flash_mmap.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdlib.h>
  7. #include <assert.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <freertos/FreeRTOS.h>
  11. #include <freertos/task.h>
  12. #include <freertos/semphr.h>
  13. #include "soc/soc.h"
  14. #include "soc/soc_memory_layout.h"
  15. #include "soc/dport_access.h"
  16. #include "sdkconfig.h"
  17. #include "esp_attr.h"
  18. #include "esp_spi_flash.h"
  19. #include "esp_flash_encrypt.h"
  20. #include "esp_rom_spiflash.h"
  21. #include "esp_log.h"
  22. #include "cache_utils.h"
  23. #if CONFIG_IDF_TARGET_ESP32
  24. #include "soc/dport_reg.h"
  25. #include "esp32/rom/cache.h"
  26. #include "esp32/spiram.h"
  27. #include "soc/mmu.h"
  28. // TODO: IDF-3821
  29. #define INVALID_PHY_PAGE 0xffff
  30. #elif CONFIG_IDF_TARGET_ESP32S2
  31. #include "esp32s2/rom/cache.h"
  32. #include "esp_private/mmu_psram.h"
  33. #include "soc/extmem_reg.h"
  34. #include "soc/cache_memory.h"
  35. #include "soc/mmu.h"
  36. #elif CONFIG_IDF_TARGET_ESP32S3
  37. #include "esp32s3/rom/cache.h"
  38. #include "esp32s3/spiram.h"
  39. #include "soc/extmem_reg.h"
  40. #include "soc/cache_memory.h"
  41. #include "soc/mmu.h"
  42. #elif CONFIG_IDF_TARGET_ESP32C3
  43. #include "esp32c3/rom/cache.h"
  44. #include "soc/cache_memory.h"
  45. #include "soc/mmu.h"
  46. #elif CONFIG_IDF_TARGET_ESP32H2
  47. #include "esp32h2/rom/cache.h"
  48. #include "soc/cache_memory.h"
  49. #include "soc/mmu.h"
  50. #elif CONFIG_IDF_TARGET_ESP8684
  51. #include "esp8684/rom/cache.h"
  52. #include "soc/cache_memory.h"
  53. #include "soc/mmu.h"
  54. #endif
  55. #ifndef NDEBUG
  56. // Enable built-in checks in queue.h in debug builds
  57. #define INVARIANTS
  58. #endif
  59. #include "sys/queue.h"
  60. #define IROM0_PAGES_NUM (SOC_MMU_IROM0_PAGES_END - SOC_MMU_IROM0_PAGES_START)
  61. #define DROM0_PAGES_NUM (SOC_MMU_DROM0_PAGES_END - SOC_MMU_DROM0_PAGES_START)
  62. #define PAGES_LIMIT ((SOC_MMU_IROM0_PAGES_END > SOC_MMU_DROM0_PAGES_END) ? SOC_MMU_IROM0_PAGES_END:SOC_MMU_DROM0_PAGES_END)
  63. #if !CONFIG_SPI_FLASH_ROM_IMPL
  64. typedef struct mmap_entry_{
  65. uint32_t handle;
  66. int page;
  67. int count;
  68. LIST_ENTRY(mmap_entry_) entries;
  69. } mmap_entry_t;
  70. static LIST_HEAD(mmap_entries_head, mmap_entry_) s_mmap_entries_head =
  71. LIST_HEAD_INITIALIZER(s_mmap_entries_head);
  72. static uint8_t s_mmap_page_refcnt[SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION] = {0};
  73. static uint32_t s_mmap_last_handle = 0;
  74. static void IRAM_ATTR spi_flash_mmap_init(void)
  75. {
  76. if (s_mmap_page_refcnt[SOC_MMU_DROM0_PAGES_START] != 0) {
  77. return; /* mmap data already initialised */
  78. }
  79. DPORT_INTERRUPT_DISABLE();
  80. for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
  81. uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
  82. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  83. uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]);
  84. if (entry_pro != entry_app) {
  85. // clean up entries used by boot loader
  86. entry_pro = SOC_MMU_INVALID_ENTRY_VAL;
  87. SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
  88. }
  89. #endif
  90. if ((entry_pro & SOC_MMU_INVALID_ENTRY_VAL) == 0 && (i == SOC_MMU_DROM0_PAGES_START || i == SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE || entry_pro != 0)) {
  91. s_mmap_page_refcnt[i] = 1;
  92. } else {
  93. SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
  94. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  95. DPORT_APP_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
  96. #endif
  97. }
  98. }
  99. DPORT_INTERRUPT_RESTORE();
  100. }
  101. static void IRAM_ATTR get_mmu_region(spi_flash_mmap_memory_t memory, int* out_begin, int* out_size,uint32_t* region_addr)
  102. {
  103. if (memory == SPI_FLASH_MMAP_DATA) {
  104. // Vaddr0
