stdatomic.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. // Copyright 2015-2021 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. //replacement for gcc built-in functions
  15. #include "sdkconfig.h"
  16. #include <stdbool.h>
  17. #include <stdint.h>
  18. #include "soc/soc_caps.h"
  19. #include "freertos/FreeRTOS.h"
  20. #ifdef __XTENSA__
  21. #include "xtensa/config/core-isa.h"
  22. #ifndef XCHAL_HAVE_S32C1I
  23. #error "XCHAL_HAVE_S32C1I not defined, include correct header!"
  24. #endif
  25. #define HAS_ATOMICS_32 (XCHAL_HAVE_S32C1I == 1)
  26. // no 64-bit atomics on Xtensa
  27. #define HAS_ATOMICS_64 0
  28. #else // RISCV
  29. // GCC toolchain will define this pre-processor if "A" extension is supported
  30. #ifndef __riscv_atomic
  31. #define __riscv_atomic 0
  32. #endif
  33. #define HAS_ATOMICS_32 (__riscv_atomic == 1)
  34. #define HAS_ATOMICS_64 ((__riscv_atomic == 1) && (__riscv_xlen == 64))
  35. #endif // (__XTENSA__, __riscv)
  36. #if SOC_CPU_CORES_NUM == 1
  37. // Single core SoC: atomics can be implemented using portENTER_CRITICAL_NESTED
  38. // and portEXIT_CRITICAL_NESTED, which disable and enable interrupts.
  39. #define _ATOMIC_ENTER_CRITICAL() ({ \
  40. unsigned state = portENTER_CRITICAL_NESTED(); \
  41. state; \
  42. })
  43. #define _ATOMIC_EXIT_CRITICAL(state) do { \
  44. portEXIT_CRITICAL_NESTED(state); \
  45. } while (0)
  46. #else // SOC_CPU_CORES_NUM
  47. _Static_assert(HAS_ATOMICS_32, "32-bit atomics should be supported if SOC_CPU_CORES_NUM > 1");
  48. // Only need to implement 64-bit atomics here. Use a single global portMUX_TYPE spinlock
  49. // to emulate the atomics.
  50. static portMUX_TYPE s_atomic_lock = portMUX_INITIALIZER_UNLOCKED;
  51. // Return value is not used but kept for compatibility with the single-core version above.
  52. #define _ATOMIC_ENTER_CRITICAL() ({ \
  53. portENTER_CRITICAL_SAFE(&s_atomic_lock); \
  54. 0; \
  55. })
  56. #define _ATOMIC_EXIT_CRITICAL(state) do { \
  57. (void) (state); \
  58. portEXIT_CRITICAL_SAFE(&s_atomic_lock); \
  59. } while(0)
  60. #endif // SOC_CPU_CORES_NUM
  61. #define ATOMIC_LOAD(n, type) type __atomic_load_ ## n (const type* mem, int memorder) \
  62. { \
  63. unsigned state = _ATOMIC_ENTER_CRITICAL(); \
  64. type ret = *mem; \
  65. _ATOMIC_EXIT_CRITICAL(state); \
  66. return ret; \
  67. }
  68. #define ATOMIC_STORE(n, type) void __atomic_store_ ## n (type* mem, type val, int memorder) \
  69. { \
  70. unsigned state = _ATOMIC_ENTER_CRITICAL(); \
  71. *mem = val; \
  72. _ATOMIC_EXIT_CRITICAL(state); \
  73. }
