rmt_legacy.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdlib.h>
  7. #include <string.h>
  8. #include <sys/lock.h>
  9. #include <sys/cdefs.h>
  10. #include "esp_compiler.h"
  11. #include "esp_intr_alloc.h"
  12. #include "esp_log.h"
  13. #include "esp_check.h"
  14. #include "driver/gpio.h"
  15. #include "esp_private/periph_ctrl.h"
  16. #include "driver/rmt_types_legacy.h"
  17. #include "freertos/FreeRTOS.h"
  18. #include "freertos/task.h"
  19. #include "freertos/semphr.h"
  20. #include "freertos/ringbuf.h"
  21. #include "soc/soc_memory_layout.h"
  22. #include "soc/rmt_periph.h"
  23. #include "soc/rmt_struct.h"
  24. #include "esp_clk_tree.h"
  25. #include "hal/rmt_hal.h"
  26. #include "hal/rmt_ll.h"
  27. #include "hal/gpio_hal.h"
  28. #include "esp_rom_gpio.h"
  29. #define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
  30. #define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
  31. #define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
  32. #define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
  33. #define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
  34. #define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
  35. #define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
  36. #define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
  37. #define RMT_MODE_ERROR_STR "RMT MODE ERROR"
  38. #define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
  39. #define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
  40. #define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
  41. #define RMT_PSRAM_BUFFER_WARN_STR "Using buffer allocated from psram"
  42. #define RMT_TRANSLATOR_NULL_STR "RMT translator is null"
  43. #define RMT_TRANSLATOR_UNINIT_STR "RMT translator not init"
  44. #define RMT_PARAM_ERR_STR "RMT param error"
  45. static const char *TAG = "rmt(legacy)";
  46. // Spinlock for protecting concurrent register-level access only
  47. #define RMT_ENTER_CRITICAL() portENTER_CRITICAL_SAFE(&(rmt_contex.rmt_spinlock))
  48. #define RMT_EXIT_CRITICAL() portEXIT_CRITICAL_SAFE(&(rmt_contex.rmt_spinlock))
  49. #define RMT_RX_CHANNEL_ENCODING_START (SOC_RMT_CHANNELS_PER_GROUP-SOC_RMT_TX_CANDIDATES_PER_GROUP)
  50. #define RMT_TX_CHANNEL_ENCODING_END (SOC_RMT_TX_CANDIDATES_PER_GROUP-1)
  51. #define RMT_IS_RX_CHANNEL(channel) ((channel) >= RMT_RX_CHANNEL_ENCODING_START)
  52. #define RMT_IS_TX_CHANNEL(channel) ((channel) <= RMT_TX_CHANNEL_ENCODING_END)
  53. #define RMT_DECODE_RX_CHANNEL(encode_chan) ((encode_chan - RMT_RX_CHANNEL_ENCODING_START))
  54. #define RMT_ENCODE_RX_CHANNEL(decode_chan) ((decode_chan + RMT_RX_CHANNEL_ENCODING_START))
  55. #if SOC_PERIPH_CLK_CTRL_SHARED
  56. #define RMT_CLOCK_SRC_ATOMIC() PERIPH_RCC_ATOMIC()
  57. #else
  58. #define RMT_CLOCK_SRC_ATOMIC()
  59. #endif
  60. #if !SOC_RCC_IS_INDEPENDENT
  61. #define RMT_RCC_ATOMIC() PERIPH_RCC_ATOMIC()
  62. #else
  63. #define RMT_RCC_ATOMIC()
  64. #endif
  65. typedef struct {
  66. rmt_hal_context_t hal;
  67. _lock_t rmt_driver_isr_lock;
  68. portMUX_TYPE rmt_spinlock; // Mutex lock for protecting concurrent register/unregister of RMT channels' ISR
  69. rmt_isr_handle_t rmt_driver_intr_handle;
  70. rmt_tx_end_callback_t rmt_tx_end_callback;// Event called when transmission is ended
  71. uint8_t rmt_driver_channels; // Bitmask of installed drivers' channels, used to protect concurrent register/unregister of RMT channels' ISR
  72. bool rmt_module_enabled;
  73. uint32_t synchro_channel_mask; // Bitmap of channels already added in the synchronous group
  74. } rmt_contex_t;
  75. typedef struct {
  76. size_t tx_offset;
  77. size_t tx_len_rem;
  78. size_t tx_sub_len;
  79. bool translator;
  80. bool wait_done; //Mark whether wait tx done.
