test_pm.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include <time.h>
  4. #include <sys/time.h>
  5. #include <sys/param.h>
  6. #include "unity.h"
  7. #include "esp_pm.h"
  8. #include "esp_sleep.h"
  9. #include "freertos/FreeRTOS.h"
  10. #include "freertos/task.h"
  11. #include "freertos/semphr.h"
  12. #include "esp_log.h"
  13. #include "driver/gptimer.h"
  14. #include "driver/rtc_io.h"
  15. #include "soc/rtc.h"
  16. #include "esp_private/gptimer.h"
  17. #include "soc/rtc_periph.h"
  18. #include "esp_rom_sys.h"
  19. #include "esp_private/esp_clk.h"
  20. #include "sdkconfig.h"
  21. #if CONFIG_IDF_TARGET_ESP32
  22. #include "esp32/ulp.h"
  23. #elif CONFIG_IDF_TARGET_ESP32S2
  24. #include "esp32s2/ulp.h"
  25. #elif CONFIG_IDF_TARGET_ESP32S3
  26. #include "esp32s3/ulp.h"
  27. #endif
  28. TEST_CASE("Can dump power management lock stats", "[pm]")
  29. {
  30. esp_pm_dump_locks(stdout);
  31. }
  32. #ifdef CONFIG_PM_ENABLE
  33. static void switch_freq(int mhz)
  34. {
  35. int xtal_freq = rtc_clk_xtal_freq_get();
  36. #if CONFIG_IDF_TARGET_ESP32
  37. esp_pm_config_esp32_t pm_config = {
  38. #elif CONFIG_IDF_TARGET_ESP32S2
  39. esp_pm_config_esp32s2_t pm_config = {
  40. #elif CONFIG_IDF_TARGET_ESP32S3
  41. esp_pm_config_esp32s3_t pm_config = {
  42. #elif CONFIG_IDF_TARGET_ESP32C3
  43. esp_pm_config_esp32c3_t pm_config = {
  44. #elif CONFIG_IDF_TARGET_ESP32H2
  45. esp_pm_config_esp32h2_t pm_config = {
  46. #endif
  47. .max_freq_mhz = mhz,
  48. .min_freq_mhz = MIN(mhz, xtal_freq),
  49. };
  50. ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
  51. printf("Waiting for frequency to be set to %d MHz...\n", mhz);
  52. while (esp_clk_cpu_freq() / MHZ != mhz)
  53. {
  54. vTaskDelay(pdMS_TO_TICKS(200));
  55. printf("Frequency is %d MHz\n", esp_clk_cpu_freq() / MHZ);
  56. }
  57. }
  58. #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
  59. static const int test_freqs[] = {40, 160, 80, 40, 80, 10, 80, 20, 40};
  60. #else
  61. static const int test_freqs[] = {240, 40, 160, 240, 80, 40, 240, 40, 80, 10, 80, 20, 40};
  62. #endif
  63. TEST_CASE("Can switch frequency using esp_pm_configure", "[pm]")
  64. {
  65. int orig_freq_mhz = esp_clk_cpu_freq() / MHZ;
  66. for (int i = 0; i < sizeof(test_freqs) / sizeof(int); i++) {
  67. switch_freq(test_freqs[i]);
  68. }
  69. switch_freq(orig_freq_mhz);
  70. }
  71. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  72. static void light_sleep_enable(void)
  73. {
  74. int cur_freq_mhz = esp_clk_cpu_freq() / MHZ;
  75. int xtal_freq = (int) rtc_clk_xtal_freq_get();
  76. #if CONFIG_IDF_TARGET_ESP32
  77. esp_pm_config_esp32_t pm_config = {
  78. #elif CONFIG_IDF_TARGET_ESP32S2
  79. esp_pm_config_esp32s2_t pm_config = {
  80. #elif CONFIG_IDF_TARGET_ESP32S3
  81. esp_pm_config_esp32s3_t pm_config = {
  82. #elif CONFIG_IDF_TARGET_ESP32C3
  83. esp_pm_config_esp32c3_t pm_config = {
  84. #elif CONFIG_IDF_TARGET_ESP32H2
  85. esp_pm_config_esp32h2_t pm_config = {
  86. #endif
  87. .max_freq_mhz = cur_freq_mhz,
  88. .min_freq_mhz = xtal_freq,
  89. .light_sleep_enable = true
  90. };
  91. ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
  92. }
  93. static void light_sleep_disable(void)
  94. {
  95. int cur_freq_mhz = esp_clk_cpu_freq() / MHZ;
  96. #if CONFIG_IDF_TARGET_ESP32
  97. esp_pm_config_esp32_t pm_config = {
  98. #elif CONFIG_IDF_TARGET_ESP32S2
  99. esp_pm_config_esp32s2_t pm_config = {
  100. #elif CONFIG_IDF_TARGET_ESP32S3
  101. esp_pm_config_esp32s3_t pm_config = {
  102. #elif CONFIG_IDF_TARGET_ESP32C3
  103. esp_pm_config_esp32c3_t pm_config = {
  104. #elif CONFIG_IDF_TARGET_ESP32H2
  105. esp_pm_config_esp32h2_t pm_config = {
  106. #endif
  107. .max_freq_mhz = cur_freq_mhz,
  108. .min_freq_mhz = cur_freq_mhz,
  109. };
  110. ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
  111. }
  112. TEST_CASE("Automatic light occurs when tasks are suspended", "[pm]")
  113. {
  114. gptimer_handle_t gptimer = NULL;
  115. /* To figure out if light sleep takes place, use GPTimer
  116. * It will stop working while in light sleep.