  74. #define ATOMIC_EXCHANGE(n, type) type __atomic_exchange_ ## n (type* mem, type val, int memorder) \
  75. { \
  76. unsigned state = _ATOMIC_ENTER_CRITICAL(); \
  77. type ret = *mem; \
  78. *mem = val; \
  79. _ATOMIC_EXIT_CRITICAL(state); \
  80. return ret; \
  81. }
  82. #define CMP_EXCHANGE(n, type) bool __atomic_compare_exchange_ ## n (type* mem, type* expect, type desired, bool weak, int success, int failure) \
  83. { \
  84. bool ret = false; \
  85. unsigned state = _ATOMIC_ENTER_CRITICAL(); \
  86. if (*mem == *expect) { \
  87. ret = true; \
  88. *mem = desired; \
  89. } else { \
  90. *expect = *mem; \
  91. } \
  92. _ATOMIC_EXIT_CRITICAL(state); \
  93. return ret; \
  94. }
  95. #define FETCH_ADD(n, type) type __atomic_fetch_add_ ## n (type* ptr, type value, int memorder) \
  96. { \
  97. unsigned state = _ATOMIC_ENTER_CRITICAL(); \
  98. type ret = *ptr; \
  99. *ptr = *ptr + value; \
  100. _ATOMIC_EXIT_CRITICAL(state); \
  101. return ret; \
  102. }
  103. #define FETCH_SUB(n, type) type __atomic_fetch_sub_ ## n (type* ptr, type value, int memorder) \
  104. { \
  105. unsigned state = _ATOMIC_ENTER_CRITICAL(); \
  106. type ret = *ptr; \
  107. *ptr = *ptr - value; \
  108. _ATOMIC_EXIT_CRITICAL(state); \
  109. return ret; \
  110. }
  111. #define FETCH_AND(n, type) type __atomic_fetch_and_ ## n (type* ptr, type value, int memorder) \
  112. { \
  113. unsigned state = _ATOMIC_ENTER_CRITICAL(); \
  114. type ret = *ptr; \
  115. *ptr = *ptr & value; \
  116. _ATOMIC_EXIT_CRITICAL(state); \
  117. return ret; \
  118. }
  119. #define FETCH_OR(n, type) type __atomic_fetch_or_ ## n (type* ptr, type value, int memorder) \
  120. { \
  121. unsigned state = _ATOMIC_ENTER_CRITICAL(); \
  122. type ret = *ptr; \
  123. *ptr = *ptr | value; \
  124. _ATOMIC_EXIT_CRITICAL(state); \
  125. return ret; \
  126. }
  127. #define FETCH_XOR(n, type) type __atomic_fetch_xor_ ## n (type* ptr, type value, int memorder) \
  128. { \
  129. unsigned state = _ATOMIC_ENTER_CRITICAL(); \
  130. type ret = *ptr; \
  131. *ptr = *ptr ^ value; \
  132. _ATOMIC_EXIT_CRITICAL(state); \
  133. return ret; \
  134. }
  135. #define SYNC_FETCH_OP(op, n, type) type __sync_fetch_and_ ## op ##_ ## n (type* ptr, type value) \
  136. { \
  137. return __atomic_fetch_ ## op ##_ ## n (ptr, value, __ATOMIC_SEQ_CST); \
  138. }
  139. #define SYNC_BOOL_CMP_EXCHANGE(n, type) bool __sync_bool_compare_and_swap_ ## n (type *ptr, type oldval, type newval) \
  140. { \
  141. bool ret = false; \
  142. unsigned state = _ATOMIC_ENTER_CRITICAL(); \
  143. if (*ptr == oldval) { \
  144. *ptr = newval; \