  81. bool loop_autostop; // mark whether loop auto-stop is enabled
  82. rmt_channel_t channel;
  83. const rmt_item32_t *tx_data;
  84. SemaphoreHandle_t tx_sem;
  85. #if CONFIG_SPIRAM_USE_MALLOC
  86. int intr_alloc_flags;
  87. StaticSemaphore_t tx_sem_buffer;
  88. #endif
  89. rmt_item32_t *tx_buf;
  90. RingbufHandle_t rx_buf;
  91. #if SOC_RMT_SUPPORT_RX_PINGPONG
  92. rmt_item32_t *rx_item_buf;
  93. uint32_t rx_item_buf_size;
  94. uint32_t rx_item_len;
  95. int rx_item_start_idx;
  96. #endif
  97. sample_to_rmt_t sample_to_rmt;
  98. void *tx_context;
  99. size_t sample_size_remain;
  100. const uint8_t *sample_cur;
  101. } rmt_obj_t;
  102. static rmt_contex_t rmt_contex = {
  103. .hal.regs = &RMT,
  104. .rmt_spinlock = portMUX_INITIALIZER_UNLOCKED,
  105. .rmt_driver_intr_handle = NULL,
  106. .rmt_tx_end_callback = {
  107. .function = NULL,
  108. },
  109. .rmt_driver_channels = 0,
  110. .rmt_module_enabled = false,
  111. .synchro_channel_mask = 0
  112. };
  113. static rmt_obj_t *p_rmt_obj[RMT_CHANNEL_MAX] = {0};
  114. #if SOC_RMT_CHANNEL_CLK_INDEPENDENT
  115. static uint32_t s_rmt_source_clock_hz[RMT_CHANNEL_MAX];
  116. #else
  117. static uint32_t s_rmt_source_clock_hz;
  118. #endif
  119. // RMTMEM address is declared in <target>.peripherals.ld
  120. extern rmt_mem_t RMTMEM;
  121. //Enable RMT module
  122. static void rmt_module_enable(void)
  123. {
  124. RMT_ENTER_CRITICAL();
  125. if (rmt_contex.rmt_module_enabled == false) {
  126. RMT_RCC_ATOMIC() {
  127. rmt_ll_enable_bus_clock(0, true);
  128. rmt_ll_reset_register(0);
  129. }
  130. rmt_contex.rmt_module_enabled = true;
  131. }
  132. RMT_EXIT_CRITICAL();
  133. }
  134. //Disable RMT module
  135. static void rmt_module_disable(void)
  136. {
  137. RMT_ENTER_CRITICAL();
  138. if (rmt_contex.rmt_module_enabled == true) {
  139. RMT_RCC_ATOMIC() {
  140. rmt_ll_enable_bus_clock(0, false);
  141. }
  142. rmt_contex.rmt_module_enabled = false;
  143. }
  144. RMT_EXIT_CRITICAL();
  145. }
  146. esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
  147. {
  148. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  149. RMT_ENTER_CRITICAL();
  150. if (RMT_IS_RX_CHANNEL(channel)) {
  151. rmt_ll_rx_set_channel_clock_div(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), div_cnt);
  152. } else {
  153. rmt_ll_tx_set_channel_clock_div(rmt_contex.hal.regs, channel, div_cnt);
  154. }
  155. RMT_EXIT_CRITICAL();
  156. return ESP_OK;
  157. }
  158. esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t *div_cnt)
  159. {
  160. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  161. ESP_RETURN_ON_FALSE(div_cnt, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  162. RMT_ENTER_CRITICAL();
  163. if (RMT_IS_RX_CHANNEL(channel)) {
  164. *div_cnt = (uint8_t)rmt_ll_rx_get_channel_clock_div(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  165. } else {
  166. *div_cnt = (uint8_t)rmt_ll_tx_get_channel_clock_div(rmt_contex.hal.regs, channel);
  167. }
  168. RMT_EXIT_CRITICAL();
  169. return ESP_OK;
  170. }
  171. esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
  172. {
  173. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  174. RMT_ENTER_CRITICAL();
  175. rmt_ll_rx_set_idle_thres(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), thresh);
  176. RMT_EXIT_CRITICAL();
  177. return ESP_OK;
  178. }
  179. esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
  180. {
  181. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  182. ESP_RETURN_ON_FALSE(thresh, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  183. RMT_ENTER_CRITICAL();
  184. *thresh = (uint16_t)rmt_ll_rx_get_idle_thres(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  185. RMT_EXIT_CRITICAL();
  186. return ESP_OK;
  187. }
  188. esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
  189. {
