pm_impl.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893
  1. // Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <stdbool.h>
  16. #include <string.h>
  17. #include <sys/param.h>
  18. #include "esp_attr.h"
  19. #include "esp_err.h"
  20. #include "esp_pm.h"
  21. #include "esp_log.h"
  22. #include "esp_private/crosscore_int.h"
  23. #include "soc/rtc.h"
  24. #include "hal/cpu_hal.h"
  25. #include "hal/uart_ll.h"
  26. #include "hal/uart_types.h"
  27. #include "freertos/FreeRTOS.h"
  28. #include "freertos/task.h"
  29. #if __XTENSA__
  30. #include "freertos/xtensa_timer.h"
  31. #include "xtensa/core-macros.h"
  32. #endif
  33. #include "esp_private/pm_impl.h"
  34. #include "esp_private/pm_trace.h"
  35. #include "esp_private/esp_timer_private.h"
  36. #include "esp_sleep.h"
  37. #include "sdkconfig.h"
  38. // [refactor-todo] opportunity for further refactor
  39. #if CONFIG_IDF_TARGET_ESP32
  40. #include "esp32/clk.h"
  41. #include "esp32/pm.h"
  42. #include "driver/gpio.h"
  43. #elif CONFIG_IDF_TARGET_ESP32S2
  44. #include "esp32s2/clk.h"
  45. #include "esp32s2/pm.h"
  46. #include "driver/gpio.h"
  47. #elif CONFIG_IDF_TARGET_ESP32S3
  48. #include "esp32s3/clk.h"
  49. #include "esp32s3/pm.h"
  50. #elif CONFIG_IDF_TARGET_ESP32C3
  51. #include "esp32c3/clk.h"
  52. #include "esp32c3/pm.h"
  53. #include "driver/gpio.h"
  54. #endif
  55. #define MHZ (1000000)
  56. #if __XTENSA__
  57. /* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
  58. * for the purpose of detecting a deadlock.
  59. */
  60. #define CCOMPARE_UPDATE_TIMEOUT 1000000
  61. /* When changing CCOMPARE, don't allow changes if the difference is less
  62. * than this. This is to prevent setting CCOMPARE below CCOUNT.
  63. */
  64. #define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
  65. #endif
  66. /* When light sleep is used, wake this number of microseconds earlier than
  67. * the next tick.
  68. */
  69. #define LIGHT_SLEEP_EARLY_WAKEUP_US 100
  70. #if CONFIG_IDF_TARGET_ESP32
  71. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  72. #define REF_CLK_DIV_MIN 10
  73. #define DEFAULT_CPU_FREQ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ
  74. #elif CONFIG_IDF_TARGET_ESP32S2
  75. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  76. #define REF_CLK_DIV_MIN 2
  77. #define DEFAULT_CPU_FREQ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ
  78. #elif CONFIG_IDF_TARGET_ESP32S3
  79. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  80. #define REF_CLK_DIV_MIN 2
  81. #define DEFAULT_CPU_FREQ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ
  82. #elif CONFIG_IDF_TARGET_ESP32C3
  83. #define REF_CLK_DIV_MIN 2
  84. #define DEFAULT_CPU_FREQ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ
  85. #endif
  86. #ifdef CONFIG_PM_PROFILING
  87. #define WITH_PROFILING
  88. #endif
  89. static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
  90. /* The following state variables are protected using s_switch_lock: */
  91. /* Current sleep mode; When switching, contains old mode until switch is complete */
  92. static pm_mode_t s_mode = PM_MODE_CPU_MAX;
  93. /* True when switch is in progress */
  94. static volatile bool s_is_switching;
  95. /* When switch is in progress, this is the mode we are switching into */
  96. static pm_mode_t s_new_mode = PM_MODE_CPU_MAX;
  97. /* Number of times each mode was locked */
  98. static size_t s_mode_lock_counts[PM_MODE_COUNT];
  99. /* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
  100. static uint32_t s_mode_mask;
  101. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  102. #define PERIPH_SKIP_LIGHT_SLEEP_NO 1
  103. /* Indicates if light sleep shoule be skipped by peripherals. */
  104. static skip_light_sleep_cb_t s_periph_skip_light_sleep_cb[PERIPH_SKIP_LIGHT_SLEEP_NO];
  105. /* Indicates if light sleep entry was skipped in vApplicationSleep for given CPU.