  145. ret = true; \
  146. } \
  147. _ATOMIC_EXIT_CRITICAL(state); \
  148. return ret; \
  149. }
  150. #define SYNC_VAL_CMP_EXCHANGE(n, type) type __sync_val_compare_and_swap_ ## n (type *ptr, type oldval, type newval) \
  151. { \
  152. unsigned state = _ATOMIC_ENTER_CRITICAL(); \
  153. type ret = *ptr; \
  154. if (*ptr == oldval) { \
  155. *ptr = newval; \
  156. } \
  157. _ATOMIC_EXIT_CRITICAL(state); \
  158. return ret; \
  159. }
  160. #if !HAS_ATOMICS_32
  161. ATOMIC_EXCHANGE(1, uint8_t)
  162. ATOMIC_EXCHANGE(2, uint16_t)
  163. ATOMIC_EXCHANGE(4, uint32_t)
  164. CMP_EXCHANGE(1, uint8_t)
  165. CMP_EXCHANGE(2, uint16_t)
  166. CMP_EXCHANGE(4, uint32_t)
  167. FETCH_ADD(1, uint8_t)
  168. FETCH_ADD(2, uint16_t)
  169. FETCH_ADD(4, uint32_t)
  170. FETCH_SUB(1, uint8_t)
  171. FETCH_SUB(2, uint16_t)
  172. FETCH_SUB(4, uint32_t)
  173. FETCH_AND(1, uint8_t)
  174. FETCH_AND(2, uint16_t)
  175. FETCH_AND(4, uint32_t)
  176. FETCH_OR(1, uint8_t)
  177. FETCH_OR(2, uint16_t)
  178. FETCH_OR(4, uint32_t)
  179. FETCH_XOR(1, uint8_t)
  180. FETCH_XOR(2, uint16_t)
  181. FETCH_XOR(4, uint32_t)
  182. SYNC_FETCH_OP(add, 1, uint8_t)
  183. SYNC_FETCH_OP(add, 2, uint16_t)
  184. SYNC_FETCH_OP(add, 4, uint32_t)
  185. SYNC_FETCH_OP(sub, 1, uint8_t)
  186. SYNC_FETCH_OP(sub, 2, uint16_t)
  187. SYNC_FETCH_OP(sub, 4, uint32_t)
  188. SYNC_FETCH_OP(and, 1, uint8_t)
  189. SYNC_FETCH_OP(and, 2, uint16_t)
  190. SYNC_FETCH_OP(and, 4, uint32_t)
  191. SYNC_FETCH_OP(or, 1, uint8_t)
  192. SYNC_FETCH_OP(or, 2, uint16_t)
  193. SYNC_FETCH_OP(or, 4, uint32_t)
  194. SYNC_FETCH_OP(xor, 1, uint8_t)
  195. SYNC_FETCH_OP(xor, 2, uint16_t)
  196. SYNC_FETCH_OP(xor, 4, uint32_t)
  197. SYNC_BOOL_CMP_EXCHANGE(1, uint8_t)
  198. SYNC_BOOL_CMP_EXCHANGE(2, uint16_t)
  199. SYNC_BOOL_CMP_EXCHANGE(4, uint32_t)
  200. SYNC_VAL_CMP_EXCHANGE(1, uint8_t)
  201. SYNC_VAL_CMP_EXCHANGE(2, uint16_t)
  202. SYNC_VAL_CMP_EXCHANGE(4, uint32_t)
  203. #endif // !HAS_ATOMICS_32
  204. #if !HAS_ATOMICS_64
  205. ATOMIC_LOAD(8, uint64_t)
  206. ATOMIC_STORE(8, uint64_t)
  207. ATOMIC_EXCHANGE(8, uint64_t)
  208. CMP_EXCHANGE(8, uint64_t)
  209. FETCH_ADD(8, uint64_t)
  210. FETCH_SUB(8, uint64_t)
  211. FETCH_AND(8, uint64_t)
  212. FETCH_OR(8, uint64_t)
  213. FETCH_XOR(8, uint64_t)
  214. SYNC_FETCH_OP(add, 8, uint64_t)
  215. SYNC_FETCH_OP(sub, 8, uint64_t)
  216. SYNC_FETCH_OP(and, 8, uint64_t)
  217. SYNC_FETCH_OP(or, 8, uint64_t)
  218. SYNC_FETCH_OP(xor, 8, uint64_t)
  219. SYNC_BOOL_CMP_EXCHANGE(8, uint64_t)
  220. SYNC_VAL_CMP_EXCHANGE(8, uint64_t)
  221. #endif // !HAS_ATOMICS_64