  190. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  191. ESP_RETURN_ON_FALSE(rmt_mem_num <= RMT_CHANNEL_MAX - channel, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_CNT_ERROR_STR);
  192. RMT_ENTER_CRITICAL();
  193. if (RMT_IS_RX_CHANNEL(channel)) {
  194. rmt_ll_rx_set_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), rmt_mem_num);
  195. } else {
  196. rmt_ll_tx_set_mem_blocks(rmt_contex.hal.regs, channel, rmt_mem_num);
  197. }
  198. RMT_EXIT_CRITICAL();
  199. return ESP_OK;
  200. }
  201. esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t *rmt_mem_num)
  202. {
  203. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  204. ESP_RETURN_ON_FALSE(rmt_mem_num, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  205. RMT_ENTER_CRITICAL();
  206. if (RMT_IS_RX_CHANNEL(channel)) {
  207. *rmt_mem_num = (uint8_t)rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  208. } else {
  209. *rmt_mem_num = (uint8_t)rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel);
  210. }
  211. RMT_EXIT_CRITICAL();
  212. return ESP_OK;
  213. }
  214. esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
  215. rmt_carrier_level_t carrier_level)
  216. {
  217. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  218. ESP_RETURN_ON_FALSE(carrier_level < RMT_CARRIER_LEVEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CARRIER_ERROR_STR);
  219. RMT_ENTER_CRITICAL();
  220. rmt_ll_tx_set_carrier_high_low_ticks(rmt_contex.hal.regs, channel, high_level, low_level);
  221. rmt_ll_tx_set_carrier_level(rmt_contex.hal.regs, channel, carrier_level);
  222. rmt_ll_tx_enable_carrier_modulation(rmt_contex.hal.regs, channel, carrier_en);
  223. RMT_EXIT_CRITICAL();
  224. return ESP_OK;
  225. }
  226. esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
  227. {
  228. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  229. RMT_ENTER_CRITICAL();
  230. rmt_ll_power_down_mem(rmt_contex.hal.regs, pd_en);
  231. RMT_EXIT_CRITICAL();
  232. return ESP_OK;
  233. }
  234. esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool *pd_en)
  235. {
  236. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  237. RMT_ENTER_CRITICAL();
  238. *pd_en = rmt_ll_is_mem_powered_down(rmt_contex.hal.regs);
  239. RMT_EXIT_CRITICAL();
  240. return ESP_OK;
  241. }
  242. esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
  243. {
  244. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  245. RMT_ENTER_CRITICAL();
  246. if (tx_idx_rst) {
  247. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  248. }
  249. rmt_ll_clear_interrupt_status(rmt_contex.hal.regs, RMT_LL_EVENT_TX_DONE(channel));
  250. // enable tx end interrupt in non-loop mode
  251. if (!rmt_ll_tx_is_loop_enabled(rmt_contex.hal.regs, channel)) {
  252. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_DONE(channel), true);
  253. } else {
  254. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  255. rmt_ll_tx_reset_loop_count(rmt_contex.hal.regs, channel);
  256. rmt_ll_tx_enable_loop_count(rmt_contex.hal.regs, channel, true);
  257. rmt_ll_clear_interrupt_status(rmt_contex.hal.regs, RMT_LL_EVENT_TX_LOOP_END(channel));
  258. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_LOOP_END(channel), true);
  259. #endif
  260. }
  261. rmt_ll_tx_start(rmt_contex.hal.regs, channel);
  262. RMT_EXIT_CRITICAL();
  263. return ESP_OK;
  264. }
  265. esp_err_t rmt_tx_stop(rmt_channel_t channel)
  266. {
  267. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  268. RMT_ENTER_CRITICAL();
  269. #if SOC_RMT_SUPPORT_TX_ASYNC_STOP
  270. rmt_ll_tx_stop(rmt_contex.hal.regs, channel);
  271. #else
  272. // write ending marker to stop the TX channel
  273. RMTMEM.chan[channel].data32[0].val = 0;
  274. #endif
  275. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  276. RMT_EXIT_CRITICAL();
  277. return ESP_OK;
  278. }
  279. #if SOC_RMT_SUPPORT_RX_PINGPONG