  105. *out_begin = SOC_MMU_DROM0_PAGES_START;
  106. *out_size = DROM0_PAGES_NUM;
  107. *region_addr = SOC_MMU_VADDR0_START_ADDR;
  108. } else {
  109. // only part of VAddr1 is usable, so adjust for that
  110. *out_begin = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
  111. *out_size = SOC_MMU_IROM0_PAGES_END - *out_begin;
  112. *region_addr = SOC_MMU_VADDR1_FIRST_USABLE_ADDR;
  113. }
  114. }
  115. esp_err_t IRAM_ATTR spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
  116. const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
  117. {
  118. esp_err_t ret;
  119. if (src_addr & INVALID_PHY_PAGE) {
  120. return ESP_ERR_INVALID_ARG;
  121. }
  122. if (src_addr + size > g_rom_flashchip.chip_size) {
  123. return ESP_ERR_INVALID_ARG;
  124. }
  125. // region which should be mapped
  126. int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE;
  127. int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE;
  128. // prepare a linear pages array to feed into spi_flash_mmap_pages
  129. int *pages = heap_caps_malloc(sizeof(int)*page_count, MALLOC_CAP_INTERNAL);
  130. if (pages == NULL) {
  131. return ESP_ERR_NO_MEM;
  132. }
  133. for (int i = 0; i < page_count; i++) {
  134. pages[i] = (phys_page+i);
  135. }
  136. ret = spi_flash_mmap_pages(pages, page_count, memory, out_ptr, out_handle);
  137. free(pages);
  138. return ret;
  139. }
  140. esp_err_t IRAM_ATTR spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
  141. const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
  142. {
  143. esp_err_t ret;
  144. const void* temp_ptr = *out_ptr = NULL;
  145. spi_flash_mmap_handle_t temp_handle = *out_handle = (spi_flash_mmap_handle_t)NULL;
  146. bool need_flush = false;
  147. if (!page_count) {
  148. return ESP_ERR_INVALID_ARG;
  149. }
  150. if (!esp_ptr_internal(pages)) {
  151. return ESP_ERR_INVALID_ARG;
  152. }
  153. for (int i = 0; i < page_count; i++) {
  154. if (pages[i] < 0 || pages[i]*SPI_FLASH_MMU_PAGE_SIZE >= g_rom_flashchip.chip_size) {
  155. return ESP_ERR_INVALID_ARG;
  156. }
  157. }
  158. mmap_entry_t* new_entry = (mmap_entry_t*) heap_caps_malloc(sizeof(mmap_entry_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  159. if (new_entry == 0) {
  160. return ESP_ERR_NO_MEM;
  161. }
  162. spi_flash_disable_interrupts_caches_and_other_cpu();
  163. spi_flash_mmap_init();
  164. // figure out the memory region where we should look for pages
  165. int region_begin; // first page to check
  166. int region_size; // number of pages to check
  167. uint32_t region_addr; // base address of memory region
  168. get_mmu_region(memory,&region_begin,&region_size,&region_addr);
  169. if (region_size < page_count) {
  170. spi_flash_enable_interrupts_caches_and_other_cpu();
  171. return ESP_ERR_NO_MEM;
  172. }
  173. // The following part searches for a range of MMU entries which can be used.
  174. // Algorithm is essentially naïve strstr algorithm, except that unused MMU
  175. // entries are treated as wildcards.
  176. int start;
  177. // the " + 1" is a fix when loop the MMU table pages, because the last MMU page
  178. // is valid as well if it have not been used
  179. int end = region_begin + region_size - page_count + 1;
  180. for (start = region_begin; start < end; ++start) {
  181. int pageno = 0;
  182. int pos;
  183. DPORT_INTERRUPT_DISABLE();
  184. for (pos = start; pos < start + page_count; ++pos, ++pageno) {
  185. int table_val = (int) DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[pos]);
  186. uint8_t refcnt = s_mmap_page_refcnt[pos];
  187. if (refcnt != 0 && table_val != SOC_MMU_PAGE_IN_FLASH(pages[pageno])) {
  188. break;
  189. }
  190. }
  191. DPORT_INTERRUPT_RESTORE();
  192. // whole mapping range matched, bail out
  193. if (pos - start == page_count) {
  194. break;
  195. }
  196. }
  197. // checked all the region(s) and haven't found anything?