  106. * This in turn gets used in IDLE hook to decide if `waiti` needs
  107. * to be invoked or not.
  108. */
  109. static bool s_skipped_light_sleep[portNUM_PROCESSORS];
  110. #if portNUM_PROCESSORS == 2
  111. /* When light sleep is finished on one CPU, it is possible that the other CPU
  112. * will enter light sleep again very soon, before interrupts on the first CPU
  113. * get a chance to run. To avoid such situation, set a flag for the other CPU to
  114. * skip light sleep attempt.
  115. */
  116. static bool s_skip_light_sleep[portNUM_PROCESSORS];
  117. #endif // portNUM_PROCESSORS == 2
  118. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  119. /* A flag indicating that Idle hook has run on a given CPU;
  120. * Next interrupt on the same CPU will take s_rtos_lock_handle.
  121. */
  122. static bool s_core_idle[portNUM_PROCESSORS];
  123. /* When no RTOS tasks are active, these locks are released to allow going into
  124. * a lower power mode. Used by ISR hook and idle hook.
  125. */
  126. static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
  127. /* Lookup table of CPU frequency configs to be used in each mode.
  128. * Initialized by esp_pm_impl_init and modified by esp_pm_configure.
  129. */
  130. static rtc_cpu_freq_config_t s_cpu_freq_by_mode[PM_MODE_COUNT];
  131. /* Whether automatic light sleep is enabled */
  132. static bool s_light_sleep_en = false;
  133. /* When configuration is changed, current frequency may not match the
  134. * newly configured frequency for the current mode. This is an indicator
  135. * to the mode switch code to get the actual current frequency instead of
  136. * relying on the current mode.
  137. */
  138. static bool s_config_changed = false;
  139. #ifdef WITH_PROFILING
  140. /* Time, in microseconds, spent so far in each mode */
  141. static pm_time_t s_time_in_mode[PM_MODE_COUNT];
  142. /* Timestamp, in microseconds, when the mode switch last happened */
  143. static pm_time_t s_last_mode_change_time;
  144. /* User-readable mode names, used by esp_pm_impl_dump_stats */
  145. static const char* s_mode_names[] = {
  146. "SLEEP",
  147. "APB_MIN",
  148. "APB_MAX",
  149. "CPU_MAX"
  150. };
  151. #endif // WITH_PROFILING
  152. #if __XTENSA__
  153. /* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
  154. * Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
  155. */
  156. static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
  157. /* Divider and multiplier used to adjust (ccompare - ccount) duration.
  158. * Only set to non-zero values when switch is in progress.
  159. */
  160. static uint32_t s_ccount_div;
  161. static uint32_t s_ccount_mul;
  162. static void update_ccompare(void);
  163. #endif // __XTENSA__
  164. static const char* TAG = "pm";
  165. static void do_switch(pm_mode_t new_mode);
  166. static void leave_idle(void);
  167. static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
  168. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  169. static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz);
  170. #endif
  171. pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
  172. {
  173. (void) arg;
  174. if (type == ESP_PM_CPU_FREQ_MAX) {
  175. return PM_MODE_CPU_MAX;
  176. } else if (type == ESP_PM_APB_FREQ_MAX) {
  177. return PM_MODE_APB_MAX;
  178. } else if (type == ESP_PM_NO_LIGHT_SLEEP) {
  179. return PM_MODE_APB_MIN;
  180. } else {
  181. // unsupported mode
  182. abort();
  183. }
  184. }
  185. esp_err_t esp_pm_configure(const void* vconfig)
  186. {
  187. #ifndef CONFIG_PM_ENABLE
  188. return ESP_ERR_NOT_SUPPORTED;
  189. #endif
  190. #if CONFIG_IDF_TARGET_ESP32