  280. esp_err_t rmt_set_rx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  281. {
  282. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  283. if (en) {
  284. uint32_t item_block_len = rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)) * RMT_MEM_ITEM_NUM;
  285. ESP_RETURN_ON_FALSE(evt_thresh <= item_block_len, ESP_ERR_INVALID_ARG, TAG, "RMT EVT THRESH ERR");
  286. RMT_ENTER_CRITICAL();
  287. rmt_ll_rx_set_limit(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), evt_thresh);
  288. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_THRES(RMT_DECODE_RX_CHANNEL(channel)), true);
  289. RMT_EXIT_CRITICAL();
  290. } else {
  291. RMT_ENTER_CRITICAL();
  292. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_THRES(RMT_DECODE_RX_CHANNEL(channel)), false);
  293. RMT_EXIT_CRITICAL();
  294. }
  295. return ESP_OK;
  296. }
  297. #endif
  298. esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
  299. {
  300. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  301. RMT_ENTER_CRITICAL();
  302. rmt_ll_rx_enable(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), false);
  303. if (rx_idx_rst) {
  304. rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  305. }
  306. rmt_ll_clear_interrupt_status(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel)));
  307. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel)), true);
  308. #if SOC_RMT_SUPPORT_RX_PINGPONG
  309. const uint32_t item_block_len = rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)) * RMT_MEM_ITEM_NUM;
  310. p_rmt_obj[channel]->rx_item_start_idx = 0;
  311. p_rmt_obj[channel]->rx_item_len = 0;
  312. rmt_set_rx_thr_intr_en(channel, true, item_block_len / 2);
  313. #endif
  314. rmt_ll_rx_enable(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), true);
  315. RMT_EXIT_CRITICAL();
  316. return ESP_OK;
  317. }
  318. esp_err_t rmt_rx_stop(rmt_channel_t channel)
  319. {
  320. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  321. RMT_ENTER_CRITICAL();
  322. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel)), false);
  323. rmt_ll_rx_enable(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), false);
  324. rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  325. #if SOC_RMT_SUPPORT_RX_PINGPONG
  326. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_THRES(RMT_DECODE_RX_CHANNEL(channel)), false);
  327. #endif
  328. RMT_EXIT_CRITICAL();
  329. return ESP_OK;
  330. }
  331. esp_err_t rmt_tx_memory_reset(rmt_channel_t channel)
  332. {
  333. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  334. RMT_ENTER_CRITICAL();
  335. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  336. RMT_EXIT_CRITICAL();
  337. return ESP_OK;
  338. }
  339. esp_err_t rmt_rx_memory_reset(rmt_channel_t channel)
  340. {
  341. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  342. RMT_ENTER_CRITICAL();
  343. rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  344. RMT_EXIT_CRITICAL();
  345. return ESP_OK;
  346. }
  347. esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
  348. {
  349. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  350. ESP_RETURN_ON_FALSE(owner < RMT_MEM_OWNER_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_OWNER_ERROR_STR);
  351. RMT_ENTER_CRITICAL();
  352. rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), owner);
  353. RMT_EXIT_CRITICAL();
  354. return ESP_OK;
  355. }
  356. esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t *owner)
  357. {
  358. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  359. ESP_RETURN_ON_FALSE(owner, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_OWNER_ERROR_STR);
  360. RMT_ENTER_CRITICAL();
  361. *owner = (rmt_mem_owner_t)rmt_ll_rx_get_mem_owner(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  362. RMT_EXIT_CRITICAL();
  363. return ESP_OK;
  364. }
  365. esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