  198. if (start == end) {
  199. ret = ESP_ERR_NO_MEM;
  200. } else {
  201. // set up mapping using pages
  202. uint32_t pageno = 0;
  203. DPORT_INTERRUPT_DISABLE();
  204. for (int i = start; i != start + page_count; ++i, ++pageno) {
  205. // sanity check: we won't reconfigure entries with non-zero reference count
  206. uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
  207. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  208. uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]);
  209. #endif
  210. assert(s_mmap_page_refcnt[i] == 0 ||
  211. (entry_pro == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
  212. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  213. && entry_app == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
  214. #endif
  215. ));
  216. if (s_mmap_page_refcnt[i] == 0) {
  217. if (entry_pro != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
  218. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  219. || entry_app != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
  220. #endif
  221. ) {
  222. SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_PAGE_IN_FLASH(pages[pageno]);
  223. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  224. DPORT_APP_FLASH_MMU_TABLE[i] = pages[pageno];
  225. #endif
  226. #if !CONFIG_IDF_TARGET_ESP32
  227. Cache_Invalidate_Addr(region_addr + (i - region_begin) * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMU_PAGE_SIZE);
  228. #endif
  229. need_flush = true;
  230. }
  231. }
  232. ++s_mmap_page_refcnt[i];
  233. }
  234. DPORT_INTERRUPT_RESTORE();
  235. LIST_INSERT_HEAD(&s_mmap_entries_head, new_entry, entries);
  236. new_entry->page = start;
  237. new_entry->count = page_count;
  238. new_entry->handle = ++s_mmap_last_handle;
  239. temp_handle = new_entry->handle;
  240. temp_ptr = (void*) (region_addr + (start - region_begin) * SPI_FLASH_MMU_PAGE_SIZE);
  241. ret = ESP_OK;
  242. }
  243. /* This is a temporary fix for an issue where some
  244. cache reads may see stale data.
  245. Working on a long term fix that doesn't require invalidating
  246. entire cache.
  247. */
  248. if (need_flush) {
  249. #if CONFIG_IDF_TARGET_ESP32
  250. #if CONFIG_SPIRAM
  251. esp_spiram_writeback_cache();
  252. #endif // CONFIG_SPIRAM
  253. Cache_Flush(0);
  254. #if !CONFIG_FREERTOS_UNICORE
  255. Cache_Flush(1);
  256. #endif // !CONFIG_FREERTOS_UNICORE
  257. #endif // CONFIG_IDF_TARGET_ESP32
  258. }
  259. spi_flash_enable_interrupts_caches_and_other_cpu();
  260. if (temp_ptr == NULL) {
  261. free(new_entry);
  262. }
  263. *out_ptr = temp_ptr;
  264. *out_handle = temp_handle;
  265. return ret;
  266. }
  267. void IRAM_ATTR spi_flash_munmap(spi_flash_mmap_handle_t handle)
  268. {
  269. spi_flash_disable_interrupts_caches_and_other_cpu();
  270. mmap_entry_t* it;
  271. // look for handle in linked list
  272. for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
  273. if (it->handle == handle) {
  274. // for each page, decrement reference counter
  275. // if reference count is zero, disable MMU table entry to
  276. // facilitate debugging of use-after-free conditions
  277. for (int i = it->page; i < it->page + it->count; ++i) {
  278. assert(s_mmap_page_refcnt[i] > 0);
  279. if (--s_mmap_page_refcnt[i] == 0) {
  280. SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
  281. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  282. DPORT_APP_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
  283. #endif
  284. }
  285. }
  286. LIST_REMOVE(it, entries);
  287. break;
  288. }
  289. }
  290. spi_flash_enable_interrupts_caches_and_other_cpu();
  291. if (it == NULL) {
  292. assert(0 && "invalid handle, or handle already unmapped");
  293. }
  294. free(it);
  295. }
  296. static void IRAM_ATTR NOINLINE_ATTR spi_flash_protected_mmap_init(void)
  297. {
  298. spi_flash_disable_interrupts_caches_and_other_cpu();
