| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- /******************************************************************************
- *
- * Copyright (C) 2006-2015 Broadcom Corporation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at:
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- ******************************************************************************/
- /******************************************************************************
- *
- * This file contains simple pairing algorithms using Elliptic Curve Cryptography for private public key
- *
- ******************************************************************************/
- //#include <stdio.h>
- //#include <stdlib.h>
- #include <string.h>
- #include "p_256_ecc_pp.h"
- #include "p_256_multprecision.h"
- #include "common/bt_target.h"
- #if SMP_DYNAMIC_MEMORY == FALSE
- elliptic_curve_t curve;
- elliptic_curve_t curve_p256;
- #else
- elliptic_curve_t *curve_ptr;
- elliptic_curve_t *curve_p256_ptr;
- #endif
- static void p_256_init_point(Point *q)
- {
- memset(q, 0, sizeof(Point));
- }
- static void p_256_copy_point(Point *q, Point *p)
- {
- memcpy(q, p, sizeof(Point));
- }
- // q=2q
- static void ECC_Double(Point *q, Point *p, uint32_t keyLength)
- {
- DWORD t1[KEY_LENGTH_DWORDS_P256];
- DWORD t2[KEY_LENGTH_DWORDS_P256];
- DWORD t3[KEY_LENGTH_DWORDS_P256];
- DWORD *x1;
- DWORD *x3;
- DWORD *y1;
- DWORD *y3;
- DWORD *z1;
- DWORD *z3;
- if (multiprecision_iszero(p->z, keyLength)) {
- multiprecision_init(q->z, keyLength);
- return; // return infinity
- }
- x1 = p->x; y1 = p->y; z1 = p->z;
- x3 = q->x; y3 = q->y; z3 = q->z;
- multiprecision_mersenns_squa_mod(t1, z1, keyLength); // t1=z1^2
- multiprecision_sub_mod(t2, x1, t1, keyLength); // t2=x1-t1
- multiprecision_add_mod(t1, x1, t1, keyLength); // t1=x1+t1
- multiprecision_mersenns_mult_mod(t2, t1, t2, keyLength); // t2=t2*t1
- multiprecision_lshift_mod(t3, t2, keyLength);
- multiprecision_add_mod(t2, t3, t2, keyLength); // t2=3t2
- multiprecision_mersenns_mult_mod(z3, y1, z1, keyLength); // z3=y1*z1
- multiprecision_lshift_mod(z3, z3, keyLength);
- multiprecision_mersenns_squa_mod(y3, y1, keyLength); // y3=y1^2
- multiprecision_lshift_mod(y3, y3, keyLength);
- multiprecision_mersenns_mult_mod(t3, y3, x1, keyLength); // t3=y3*x1=x1*y1^2
- multiprecision_lshift_mod(t3, t3, keyLength);
- multiprecision_mersenns_squa_mod(y3, y3, keyLength); // y3=y3^2=y1^4
- multiprecision_lshift_mod(y3, y3, keyLength);
- multiprecision_mersenns_squa_mod(x3, t2, keyLength); // x3=t2^2
- multiprecision_lshift_mod(t1, t3, keyLength); // t1=2t3
- multiprecision_sub_mod(x3, x3, t1, keyLength); // x3=x3-t1
- multiprecision_sub_mod(t1, t3, x3, keyLength); // t1=t3-x3
- multiprecision_mersenns_mult_mod(t1, t1, t2, keyLength); // t1=t1*t2
