading inside Batch mode, the key was not burn yet and it is empty");
  785. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY5, &key, 256));
  786. TEST_ASSERT_EACH_EQUAL_HEX8(0, key, sizeof(key));
  787. TEST_ESP_OK(esp_efuse_batch_write_commit());
  788. TEST_ESP_OK(esp_efuse_batch_write_commit());
  789. TEST_ESP_OK(esp_efuse_batch_write_commit());
  790. TEST_ESP_OK(esp_efuse_batch_write_begin());
  791. TEST_ESP_OK(esp_efuse_batch_write_begin());
  792. TEST_ESP_OK(esp_efuse_batch_write_begin());
  793. TEST_ESP_OK(esp_efuse_batch_write_begin());
  794. ESP_LOGI(TAG, "Reading inside Batch mode, the key is already set");
  795. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY5, &key, 256));
  796. TEST_ASSERT_EQUAL_HEX8_ARRAY(new_key, key, sizeof(key));
  797. TEST_ESP_OK(esp_efuse_batch_write_commit());
  798. TEST_ESP_OK(esp_efuse_batch_write_commit());
  799. TEST_ESP_OK(esp_efuse_batch_write_commit());
  800. TEST_ESP_OK(esp_efuse_batch_write_commit());
  801. esp_efuse_utility_debug_dump_blocks();
  802. ESP_LOGI(TAG, "Reading inside Batch mode, the key is already set");
  803. TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_efuse_batch_write_commit());
  804. TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_efuse_batch_write_cancel());
  805. TEST_ESP_OK(esp_efuse_batch_write_begin());
  806. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_KEY2, &new_key, 256));
  807. TEST_ESP_OK(esp_efuse_batch_write_commit());
  808. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY2, &key, 256));
  809. TEST_ASSERT_EQUAL_HEX8_ARRAY(new_key, key, sizeof(key));
  810. esp_efuse_utility_debug_dump_blocks();
  811. }
  812. #endif // CONFIG_IDF_ENV_FPGA || CONFIG_EFUSE_VIRTUAL
  813. #endif // not CONFIG_IDF_TARGET_ESP32