| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- /*
- * Copyright (c) 1991, 1993
- * The Regents of the University of California. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 4. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * @(#)queue.h 8.5 (Berkeley) 8/20/94
- * $FreeBSD: src/sys/sys/queue.h,v 1.32.2.7 2002/04/17 14:21:02 des Exp $
- */
- #ifndef _QUEUE_H_
- #define _QUEUE_H_
- /* The common BSD linked list queue macros are already defined here for ESP-IDF */
- #include <sys/queue.h>
- #ifdef __cplusplus
- extern "C" {
- #endif
- /*
- * This file defines circular queues. The other types of data structures:
- * singly-linked lists, singly-linked tail queues, lists and tail queues
- * are used from sys/queue.h
- *
- * A singly-linked list is headed by a single forward pointer. The elements
- * are singly linked for minimum space and pointer manipulation overhead at
- * the expense of O(n) removal for arbitrary elements. New elements can be
- * added to the list after an existing element or at the head of the list.
- * Elements being removed from the head of the list should use the explicit
- * macro for this purpose for optimum efficiency. A singly-linked list may
- * only be traversed in the forward direction. Singly-linked lists are ideal
- * for applications with large datasets and few or no removals or for
- * implementing a LIFO queue.
- *
- * A singly-linked tail queue is headed by a pair of pointers, one to the
- * head of the list and the other to the tail of the list. The elements are
- * singly linked for minimum space and pointer manipulation overhead at the
- * expense of O(n) removal for arbitrary elements. New elements can be added
- * to the list after an existing element, at the head of the list, or at the
- * end of the list. Elements being removed from the head of the tail queue
- * should use the explicit macro for this purpose for optimum efficiency.
- * A singly-linked tail queue may only be traversed in the forward direction.
- * Singly-linked tail queues are ideal for applications with large datasets
- * and few or no removals or for implementing a FIFO queue.
- *
- * A list is headed by a single forward pointer (or an array of forward
- * pointers for a hash table header). The elements are doubly linked
- * so that an arbitrary element can be removed without a need to
- * traverse the list. New elements can be added to the list before
- * or after an existing element or at the head of the list. A list
- * may only be traversed in the forward direction.
- *
- * A tail queue is headed by a pair of pointers, one to the head of the
- * list and the other to the tail of the list. The elements are doubly
- * linked so that an arbitrary element can be removed without a need to
- * traverse the list. New elements can be added to the list before or
- * after an existing element, at the head of the list, or at the end of
- * the list. A tail queue may be traversed in either direction.
- *
- * A circle queue is headed by a pair of pointers, one to the head of the
- * list and the other to the tail of the list. The elements are doubly
- * linked so that an arbitrary element can be removed without a need to
- * traverse the list. New elements can be added to the list before or after
- * an existing element, at the head of the list, or at the end of the list.
- * A circle queue may be traversed in either direction, but has a more
- * complex end of list detection.
- *
- * For details on the use of these macros, see the queue(3) manual page.
- *
- *
- * SLIST LIST STAILQ TAILQ CIRCLEQ
- * _HEAD + + + + +
- * _HEAD_INITIALIZER + + + + +
- * _ENTRY + + + + +
- * _INIT + + + + +
- * _EMPTY + + + + +
- * _FIRST + + + + +
- * _NEXT + + + + +
- * _PREV - - - + +
- * _LAST - - + + +
- * _FOREACH + + + + +
- * _FOREACH_REVERSE - - - + +
- * _INSERT_HEAD + + + + +
- * _INSERT_BEFORE - + - + +
- * _INSERT_AFTER + + + + +
- * _INSERT_TAIL - - + + +
- * _REMOVE_HEAD + - + - -
- * _REMOVE + + + + +
- *
- */
- /*
- * Circular queue declarations.
- */
- #define CIRCLEQ_HEAD(name, type) \
- struct name { \
- struct type *cqh_first; /* first element */ \
- struct type *cqh_last; /* last element */ \
- }
- #define CIRCLEQ_HEAD_INITIALIZER(head) \
- { (void *)&(head), (void *)&(head) }
- #define CIRCLEQ_ENTRY(type) \
- struct { \
- struct type *cqe_next; /* next element */ \
- struct type *cqe_prev; /* previous element */ \
- }
- /*
- * Circular queue functions.