  191. const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
  192. #elif CONFIG_IDF_TARGET_ESP32S2
  193. const esp_pm_config_esp32s2_t* config = (const esp_pm_config_esp32s2_t*) vconfig;
  194. #elif CONFIG_IDF_TARGET_ESP32S3
  195. const esp_pm_config_esp32s3_t* config = (const esp_pm_config_esp32s3_t*) vconfig;
  196. #elif CONFIG_IDF_TARGET_ESP32C3
  197. const esp_pm_config_esp32c3_t* config = (const esp_pm_config_esp32c3_t*) vconfig;
  198. #endif
  199. #ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  200. if (config->light_sleep_enable) {
  201. return ESP_ERR_NOT_SUPPORTED;
  202. }
  203. #endif
  204. int min_freq_mhz = config->min_freq_mhz;
  205. int max_freq_mhz = config->max_freq_mhz;
  206. if (min_freq_mhz > max_freq_mhz) {
  207. return ESP_ERR_INVALID_ARG;
  208. }
  209. rtc_cpu_freq_config_t freq_config;
  210. if (!rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &freq_config)) {
  211. ESP_LOGW(TAG, "invalid min_freq_mhz value (%d)", min_freq_mhz);
  212. return ESP_ERR_INVALID_ARG;
  213. }
  214. int xtal_freq_mhz = (int) rtc_clk_xtal_freq_get();
  215. if (min_freq_mhz < xtal_freq_mhz && min_freq_mhz * MHZ / REF_CLK_FREQ < REF_CLK_DIV_MIN) {
  216. ESP_LOGW(TAG, "min_freq_mhz should be >= %d", REF_CLK_FREQ * REF_CLK_DIV_MIN / MHZ);
  217. return ESP_ERR_INVALID_ARG;
  218. }
  219. if (!rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &freq_config)) {
  220. ESP_LOGW(TAG, "invalid max_freq_mhz value (%d)", max_freq_mhz);
  221. return ESP_ERR_INVALID_ARG;
  222. }
  223. #if CONFIG_IDF_TARGET_ESP32
  224. int apb_max_freq = max_freq_mhz; /* CPU frequency in APB_MAX mode */
  225. if (max_freq_mhz == 240) {
  226. /* We can't switch between 240 and 80/160 without disabling PLL,
  227. * so use 240MHz CPU frequency when 80MHz APB frequency is requested.
  228. */
  229. apb_max_freq = 240;
  230. } else if (max_freq_mhz == 160 || max_freq_mhz == 80) {
  231. /* Otherwise, can use 80MHz
  232. * CPU frequency when 80MHz APB frequency is requested.
  233. */
  234. apb_max_freq = 80;
  235. }
  236. #else
  237. int apb_max_freq = MIN(max_freq_mhz, 80); /* CPU frequency in APB_MAX mode */
  238. #endif
  239. apb_max_freq = MAX(apb_max_freq, min_freq_mhz);
  240. ESP_LOGI(TAG, "Frequency switching config: "
  241. "CPU_MAX: %d, APB_MAX: %d, APB_MIN: %d, Light sleep: %s",
  242. max_freq_mhz,
  243. apb_max_freq,
  244. min_freq_mhz,
  245. config->light_sleep_enable ? "ENABLED" : "DISABLED");
  246. portENTER_CRITICAL(&s_switch_lock);
  247. bool res __attribute__((unused));
  248. res = rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_CPU_MAX]);
  249. assert(res);
  250. res = rtc_clk_cpu_freq_mhz_to_config(apb_max_freq, &s_cpu_freq_by_mode[PM_MODE_APB_MAX]);
  251. assert(res);
  252. res = rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_APB_MIN]);
  253. assert(res);
  254. s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = s_cpu_freq_by_mode[PM_MODE_APB_MIN];
  255. s_light_sleep_en = config->light_sleep_enable;
  256. s_config_changed = true;
  257. portEXIT_CRITICAL(&s_switch_lock);
  258. #if CONFIG_PM_SLP_DISABLE_GPIO && SOC_GPIO_SUPPORT_SLP_SWITCH
  259. esp_sleep_enable_gpio_switch(config->light_sleep_enable);
  260. #endif
  261. #if CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP && SOC_PM_SUPPORT_CPU_PD
  262. esp_err_t ret = esp_sleep_cpu_pd_low_init(config->light_sleep_enable);
  263. if (config->light_sleep_enable && ret != ESP_OK) {
  264. ESP_LOGW(TAG, "Failed to enable CPU power down during light sleep.");
  265. }
  266. #endif
  267. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  268. if (config->light_sleep_enable) {