- multiprecision_sub_mod(y3, t1, y3, keyLength); // y3=t1-y3
- }
- // q=q+p, zp must be 1
- static void ECC_Add(Point *r, Point *p, Point *q, uint32_t keyLength)
- {
- DWORD t1[KEY_LENGTH_DWORDS_P256];
- DWORD t2[KEY_LENGTH_DWORDS_P256];
- DWORD *x1;
- DWORD *x2;
- DWORD *x3;
- DWORD *y1;
- DWORD *y2;
- DWORD *y3;
- DWORD *z1;
- DWORD *z2;
- DWORD *z3;
- x1 = p->x; y1 = p->y; z1 = p->z;
- x2 = q->x; y2 = q->y; z2 = q->z;
- x3 = r->x; y3 = r->y; z3 = r->z;
- // if Q=infinity, return p
- if (multiprecision_iszero(z2, keyLength)) {
- p_256_copy_point(r, p);
- return;
- }
- // if P=infinity, return q
- if (multiprecision_iszero(z1, keyLength)) {
- p_256_copy_point(r, q);
- return;
- }
- multiprecision_mersenns_squa_mod(t1, z1, keyLength); // t1=z1^2
- multiprecision_mersenns_mult_mod(t2, z1, t1, keyLength); // t2=t1*z1
- multiprecision_mersenns_mult_mod(t1, x2, t1, keyLength); // t1=t1*x2
- multiprecision_mersenns_mult_mod(t2, y2, t2, keyLength); // t2=t2*y2
- multiprecision_sub_mod(t1, t1, x1, keyLength); // t1=t1-x1
- multiprecision_sub_mod(t2, t2, y1, keyLength); // t2=t2-y1
- if (multiprecision_iszero(t1, keyLength)) {
- if (multiprecision_iszero(t2, keyLength)) {
- ECC_Double(r, q, keyLength) ;
- return;
- } else {
- multiprecision_init(z3, keyLength);
- return; // return infinity
- }
- }
- multiprecision_mersenns_mult_mod(z3, z1, t1, keyLength); // z3=z1*t1
- multiprecision_mersenns_squa_mod(y3, t1, keyLength); // t3=t1^2
- multiprecision_mersenns_mult_mod(z1, y3, t1, keyLength); // t4=t3*t1
- multiprecision_mersenns_mult_mod(y3, y3, x1, keyLength); // t3=t3*x1
- multiprecision_lshift_mod(t1, y3, keyLength); // t1=2*t3
- multiprecision_mersenns_squa_mod(x3, t2, keyLength); // x3=t2^2
- multiprecision_sub_mod(x3, x3, t1, keyLength); // x3=x3-t1
- multiprecision_sub_mod(x3, x3, z1, keyLength); // x3=x3-t4
- multiprecision_sub_mod(y3, y3, x3, keyLength); // t3=t3-x3
- multiprecision_mersenns_mult_mod(y3, y3, t2, keyLength); // t3=t3*t2
- multiprecision_mersenns_mult_mod(z1, z1, y1, keyLength); // t4=t4*t1
- multiprecision_sub_mod(y3, y3, z1, keyLength);
- }
- // Computing the Non-Adjacent Form of a positive integer
- static void ECC_NAF(uint8_t *naf, uint32_t *NumNAF, DWORD *k, uint32_t keyLength)
- {
- uint32_t sign;
- int i = 0;
- int j;
- uint32_t var;
- while ((var = multiprecision_most_signbits(k, keyLength)) >= 1) {
- if (k[0] & 0x01) { // k is odd
- sign = (k[0] & 0x03); // 1 or 3
- // k = k-naf[i]
- if (sign == 1) {
- k[0] = k[0] & 0xFFFFFFFE;
- } else {
- k[0] = k[0] + 1;
- if (k[0] == 0) { //overflow
- j = 1;
- do {
- k[j]++;
- } while (k[j++] == 0); //overflow
- }
- }
- } else {
- sign = 0;
- }
- multiprecision_rshift(k, k, keyLength);
- naf[i / 4] |= (sign) << ((i % 4) * 2);
- i++;
- }
- *NumNAF = i;
- }