- */
- #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
- #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
- #define CIRCLEQ_FOREACH(var, head, field) \
- for ((var) = CIRCLEQ_FIRST((head)); \
- (var) != (void *)(head) || ((var) = NULL); \
- (var) = CIRCLEQ_NEXT((var), field))
- #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
- for ((var) = CIRCLEQ_LAST((head)); \
- (var) != (void *)(head) || ((var) = NULL); \
- (var) = CIRCLEQ_PREV((var), field))
- #define CIRCLEQ_INIT(head) do { \
- CIRCLEQ_FIRST((head)) = (void *)(head); \
- CIRCLEQ_LAST((head)) = (void *)(head); \
- } while (0)
- #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
- CIRCLEQ_NEXT((elm), field) = CIRCLEQ_NEXT((listelm), field); \
- CIRCLEQ_PREV((elm), field) = (listelm); \
- if (CIRCLEQ_NEXT((listelm), field) == (void *)(head)) \
- CIRCLEQ_LAST((head)) = (elm); \
- else \
- CIRCLEQ_PREV(CIRCLEQ_NEXT((listelm), field), field) = (elm);\
- CIRCLEQ_NEXT((listelm), field) = (elm); \
- } while (0)
- #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
- CIRCLEQ_NEXT((elm), field) = (listelm); \
- CIRCLEQ_PREV((elm), field) = CIRCLEQ_PREV((listelm), field); \
- if (CIRCLEQ_PREV((listelm), field) == (void *)(head)) \
- CIRCLEQ_FIRST((head)) = (elm); \
- else \
- CIRCLEQ_NEXT(CIRCLEQ_PREV((listelm), field), field) = (elm);\
- CIRCLEQ_PREV((listelm), field) = (elm); \
- } while (0)
- #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
- CIRCLEQ_NEXT((elm), field) = CIRCLEQ_FIRST((head)); \
- CIRCLEQ_PREV((elm), field) = (void *)(head); \
- if (CIRCLEQ_LAST((head)) == (void *)(head)) \
- CIRCLEQ_LAST((head)) = (elm); \
- else \
- CIRCLEQ_PREV(CIRCLEQ_FIRST((head)), field) = (elm); \
- CIRCLEQ_FIRST((head)) = (elm); \
- } while (0)
- #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
- CIRCLEQ_NEXT((elm), field) = (void *)(head); \
- CIRCLEQ_PREV((elm), field) = CIRCLEQ_LAST((head)); \
- if (CIRCLEQ_FIRST((head)) == (void *)(head)) \
- CIRCLEQ_FIRST((head)) = (elm); \
- else \
- CIRCLEQ_NEXT(CIRCLEQ_LAST((head)), field) = (elm); \
- CIRCLEQ_LAST((head)) = (elm); \
- } while (0)
- #define CIRCLEQ_LAST(head) ((head)->cqh_last)
- #define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next)
- #define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev)
- #define CIRCLEQ_REMOVE(head, elm, field) do { \
- if (CIRCLEQ_NEXT((elm), field) == (void *)(head)) \
- CIRCLEQ_LAST((head)) = CIRCLEQ_PREV((elm), field); \
- else \
- CIRCLEQ_PREV(CIRCLEQ_NEXT((elm), field), field) = \
- CIRCLEQ_PREV((elm), field); \
- if (CIRCLEQ_PREV((elm), field) == (void *)(head)) \
- CIRCLEQ_FIRST((head)) = CIRCLEQ_NEXT((elm), field); \
- else \
- CIRCLEQ_NEXT(CIRCLEQ_PREV((elm), field), field) = \
- CIRCLEQ_NEXT((elm), field); \
- } while (0)
- #ifdef __cplusplus
- }
- #endif
- #endif /* !_SYS_QUEUE_H_ */
|