  299. spi_flash_mmap_init();
  300. spi_flash_enable_interrupts_caches_and_other_cpu();
  301. }
  302. static uint32_t IRAM_ATTR NOINLINE_ATTR spi_flash_protected_read_mmu_entry(int index)
  303. {
  304. uint32_t value;
  305. spi_flash_disable_interrupts_caches_and_other_cpu();
  306. value = DPORT_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[index]);
  307. spi_flash_enable_interrupts_caches_and_other_cpu();
  308. return value;
  309. }
  310. void spi_flash_mmap_dump(void)
  311. {
  312. spi_flash_protected_mmap_init();
  313. mmap_entry_t* it;
  314. for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
  315. printf("handle=%d page=%d count=%d\n", it->handle, it->page, it->count);
  316. }
  317. for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
  318. if (s_mmap_page_refcnt[i] != 0) {
  319. uint32_t paddr = spi_flash_protected_read_mmu_entry(i);
  320. printf("page %d: refcnt=%d paddr=%d\n", i, (int) s_mmap_page_refcnt[i], paddr);
  321. }
  322. }
  323. }
  324. uint32_t IRAM_ATTR spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
  325. {
  326. spi_flash_disable_interrupts_caches_and_other_cpu();
  327. spi_flash_mmap_init();
  328. int count = 0;
  329. int region_begin; // first page to check
  330. int region_size; // number of pages to check
  331. uint32_t region_addr; // base address of memory region
  332. get_mmu_region(memory,&region_begin,&region_size,&region_addr);
  333. DPORT_INTERRUPT_DISABLE();
  334. for (int i = region_begin; i < region_begin + region_size; ++i) {
  335. if (s_mmap_page_refcnt[i] == 0 && DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]) == SOC_MMU_INVALID_ENTRY_VAL) {
  336. count++;
  337. }
  338. }
  339. DPORT_INTERRUPT_RESTORE();
  340. spi_flash_enable_interrupts_caches_and_other_cpu();
  341. return count;
  342. }
  343. size_t spi_flash_cache2phys(const void *cached)
  344. {
  345. intptr_t c = (intptr_t)cached;
  346. size_t cache_page;
  347. int offset = 0;
  348. if (c >= SOC_MMU_VADDR1_START_ADDR && c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
  349. /* IRAM address, doesn't map to flash */
  350. return SPI_FLASH_CACHE2PHYS_FAIL;
  351. }
  352. if (c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
  353. /* expect cache is in DROM */
  354. cache_page = (c - SOC_MMU_VADDR0_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_DROM0_PAGES_START;
  355. #if CONFIG_SPIRAM_RODATA
  356. if (c >= (uint32_t)&_rodata_reserved_start && c <= (uint32_t)&_rodata_reserved_end) {
  357. offset = rodata_flash2spiram_offset();
  358. }
  359. #endif
  360. } else {
  361. /* expect cache is in IROM */
  362. cache_page = (c - SOC_MMU_VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_IROM0_PAGES_START;
  363. #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
  364. if (c >= (uint32_t)&_instruction_reserved_start && c <= (uint32_t)&_instruction_reserved_end) {
  365. offset = instruction_flash2spiram_offset();
  366. }
  367. #endif
  368. }
  369. if (cache_page >= PAGES_LIMIT) {
  370. /* cached address was not in IROM or DROM */
  371. return SPI_FLASH_CACHE2PHYS_FAIL;
  372. }
  373. uint32_t phys_page = spi_flash_protected_read_mmu_entry(cache_page);
  374. if (phys_page == SOC_MMU_INVALID_ENTRY_VAL) {
  375. /* page is not mapped */
  376. return SPI_FLASH_CACHE2PHYS_FAIL;
  377. }
  378. uint32_t phys_offs = ((phys_page & SOC_MMU_ADDR_MASK) + offset) * SPI_FLASH_MMU_PAGE_SIZE;
  379. return phys_offs | (c & (SPI_FLASH_MMU_PAGE_SIZE-1));
  380. }
  381. const void *IRAM_ATTR spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory)
  382. {
  383. uint32_t phys_page = phys_offs / SPI_FLASH_MMU_PAGE_SIZE;
  384. int start, end, page_delta;
  385. intptr_t base;
  386. if (memory == SPI_FLASH_MMAP_DATA) {
  387. start = SOC_MMU_DROM0_PAGES_START;
  388. end = SOC_MMU_DROM0_PAGES_END;
  389. base = SOC_MMU_VADDR0_START_ADDR;
  390. page_delta = SOC_MMU_DROM0_PAGES_START;