  269. esp_pm_light_sleep_default_params_config(min_freq_mhz, max_freq_mhz);
  270. }
  271. #endif
  272. return ESP_OK;
  273. }
  274. esp_err_t esp_pm_get_configuration(void* vconfig)
  275. {
  276. if (vconfig == NULL) {
  277. return ESP_ERR_INVALID_ARG;
  278. }
  279. #if CONFIG_IDF_TARGET_ESP32
  280. esp_pm_config_esp32_t* config = (esp_pm_config_esp32_t*) vconfig;
  281. #elif CONFIG_IDF_TARGET_ESP32S2
  282. esp_pm_config_esp32s2_t* config = (esp_pm_config_esp32s2_t*) vconfig;
  283. #elif CONFIG_IDF_TARGET_ESP32S3
  284. esp_pm_config_esp32s3_t* config = (esp_pm_config_esp32s3_t*) vconfig;
  285. #elif CONFIG_IDF_TARGET_ESP32C3
  286. esp_pm_config_esp32c3_t* config = (esp_pm_config_esp32c3_t*) vconfig;
  287. #endif
  288. portENTER_CRITICAL(&s_switch_lock);
  289. config->light_sleep_enable = s_light_sleep_en;
  290. config->max_freq_mhz = s_cpu_freq_by_mode[PM_MODE_CPU_MAX].freq_mhz;
  291. config->min_freq_mhz = s_cpu_freq_by_mode[PM_MODE_APB_MIN].freq_mhz;
  292. portEXIT_CRITICAL(&s_switch_lock);
  293. return ESP_OK;
  294. }
  295. static pm_mode_t IRAM_ATTR get_lowest_allowed_mode(void)
  296. {
  297. /* TODO: optimize using ffs/clz */
  298. if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
  299. return PM_MODE_CPU_MAX;
  300. } else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
  301. return PM_MODE_APB_MAX;
  302. } else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
  303. return PM_MODE_APB_MIN;
  304. } else {
  305. return PM_MODE_LIGHT_SLEEP;
  306. }
  307. }
  308. void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
  309. pm_mode_switch_t lock_or_unlock, pm_time_t now)
  310. {
  311. bool need_switch = false;
  312. uint32_t mode_mask = BIT(mode);
  313. portENTER_CRITICAL_SAFE(&s_switch_lock);
  314. uint32_t count;
  315. if (lock_or_unlock == MODE_LOCK) {
  316. count = ++s_mode_lock_counts[mode];
  317. } else {
  318. count = s_mode_lock_counts[mode]--;
  319. }
  320. if (count == 1) {
  321. if (lock_or_unlock == MODE_LOCK) {
  322. s_mode_mask |= mode_mask;
  323. } else {
  324. s_mode_mask &= ~mode_mask;
  325. }
  326. need_switch = true;
  327. }
  328. pm_mode_t new_mode = s_mode;
  329. if (need_switch) {
  330. new_mode = get_lowest_allowed_mode();
  331. #ifdef WITH_PROFILING
  332. if (s_last_mode_change_time != 0) {
  333. pm_time_t diff = now - s_last_mode_change_time;
  334. s_time_in_mode[s_mode] += diff;
  335. }
  336. s_last_mode_change_time = now;
  337. #endif // WITH_PROFILING
  338. }
  339. portEXIT_CRITICAL_SAFE(&s_switch_lock);
  340. if (need_switch && new_mode != s_mode) {
  341. do_switch(new_mode);
  342. }
  343. }
  344. /**
  345. * @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
  346. * values on both CPUs.
  347. * @param old_ticks_per_us old CPU frequency
  348. * @param ticks_per_us new CPU frequency
  349. */
  350. static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
  351. {
  352. uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
  353. uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
  354. /* Update APB frequency value used by the timer */
  355. if (old_apb_ticks_per_us != apb_ticks_per_us) {
  356. esp_timer_private_update_apb_freq(apb_ticks_per_us);
  357. }
  358. #if __XTENSA__
  359. #if XT_RTOS_TIMER_INT
  360. /* Calculate new tick divisor */
  361. _xt_tick_divisor = ticks_per_us * MHZ / XT_TICK_PER_SEC;
  362. #endif
  363. int core_id = xPortGetCoreID();
  364. if (s_rtos_lock_handle[core_id] != NULL) {
  365. ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
  366. /* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
  367. * to calculate new CCOMPARE value.