  117. */
  118. gptimer_config_t config = {
  119. .clk_src = GPTIMER_CLK_SRC_APB,
  120. .direction = GPTIMER_COUNT_UP,
  121. .resolution_hz = 1000000, /* 1 us per tick */
  122. };
  123. TEST_ESP_OK(gptimer_new_timer(&config, &gptimer));
  124. TEST_ESP_OK(gptimer_start(gptimer));
  125. // if GPTimer is clocked from APB, when PM is enabled, the driver will acquire the PM lock
  126. // causing the auto light sleep doesn't take effect
  127. // so we manually release the lock here
  128. esp_pm_lock_handle_t gptimer_pm_lock;
  129. TEST_ESP_OK(gptimer_get_pm_lock(gptimer, &gptimer_pm_lock));
  130. TEST_ESP_OK(esp_pm_lock_release(gptimer_pm_lock));
  131. light_sleep_enable();
  132. for (int ticks_to_delay = CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP;
  133. ticks_to_delay < CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP * 10;
  134. ++ticks_to_delay) {
  135. /* Wait until next tick */
  136. vTaskDelay(1);
  137. /* The following delay should cause light sleep to start */
  138. uint64_t count_start;
  139. uint64_t count_end;
  140. TEST_ESP_OK(gptimer_get_raw_count(gptimer, &count_start));
  141. vTaskDelay(ticks_to_delay);
  142. TEST_ESP_OK(gptimer_get_raw_count(gptimer, &count_end));
  143. int timer_diff_us = (int) (count_end - count_start);
  144. const int us_per_tick = 1 * portTICK_PERIOD_MS * 1000;
  145. printf("%d %d\n", ticks_to_delay * us_per_tick, timer_diff_us);
  146. TEST_ASSERT(timer_diff_us < ticks_to_delay * us_per_tick);
  147. }
  148. light_sleep_disable();
  149. TEST_ESP_OK(esp_pm_lock_acquire(gptimer_pm_lock));
  150. TEST_ESP_OK(gptimer_stop(gptimer));
  151. TEST_ESP_OK(gptimer_del_timer(gptimer));
  152. }
  153. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3)
  154. #if !DISABLED_FOR_TARGETS(ESP32C3)
  155. // No ULP on C3
  156. // Fix failure on ESP32 when running alone; passes when the previous test is run before this one
  157. TEST_CASE("Can wake up from automatic light sleep by GPIO", "[pm][ignore]")
  158. {
  159. #if CONFIG_IDF_TARGET_ESP32
  160. assert(CONFIG_ESP32_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig");
  161. #elif CONFIG_IDF_TARGET_ESP32S2
  162. assert(CONFIG_ESP32S2_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig");
  163. #elif CONFIG_IDF_TARGET_ESP32S3
  164. assert(CONFIG_ESP32S3_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig");
  165. #endif
  166. /* Set up GPIO used to wake up RTC */
  167. const int ext1_wakeup_gpio = 25;
  168. const int ext_rtc_io = RTCIO_GPIO25_CHANNEL;
  169. TEST_ESP_OK(rtc_gpio_init(ext1_wakeup_gpio));
  170. rtc_gpio_set_direction(ext1_wakeup_gpio, RTC_GPIO_MODE_INPUT_OUTPUT);
  171. rtc_gpio_set_level(ext1_wakeup_gpio, 0);
  172. /* Enable wakeup */
  173. TEST_ESP_OK(esp_sleep_enable_ext1_wakeup(1ULL << ext1_wakeup_gpio, ESP_EXT1_WAKEUP_ANY_HIGH));
  174. /* To simplify test environment, we'll use a ULP program to set GPIO high */
  175. ulp_insn_t ulp_code[] = {
  176. I_DELAY(65535), /* about 8ms, given 8MHz ULP clock */
  177. I_WR_REG_BIT(RTC_CNTL_HOLD_FORCE_REG, RTC_CNTL_PDAC1_HOLD_FORCE_S, 0),
  178. I_WR_REG_BIT(RTC_GPIO_OUT_REG, ext_rtc_io + RTC_GPIO_OUT_DATA_S, 1),
  179. I_DELAY(1000),
  180. I_WR_REG_BIT(RTC_GPIO_OUT_REG, ext_rtc_io + RTC_GPIO_OUT_DATA_S, 0),
  181. I_WR_REG_BIT(RTC_CNTL_HOLD_FORCE_REG, RTC_CNTL_PDAC1_HOLD_FORCE_S, 1),
  182. I_END(),
  183. I_HALT()
  184. };
  185. TEST_ESP_OK(ulp_set_wakeup_period(0, 1000 /* us */));
  186. size_t size = sizeof(ulp_code) / sizeof(ulp_insn_t);
  187. TEST_ESP_OK(ulp_process_macros_and_load(0, ulp_code, &size));