  366. {
  367. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  368. RMT_ENTER_CRITICAL();
  369. rmt_ll_tx_enable_loop(rmt_contex.hal.regs, channel, loop_en);
  370. RMT_EXIT_CRITICAL();
  371. return ESP_OK;
  372. }
  373. esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool *loop_en)
  374. {
  375. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  376. RMT_ENTER_CRITICAL();
  377. *loop_en = rmt_ll_tx_is_loop_enabled(rmt_contex.hal.regs, channel);
  378. RMT_EXIT_CRITICAL();
  379. return ESP_OK;
  380. }
  381. esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
  382. {
  383. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  384. RMT_ENTER_CRITICAL();
  385. rmt_ll_rx_enable_filter(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), rx_filter_en);
  386. rmt_ll_rx_set_filter_thres(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), thresh);
  387. RMT_EXIT_CRITICAL();
  388. return ESP_OK;
  389. }
  390. esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
  391. {
  392. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  393. RMT_ENTER_CRITICAL();
  394. // `rmt_clock_source_t` and `rmt_source_clk_t` are binary compatible, as the underlying enum entries come from the same `soc_module_clk_t`
  395. RMT_CLOCK_SRC_ATOMIC() {
  396. rmt_ll_set_group_clock_src(rmt_contex.hal.regs, channel, (rmt_clock_source_t)base_clk, 1, 0, 0);
  397. }
  398. RMT_EXIT_CRITICAL();
  399. return ESP_OK;
  400. }
  401. esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t *src_clk)
  402. {
  403. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  404. RMT_ENTER_CRITICAL();
  405. // `rmt_clock_source_t` and `rmt_source_clk_t` are binary compatible, as the underlying enum entries come from the same `soc_module_clk_t`
  406. *src_clk = (rmt_source_clk_t)rmt_ll_get_group_clock_src(rmt_contex.hal.regs, channel);
  407. RMT_EXIT_CRITICAL();
  408. return ESP_OK;
  409. }
  410. esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
  411. {
  412. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  413. ESP_RETURN_ON_FALSE(level < RMT_IDLE_LEVEL_MAX, ESP_ERR_INVALID_ARG, TAG, "RMT IDLE LEVEL ERR");
  414. RMT_ENTER_CRITICAL();
  415. rmt_ll_tx_fix_idle_level(rmt_contex.hal.regs, channel, level, idle_out_en);
  416. RMT_EXIT_CRITICAL();
  417. return ESP_OK;
  418. }
  419. esp_err_t rmt_get_idle_level(rmt_channel_t channel, bool *idle_out_en, rmt_idle_level_t *level)
  420. {
  421. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  422. RMT_ENTER_CRITICAL();
  423. *idle_out_en = rmt_ll_tx_is_idle_enabled(rmt_contex.hal.regs, channel);
  424. *level = rmt_ll_tx_get_idle_level(rmt_contex.hal.regs, channel);
  425. RMT_EXIT_CRITICAL();
  426. return ESP_OK;
  427. }
  428. esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t *status)
  429. {
  430. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  431. RMT_ENTER_CRITICAL();
  432. if (RMT_IS_RX_CHANNEL(channel)) {
  433. *status = rmt_ll_rx_get_status_word(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  434. } else {
  435. *status = rmt_ll_tx_get_status_word(rmt_contex.hal.regs, channel);
  436. }
  437. RMT_EXIT_CRITICAL();
  438. return ESP_OK;
  439. }
  440. esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
  441. {
  442. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  443. RMT_ENTER_CRITICAL();
  444. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel)), en);
  445. RMT_EXIT_CRITICAL();
  446. return ESP_OK;
  447. }
  448. esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
  449. {
  450. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  451. RMT_ENTER_CRITICAL();
  452. if (RMT_IS_RX_CHANNEL(channel)) {
  453. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_ERROR(RMT_DECODE_RX_CHANNEL(channel)), en);
  454. } else {
  455. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_ERROR(channel), en);