  368. */
  369. s_ccount_div = old_ticks_per_us;
  370. s_ccount_mul = ticks_per_us;
  371. /* Update CCOMPARE value on this CPU */
  372. update_ccompare();
  373. #if portNUM_PROCESSORS == 2
  374. /* Send interrupt to the other CPU to update CCOMPARE value */
  375. int other_core_id = (core_id == 0) ? 1 : 0;
  376. s_need_update_ccompare[other_core_id] = true;
  377. esp_crosscore_int_send_freq_switch(other_core_id);
  378. int timeout = 0;
  379. while (s_need_update_ccompare[other_core_id]) {
  380. if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
  381. assert(false && "failed to update CCOMPARE, possible deadlock");
  382. }
  383. }
  384. #endif // portNUM_PROCESSORS == 2
  385. s_ccount_mul = 0;
  386. s_ccount_div = 0;
  387. ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
  388. }
  389. #endif // __XTENSA__
  390. }
  391. /**
  392. * Perform the switch to new power mode.
  393. * Currently only changes the CPU frequency and adjusts clock dividers.
  394. * No light sleep yet.
  395. * @param new_mode mode to switch to
  396. */
  397. static void IRAM_ATTR do_switch(pm_mode_t new_mode)
  398. {
  399. const int core_id = xPortGetCoreID();
  400. do {
  401. portENTER_CRITICAL_ISR(&s_switch_lock);
  402. if (!s_is_switching) {
  403. break;
  404. }
  405. if (s_new_mode <= new_mode) {
  406. portEXIT_CRITICAL_ISR(&s_switch_lock);
  407. return;
  408. }
  409. #if __XTENSA__
  410. if (s_need_update_ccompare[core_id]) {
  411. s_need_update_ccompare[core_id] = false;
  412. }
  413. #endif
  414. portEXIT_CRITICAL_ISR(&s_switch_lock);
  415. } while (true);
  416. s_new_mode = new_mode;
  417. s_is_switching = true;
  418. bool config_changed = s_config_changed;
  419. s_config_changed = false;
  420. portEXIT_CRITICAL_ISR(&s_switch_lock);
  421. rtc_cpu_freq_config_t new_config = s_cpu_freq_by_mode[new_mode];
  422. rtc_cpu_freq_config_t old_config;
  423. if (!config_changed) {
  424. old_config = s_cpu_freq_by_mode[s_mode];
  425. } else {
  426. rtc_clk_cpu_freq_get_config(&old_config);
  427. }
  428. if (new_config.freq_mhz != old_config.freq_mhz) {
  429. uint32_t old_ticks_per_us = old_config.freq_mhz;
  430. uint32_t new_ticks_per_us = new_config.freq_mhz;
  431. bool switch_down = new_ticks_per_us < old_ticks_per_us;
  432. ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
  433. if (switch_down) {
  434. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  435. }
  436. rtc_clk_cpu_freq_set_config_fast(&new_config);
  437. if (!switch_down) {
  438. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  439. }
  440. ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
  441. }
  442. portENTER_CRITICAL_ISR(&s_switch_lock);
  443. s_mode = new_mode;
  444. s_is_switching = false;
  445. portEXIT_CRITICAL_ISR(&s_switch_lock);
  446. }
  447. #if __XTENSA__
  448. /**
  449. * @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
  450. *
  451. * Adjusts CCOMPARE value so that the interrupt happens at the same time as it
  452. * would happen without the frequency change.