  391. } else {
  392. start = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
  393. end = SOC_MMU_IROM0_PAGES_END;
  394. base = SOC_MMU_VADDR1_START_ADDR;
  395. page_delta = SOC_MMU_IROM0_PAGES_START;
  396. }
  397. spi_flash_disable_interrupts_caches_and_other_cpu();
  398. DPORT_INTERRUPT_DISABLE();
  399. for (int i = start; i < end; i++) {
  400. uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
  401. #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
  402. if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) {
  403. if (mmu_value & MMU_ACCESS_SPIRAM) {
  404. mmu_value += instruction_flash2spiram_offset();
  405. mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
  406. }
  407. }
  408. #endif
  409. #if CONFIG_SPIRAM_RODATA
  410. if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) {
  411. if (mmu_value & MMU_ACCESS_SPIRAM) {
  412. mmu_value += rodata_flash2spiram_offset();
  413. mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
  414. }
  415. }
  416. #endif
  417. if (mmu_value == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
  418. i -= page_delta;
  419. intptr_t cache_page = base + (SPI_FLASH_MMU_PAGE_SIZE * i);
  420. DPORT_INTERRUPT_RESTORE();
  421. spi_flash_enable_interrupts_caches_and_other_cpu();
  422. return (const void *) (cache_page | (phys_offs & (SPI_FLASH_MMU_PAGE_SIZE-1)));
  423. }
  424. }
  425. DPORT_INTERRUPT_RESTORE();
  426. spi_flash_enable_interrupts_caches_and_other_cpu();
  427. return NULL;
  428. }
  429. static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr)
  430. {
  431. int start[2], end[2];
  432. *out_ptr = NULL;
  433. /* SPI_FLASH_MMAP_DATA */
  434. start[0] = SOC_MMU_DROM0_PAGES_START;
  435. end[0] = SOC_MMU_DROM0_PAGES_END;
  436. /* SPI_FLASH_MMAP_INST */
  437. start[1] = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
  438. end[1] = SOC_MMU_IROM0_PAGES_END;
  439. DPORT_INTERRUPT_DISABLE();
  440. for (int j = 0; j < 2; j++) {
  441. for (int i = start[j]; i < end[j]; i++) {
  442. if (DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]) == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
  443. #if !CONFIG_IDF_TARGET_ESP32
  444. if (j == 0) { /* SPI_FLASH_MMAP_DATA */
  445. *out_ptr = (const void *)(SOC_MMU_VADDR0_START_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[0]));
  446. } else { /* SPI_FLASH_MMAP_INST */
  447. *out_ptr = (const void *)(SOC_MMU_VADDR1_FIRST_USABLE_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[1]));
  448. }
  449. #endif
  450. DPORT_INTERRUPT_RESTORE();
  451. return true;
  452. }
  453. }
  454. }
  455. DPORT_INTERRUPT_RESTORE();
  456. return false;
  457. }
  458. /* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */
  459. IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length)
  460. {
  461. bool ret = false;
  462. /* align start_addr & length to full MMU pages */
  463. uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
  464. length += (start_addr - page_start_addr);
  465. length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
  466. for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) {
  467. uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE;
  468. if (page >= 256) {
  469. return false; /* invalid address */
  470. }
  471. const void *vaddr = NULL;
  472. if (is_page_mapped_in_cache(page, &vaddr)) {
  473. #if CONFIG_IDF_TARGET_ESP32
  474. #if CONFIG_SPIRAM
  475. esp_spiram_writeback_cache();
  476. #endif
  477. Cache_Flush(0);
  478. #ifndef CONFIG_FREERTOS_UNICORE
  479. Cache_Flush(1);
  480. #endif
  481. return true;
  482. #else // CONFIG_IDF_TARGET_ESP32
  483. if (vaddr != NULL) {
  484. Cache_Invalidate_Addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);
  485. ret = true;
  486. }
  487. #endif // CONFIG_IDF_TARGET_ESP32
  488. }
  489. }
  490. return ret;
  491. }
  492. #endif //!CONFIG_SPI_FLASH_ROM_IMPL