  188. light_sleep_enable();
  189. int rtcio_num = rtc_io_number_get(ext1_wakeup_gpio);
  190. for (int i = 0; i < 10; ++i) {
  191. /* Set GPIO low */
  192. REG_CLR_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force);
  193. rtc_gpio_set_level(ext1_wakeup_gpio, 0);
  194. REG_SET_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force);
  195. /* Wait for the next tick */
  196. vTaskDelay(1);
  197. /* Start ULP program */
  198. ulp_run(0);
  199. const int delay_ms = 200;
  200. const int delay_ticks = delay_ms / portTICK_PERIOD_MS;
  201. int64_t start_rtc = esp_clk_rtc_time();
  202. int64_t start_hs = esp_timer_get_time();
  203. uint32_t start_tick = xTaskGetTickCount();
  204. /* Will enter sleep here */
  205. vTaskDelay(delay_ticks);
  206. int64_t end_rtc = esp_clk_rtc_time();
  207. int64_t end_hs = esp_timer_get_time();
  208. uint32_t end_tick = xTaskGetTickCount();
  209. printf("%lld %lld %u\n", end_rtc - start_rtc, end_hs - start_hs, end_tick - start_tick);
  210. TEST_ASSERT_INT32_WITHIN(3, delay_ticks, end_tick - start_tick);
  211. TEST_ASSERT_INT32_WITHIN(2 * portTICK_PERIOD_MS * 1000, delay_ms * 1000, end_hs - start_hs);
  212. TEST_ASSERT_INT32_WITHIN(2 * portTICK_PERIOD_MS * 1000, delay_ms * 1000, end_rtc - start_rtc);
  213. }
  214. REG_CLR_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force);
  215. rtc_gpio_deinit(ext1_wakeup_gpio);
  216. light_sleep_disable();
  217. }
  218. #endif //!DISABLED_FOR_TARGETS(ESP32C3)
  219. #endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3)
  220. typedef struct {
  221. int delay_us;
  222. int result;
  223. SemaphoreHandle_t done;
  224. } delay_test_arg_t;
  225. static void test_delay_task(void *p)
  226. {
  227. delay_test_arg_t *arg = (delay_test_arg_t *) p;
  228. vTaskDelay(1);
  229. uint64_t start = esp_clk_rtc_time();
  230. vTaskDelay(arg->delay_us / portTICK_PERIOD_MS / 1000);
  231. uint64_t stop = esp_clk_rtc_time();
  232. arg->result = (int) (stop - start);
  233. xSemaphoreGive(arg->done);
  234. vTaskDelete(NULL);
  235. }
  236. TEST_CASE("vTaskDelay duration is correct with light sleep enabled", "[pm]")
  237. {
  238. light_sleep_enable();
  239. SemaphoreHandle_t done_sem = xSemaphoreCreateBinary();
  240. TEST_ASSERT_NOT_NULL(done_sem);
  241. delay_test_arg_t args = {
  242. .done = done_sem,
  243. };
  244. const int delays[] = { 10, 20, 50, 100, 150, 200, 250 };
  245. const int delays_count = sizeof(delays) / sizeof(delays[0]);
  246. for (int i = 0; i < delays_count; ++i) {
  247. int delay_ms = delays[i];
  248. args.delay_us = delay_ms * 1000;
  249. xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void *) &args, 3, NULL, 0);
  250. TEST_ASSERT( xSemaphoreTake(done_sem, delay_ms * 10 / portTICK_PERIOD_MS) );
  251. printf("CPU0: %d %d\n", args.delay_us, args.result);
  252. TEST_ASSERT_INT32_WITHIN(1000 * portTICK_PERIOD_MS * 2, args.delay_us, args.result);
  253. #if portNUM_PROCESSORS == 2
  254. xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void *) &args, 3, NULL, 1);
  255. TEST_ASSERT( xSemaphoreTake(done_sem, delay_ms * 10 / portTICK_PERIOD_MS) );
  256. printf("CPU1: %d %d\n", args.delay_us, args.result);
  257. TEST_ASSERT_INT32_WITHIN(1000 * portTICK_PERIOD_MS * 2, args.delay_us, args.result);
  258. #endif
  259. }
  260. vSemaphoreDelete(done_sem);
  261. light_sleep_disable();
  262. }
  263. /* This test is similar to the one in test_esp_timer.c, but since we can't use
  264. * ref_clock, this test uses RTC clock for timing. Also enables automatic
  265. * light sleep.