  453. * Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
  454. */
  455. static void IRAM_ATTR update_ccompare(void)
  456. {
  457. uint32_t ccount = cpu_hal_get_cycle_count();
  458. uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
  459. if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
  460. uint32_t diff = ccompare - ccount;
  461. uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
  462. if (diff_scaled < _xt_tick_divisor) {
  463. uint32_t new_ccompare = ccount + diff_scaled;
  464. XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
  465. }
  466. }
  467. }
  468. #endif // __XTENSA__
  469. static void IRAM_ATTR leave_idle(void)
  470. {
  471. int core_id = xPortGetCoreID();
  472. if (s_core_idle[core_id]) {
  473. // TODO: possible optimization: raise frequency here first
  474. esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
  475. s_core_idle[core_id] = false;
  476. }
  477. }
  478. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  479. esp_err_t esp_pm_register_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
  480. {
  481. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  482. if (s_periph_skip_light_sleep_cb[i] == cb) {
  483. return ESP_OK;
  484. } else if (s_periph_skip_light_sleep_cb[i] == NULL) {
  485. s_periph_skip_light_sleep_cb[i] = cb;
  486. return ESP_OK;
  487. }
  488. }
  489. return ESP_ERR_NO_MEM;
  490. }
  491. esp_err_t esp_pm_unregister_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
  492. {
  493. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  494. if (s_periph_skip_light_sleep_cb[i] == cb) {
  495. s_periph_skip_light_sleep_cb[i] = NULL;
  496. return ESP_OK;
  497. }
  498. }
  499. return ESP_ERR_INVALID_STATE;
  500. }
  501. static inline bool IRAM_ATTR periph_should_skip_light_sleep(void)
  502. {
  503. if (s_light_sleep_en) {
  504. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  505. if (s_periph_skip_light_sleep_cb[i]) {
  506. if (s_periph_skip_light_sleep_cb[i]() == true) {
  507. return true;
  508. }
  509. }
  510. }
  511. }
  512. return false;
  513. }
  514. static inline bool IRAM_ATTR should_skip_light_sleep(int core_id)
  515. {
  516. #if portNUM_PROCESSORS == 2
  517. if (s_skip_light_sleep[core_id]) {
  518. s_skip_light_sleep[core_id] = false;
  519. s_skipped_light_sleep[core_id] = true;
  520. return true;
  521. }
  522. #endif // portNUM_PROCESSORS == 2
  523. if (s_mode != PM_MODE_LIGHT_SLEEP || s_is_switching || periph_should_skip_light_sleep()) {
  524. s_skipped_light_sleep[core_id] = true;
  525. } else {
  526. s_skipped_light_sleep[core_id] = false;
  527. }
  528. return s_skipped_light_sleep[core_id];
  529. }
  530. static inline void IRAM_ATTR other_core_should_skip_light_sleep(int core_id)
  531. {
  532. #if portNUM_PROCESSORS == 2
  533. s_skip_light_sleep[!core_id] = true;
  534. #endif
  535. }
  536. void IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
  537. {
  538. portENTER_CRITICAL(&s_switch_lock);
  539. int core_id = xPortGetCoreID();
  540. if (!should_skip_light_sleep(core_id)) {
  541. /* Calculate how much we can sleep */
  542. int64_t next_esp_timer_alarm = esp_timer_get_next_alarm();
  543. int64_t now = esp_timer_get_time();
  544. int64_t time_until_next_alarm = next_esp_timer_alarm - now;
  545. int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
  546. int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
  547. if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
  548. esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
  549. #ifdef CONFIG_PM_TRACE
  550. /* to force tracing GPIOs to keep state */
  551. esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
  552. #endif
  553. /* Enter sleep */
  554. ESP_PM_TRACE_ENTER(SLEEP, core_id);
  555. int64_t sleep_start = esp_timer_get_time();
  556. esp_light_sleep_start();
  557. int64_t slept_us = esp_timer_get_time() - sleep_start;
  558. ESP_PM_TRACE_EXIT(SLEEP, core_id);
  559. uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
  560. if (slept_ticks > 0) {
  561. /* Adjust RTOS tick count based on the amount of time spent in sleep */
  562. vTaskStepTick(slept_ticks);
  563. #if __XTENSA__
  564. /* Trigger tick interrupt, since sleep time was longer
  565. * than portTICK_PERIOD_MS. Note that setting INTSET does not
  566. * work for timer interrupt, and changing CCOMPARE would clear
  567. * the interrupt flag.