- // Binary Non-Adjacent Form for point multiplication
- void ECC_PointMult_Bin_NAF(Point *q, Point *p, DWORD *n, uint32_t keyLength)
- {
- uint32_t sign;
- UINT8 naf[256 / 4 + 1];
- uint32_t NumNaf;
- Point minus_p;
- Point r;
- DWORD *modp;
- if (keyLength == KEY_LENGTH_DWORDS_P256) {
- modp = curve_p256.p;
- } else {
- modp = curve.p;
- }
- p_256_init_point(&r);
- multiprecision_init(p->z, keyLength);
- p->z[0] = 1;
- // initialization
- p_256_init_point(q);
- // -p
- multiprecision_copy(minus_p.x, p->x, keyLength);
- multiprecision_sub(minus_p.y, modp, p->y, keyLength);
- multiprecision_init(minus_p.z, keyLength);
- minus_p.z[0] = 1;
- // NAF
- memset(naf, 0, sizeof(naf));
- ECC_NAF(naf, &NumNaf, n, keyLength);
- for (int i = NumNaf - 1; i >= 0; i--) {
- p_256_copy_point(&r, q);
- ECC_Double(q, &r, keyLength);
- sign = (naf[i / 4] >> ((i % 4) * 2)) & 0x03;
- if (sign == 1) {
- p_256_copy_point(&r, q);
- ECC_Add(q, &r, p, keyLength);
- } else if (sign == 3) {
- p_256_copy_point(&r, q);
- ECC_Add(q, &r, &minus_p, keyLength);
- }
- }
- multiprecision_inv_mod(minus_p.x, q->z, keyLength);
- multiprecision_mersenns_squa_mod(q->z, minus_p.x, keyLength);
- multiprecision_mersenns_mult_mod(q->x, q->x, q->z, keyLength);
- multiprecision_mersenns_mult_mod(q->z, q->z, minus_p.x, keyLength);
- multiprecision_mersenns_mult_mod(q->y, q->y, q->z, keyLength);
- }
- bool ECC_CheckPointIsInElliCur_P256(Point *p)
- {
- /* y^2 % q */
- DWORD y_y_q[KEY_LENGTH_DWORDS_P256] = {0x0};
- /* x^2 % q */
- DWORD x_x_q[KEY_LENGTH_DWORDS_P256] = {0x0};
- /* x % q */
- DWORD x_q[KEY_LENGTH_DWORDS_P256] = {0x0};
- /* x^2, To prevent overflow, the length of the x square here needs to
- be expanded to two times the original one. */
- DWORD x_x[2*KEY_LENGTH_DWORDS_P256] = {0x0};
- /* y_y_q =(p->y)^2(mod q) */
- multiprecision_mersenns_squa_mod(y_y_q, p->y, KEY_LENGTH_DWORDS_P256);
- /* Calculate the value of p->x square, x_x = (p->x)^2 */
- multiprecision_mult(x_x, p->x, p->x, KEY_LENGTH_DWORDS_P256);
- /* The function of the elliptic curve is y^2 = x^3 - 3x + b (mod q) ==>
- y^2 = (x^2 - 3)*x + b (mod q),
- so we calculate the x^2 - 3 value here */
- x_x[0] -= 3;
- /* Using math relations. (a*b) % q = ((a%q)*(b%q)) % q ==>
- (x^2 - 3)*x = (((x^2 - 3) % q) * x % q) % q */
- multiprecision_fast_mod_P256(x_x_q, x_x);
- /* x_x = x_x_q * x_q */
- multiprecision_mult(x_x, x_x_q, p->x, KEY_LENGTH_DWORDS_P256);
- /* x_q = x_x % q */
- multiprecision_fast_mod_P256(x_q, x_x);
- /* Save the result in x_x_q */
- multiprecision_add_mod(x_x_q, x_q, curve_p256.b, KEY_LENGTH_DWORDS_P256);
- /* compare the y_y_q and x_x_q, see if they are on a given elliptic curve. */
- if (multiprecision_compare(y_y_q, x_x_q, KEY_LENGTH_DWORDS_P256)) {
- return false;
- } else {
- return true;
- }
- }
|