  266. */
  267. TEST_CASE("esp_timer produces correct delays with light sleep", "[pm]")
  268. {
  269. // no, we can't make this a const size_t (§6.7.5.2)
  270. #define NUM_INTERVALS 16
  271. typedef struct {
  272. esp_timer_handle_t timer;
  273. size_t cur_interval;
  274. int intervals[NUM_INTERVALS];
  275. int64_t t_start;
  276. SemaphoreHandle_t done;
  277. } test_args_t;
  278. void timer_func(void *arg) {
  279. test_args_t *p_args = (test_args_t *) arg;
  280. int64_t t_end = esp_clk_rtc_time();
  281. int32_t ms_diff = (t_end - p_args->t_start) / 1000;
  282. printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
  283. p_args->intervals[p_args->cur_interval++] = ms_diff;
  284. // Deliberately make timer handler run longer.
  285. // We check that this doesn't affect the result.
  286. esp_rom_delay_us(10 * 1000);
  287. if (p_args->cur_interval == NUM_INTERVALS) {
  288. printf("done\n");
  289. TEST_ESP_OK(esp_timer_stop(p_args->timer));
  290. xSemaphoreGive(p_args->done);
  291. }
  292. }
  293. light_sleep_enable();
  294. const int delay_ms = 100;
  295. test_args_t args = {0};
  296. esp_timer_handle_t timer1;
  297. esp_timer_create_args_t create_args = {
  298. .callback = timer_func,
  299. .arg = &args,
  300. .name = "timer1",
  301. };
  302. TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
  303. args.timer = timer1;
  304. args.t_start = esp_clk_rtc_time();
  305. args.done = xSemaphoreCreateBinary();
  306. TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000));
  307. TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * NUM_INTERVALS * 2));
  308. TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval);
  309. for (size_t i = 0; i < NUM_INTERVALS; ++i) {
  310. TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]);
  311. }
  312. TEST_ESP_OK( esp_timer_dump(stdout) );
  313. TEST_ESP_OK( esp_timer_delete(timer1) );
  314. vSemaphoreDelete(args.done);
  315. light_sleep_disable();
  316. #undef NUM_INTERVALS
  317. }
  318. static void timer_cb1(void *arg)
  319. {
  320. ++*((int *) arg);
  321. }
  322. TEST_CASE("esp_timer with SKIP_UNHANDLED_EVENTS does not wake up CPU from sleep", "[pm]")
  323. {
  324. int count_calls = 0;
  325. int timer_interval_ms = 50;
  326. const esp_timer_create_args_t timer_args = {
  327. .name = "timer_cb1",
  328. .arg = &count_calls,
  329. .callback = &timer_cb1,
  330. .skip_unhandled_events = true,
  331. };
  332. esp_timer_handle_t periodic_timer;
  333. esp_timer_create(&timer_args, &periodic_timer);
  334. TEST_ESP_OK(esp_timer_start_periodic(periodic_timer, timer_interval_ms * 1000));
  335. light_sleep_enable();
  336. const unsigned count_delays = 5;
  337. unsigned i = count_delays;
  338. while (i-- > 0) {
  339. vTaskDelay(pdMS_TO_TICKS(500));
  340. }
  341. TEST_ASSERT_INT_WITHIN(1, count_delays, count_calls);
  342. light_sleep_disable();
  343. TEST_ESP_OK(esp_timer_stop(periodic_timer));
  344. TEST_ESP_OK(esp_timer_dump(stdout));
  345. TEST_ESP_OK(esp_timer_delete(periodic_timer));
  346. }
  347. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  348. #endif // CONFIG_PM_ENABLE