  568. */
  569. cpu_hal_set_cycle_count(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
  570. while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
  571. ;
  572. }
  573. #elif __riscv
  574. portYIELD_WITHIN_API();
  575. #endif
  576. }
  577. other_core_should_skip_light_sleep(core_id);
  578. }
  579. }
  580. portEXIT_CRITICAL(&s_switch_lock);
  581. }
  582. #endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
  583. #ifdef WITH_PROFILING
  584. void esp_pm_impl_dump_stats(FILE* out)
  585. {
  586. pm_time_t time_in_mode[PM_MODE_COUNT];
  587. portENTER_CRITICAL_ISR(&s_switch_lock);
  588. memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
  589. pm_time_t last_mode_change_time = s_last_mode_change_time;
  590. pm_mode_t cur_mode = s_mode;
  591. pm_time_t now = pm_get_time();
  592. portEXIT_CRITICAL_ISR(&s_switch_lock);
  593. time_in_mode[cur_mode] += now - last_mode_change_time;
  594. fprintf(out, "\nMode stats:\n");
  595. fprintf(out, "%-8s %-10s %-10s %-10s\n", "Mode", "CPU_freq", "Time(us)", "Time(%)");
  596. for (int i = 0; i < PM_MODE_COUNT; ++i) {
  597. if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
  598. /* don't display light sleep mode if it's not enabled */
  599. continue;
  600. }
  601. fprintf(out, "%-8s %-3dM%-7s %-10lld %-2d%%\n",
  602. s_mode_names[i],
  603. s_cpu_freq_by_mode[i].freq_mhz,
  604. "", //Empty space to align columns
  605. time_in_mode[i],
  606. (int) (time_in_mode[i] * 100 / now));
  607. }
  608. }
  609. #endif // WITH_PROFILING
  610. int esp_pm_impl_get_cpu_freq(pm_mode_t mode)
  611. {
  612. int freq_mhz;
  613. if (mode >= PM_MODE_LIGHT_SLEEP && mode < PM_MODE_COUNT) {
  614. portENTER_CRITICAL(&s_switch_lock);
  615. freq_mhz = s_cpu_freq_by_mode[mode].freq_mhz;
  616. portEXIT_CRITICAL(&s_switch_lock);
  617. } else {
  618. abort();
  619. }
  620. return freq_mhz;
  621. }
  622. void esp_pm_impl_init(void)
  623. {
  624. #if defined(CONFIG_ESP_CONSOLE_UART)
  625. //This clock source should be a source which won't be affected by DFS
  626. uint32_t clk_source;
  627. #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
  628. clk_source = UART_SCLK_REF_TICK;
  629. #else
  630. clk_source = UART_SCLK_XTAL;
  631. #endif
  632. while(!uart_ll_is_tx_idle(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM)));
  633. /* When DFS is enabled, override system setting and use REFTICK as UART clock source */
  634. uart_ll_set_sclk(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), clk_source);
  635. uart_ll_set_baudrate(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), CONFIG_ESP_CONSOLE_UART_BAUDRATE);
  636. #endif // CONFIG_ESP_CONSOLE_UART
  637. #ifdef CONFIG_PM_TRACE
  638. esp_pm_trace_init();
  639. #endif
  640. #if CONFIG_PM_SLP_DISABLE_GPIO && SOC_GPIO_SUPPORT_SLP_SWITCH
  641. esp_sleep_config_gpio_isolate();
  642. #endif
  643. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
  644. &s_rtos_lock_handle[0]));
  645. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
  646. #if portNUM_PROCESSORS == 2
  647. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
  648. &s_rtos_lock_handle[1]));
  649. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
  650. #endif // portNUM_PROCESSORS == 2
  651. /* Configure all modes to use the default CPU frequency.
  652. * This will be modified later by a call to esp_pm_configure.
  653. */
  654. rtc_cpu_freq_config_t default_config;
  655. if (!rtc_clk_cpu_freq_mhz_to_config(DEFAULT_CPU_FREQ, &default_config)) {
  656. assert(false && "unsupported frequency");
  657. }
  658. for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
  659. s_cpu_freq_by_mode[i] = default_config;
  660. }
  661. #ifdef CONFIG_PM_DFS_INIT_AUTO
  662. int xtal_freq = (int) rtc_clk_xtal_freq_get();
  663. #if CONFIG_IDF_TARGET_ESP32
  664. esp_pm_config_esp32_t cfg = {
  665. #elif CONFIG_IDF_TARGET_ESP32S2
  666. esp_pm_config_esp32s2_t cfg = {
  667. #elif CONFIG_IDF_TARGET_ESP32S3
  668. esp_pm_config_esp32s3_t cfg = {
  669. #elif CONFIG_IDF_TARGET_ESP32C3
  670. esp_pm_config_esp32c3_t cfg = {
  671. #endif
  672. .max_freq_mhz = DEFAULT_CPU_FREQ,
  673. .min_freq_mhz = xtal_freq,
  674. };
  675. esp_pm_configure(&cfg);
  676. #endif //CONFIG_PM_DFS_INIT_AUTO
  677. }
  678. void esp_pm_impl_idle_hook(void)
  679. {
  680. int core_id = xPortGetCoreID();
  681. uint32_t state = portENTER_CRITICAL_NESTED();
  682. if (!s_core_idle[core_id]
  683. #ifdef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  684. && !periph_should_skip_light_sleep()
  685. #endif
  686. ) {
  687. esp_pm_lock_release(s_rtos_lock_handle[core_id]);
  688. s_core_idle[core_id] = true;
  689. }
  690. portEXIT_CRITICAL_NESTED(state);
  691. ESP_PM_TRACE_ENTER(IDLE, core_id);
  692. }
  693. void IRAM_ATTR esp_pm_impl_isr_hook(void)
  694. {
  695. int core_id = xPortGetCoreID();
  696. ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
  697. /* Prevent higher level interrupts (than the one this function was called from)
  698. * from happening in this section, since they will also call into esp_pm_impl_isr_hook.
  699. */
  700. uint32_t state = portENTER_CRITICAL_NESTED();
  701. #if __XTENSA__ && (portNUM_PROCESSORS == 2)
  702. if (s_need_update_ccompare[core_id]) {
  703. update_ccompare();
  704. s_need_update_ccompare[core_id] = false;
  705. } else {
  706. leave_idle();
  707. }
  708. #else
  709. leave_idle();
  710. #endif // portNUM_PROCESSORS == 2
  711. portEXIT_CRITICAL_NESTED(state);
  712. ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
  713. }
  714. void esp_pm_impl_waiti(void)
  715. {
  716. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  717. int core_id = xPortGetCoreID();
  718. if (s_skipped_light_sleep[core_id]) {
  719. cpu_hal_waiti();
  720. /* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id]
  721. * is now taken. However since we are back to idle task, we can release
  722. * the lock so that vApplicationSleep can attempt to enter light sleep.
  723. */
  724. esp_pm_impl_idle_hook();
  725. s_skipped_light_sleep[core_id] = false;
  726. }
  727. #else
  728. cpu_hal_waiti();
  729. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  730. }
  731. #define PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO 1
  732. /* Inform peripherals of light sleep wakeup overhead time */
  733. static inform_out_light_sleep_overhead_cb_t s_periph_inform_out_light_sleep_overhead_cb[PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO];
  734. esp_err_t esp_pm_register_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
  735. {
  736. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  737. if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
  738. return ESP_OK;
  739. } else if (s_periph_inform_out_light_sleep_overhead_cb[i] == NULL) {
  740. s_periph_inform_out_light_sleep_overhead_cb[i] = cb;
  741. return ESP_OK;
  742. }
  743. }
  744. return ESP_ERR_NO_MEM;
  745. }
  746. esp_err_t esp_pm_unregister_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
  747. {
  748. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  749. if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
  750. s_periph_inform_out_light_sleep_overhead_cb[i] = NULL;
  751. return ESP_OK;
  752. }
  753. }
  754. return ESP_ERR_INVALID_STATE;
  755. }
  756. void periph_inform_out_light_sleep_overhead(uint32_t out_light_sleep_time)
  757. {
  758. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  759. if (s_periph_inform_out_light_sleep_overhead_cb[i]) {
  760. s_periph_inform_out_light_sleep_overhead_cb[i](out_light_sleep_time);
  761. }
  762. }
  763. }
  764. static update_light_sleep_default_params_config_cb_t s_light_sleep_default_params_config_cb = NULL;
  765. void esp_pm_register_light_sleep_default_params_config_callback(update_light_sleep_default_params_config_cb_t cb)
  766. {
  767. if (s_light_sleep_default_params_config_cb == NULL) {
  768. s_light_sleep_default_params_config_cb = cb;
  769. }
  770. }
  771. void esp_pm_unregister_light_sleep_default_params_config_callback(void)
  772. {
  773. if (s_light_sleep_default_params_config_cb) {
  774. s_light_sleep_default_params_config_cb = NULL;
  775. }
  776. }
  777. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  778. static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz)
  779. {
  780. if (s_light_sleep_default_params_config_cb) {
  781. (*s_light_sleep_default_params_config_cb)(min_freq_mhz, max_freq_mhz);
  782. }
  783. }
  784. #endif