  456. }
  457. RMT_EXIT_CRITICAL();
  458. return ESP_OK;
  459. }
  460. esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
  461. {
  462. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  463. RMT_ENTER_CRITICAL();
  464. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_DONE(channel), en);
  465. RMT_EXIT_CRITICAL();
  466. return ESP_OK;
  467. }
  468. esp_err_t rmt_set_tx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  469. {
  470. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  471. if (en) {
  472. uint32_t item_block_len = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel) * RMT_MEM_ITEM_NUM;
  473. ESP_RETURN_ON_FALSE(evt_thresh <= item_block_len, ESP_ERR_INVALID_ARG, TAG, "RMT EVT THRESH ERR");
  474. RMT_ENTER_CRITICAL();
  475. rmt_ll_tx_set_limit(rmt_contex.hal.regs, channel, evt_thresh);
  476. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_THRES(channel), true);
  477. RMT_EXIT_CRITICAL();
  478. } else {
  479. RMT_ENTER_CRITICAL();
  480. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_THRES(channel), false);
  481. RMT_EXIT_CRITICAL();
  482. }
  483. return ESP_OK;
  484. }
  485. esp_err_t rmt_set_gpio(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num, bool invert_signal)
  486. {
  487. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  488. ESP_RETURN_ON_FALSE(mode < RMT_MODE_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_MODE_ERROR_STR);
  489. ESP_RETURN_ON_FALSE(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) ||
  490. (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))), ESP_ERR_INVALID_ARG, TAG, RMT_GPIO_ERROR_STR);
  491. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  492. if (mode == RMT_MODE_TX) {
  493. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  494. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  495. esp_rom_gpio_connect_out_signal(gpio_num, rmt_periph_signals.groups[0].channels[channel].tx_sig, invert_signal, 0);
  496. } else {
  497. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  498. gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
  499. esp_rom_gpio_connect_in_signal(gpio_num, rmt_periph_signals.groups[0].channels[channel].rx_sig, invert_signal);
  500. }
  501. return ESP_OK;
  502. }
  503. static bool rmt_is_channel_number_valid(rmt_channel_t channel, uint8_t mode)
  504. {
  505. // RX mode
  506. if (mode == RMT_MODE_RX) {
  507. return RMT_IS_RX_CHANNEL(channel) && (channel < RMT_CHANNEL_MAX);
  508. }
  509. // TX mode
  510. return (channel >= 0) && RMT_IS_TX_CHANNEL(channel);
  511. }
  512. static esp_err_t rmt_internal_config(rmt_dev_t *dev, const rmt_config_t *rmt_param)
  513. {
  514. uint8_t mode = rmt_param->rmt_mode;
  515. uint8_t channel = rmt_param->channel;
  516. uint8_t gpio_num = rmt_param->gpio_num;
  517. uint8_t mem_cnt = rmt_param->mem_block_num;
  518. uint8_t clk_div = rmt_param->clk_div;
  519. uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
  520. bool carrier_en = rmt_param->tx_config.carrier_en;
  521. uint32_t rmt_source_clk_hz;
  522. rmt_clock_source_t clk_src = RMT_BASECLK_DEFAULT;
  523. ESP_RETURN_ON_FALSE(rmt_is_channel_number_valid(channel, mode), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  524. ESP_RETURN_ON_FALSE(mem_cnt + channel <= SOC_RMT_CHANNELS_PER_GROUP && mem_cnt > 0, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_CNT_ERROR_STR);
  525. ESP_RETURN_ON_FALSE(clk_div > 0, ESP_ERR_INVALID_ARG, TAG, RMT_CLK_DIV_ERROR_STR);
  526. if (mode == RMT_MODE_TX) {
  527. ESP_RETURN_ON_FALSE(!carrier_en || carrier_freq_hz > 0, ESP_ERR_INVALID_ARG, TAG, "RMT carrier frequency can't be zero");
  528. }
  529. RMT_ENTER_CRITICAL();
  530. rmt_ll_enable_mem_access_nonfifo(dev, true);
  531. if (rmt_param->flags & RMT_CHANNEL_FLAGS_AWARE_DFS) {
  532. #if SOC_RMT_SUPPORT_XTAL
  533. // clock src: XTAL_CLK
  534. clk_src = RMT_BASECLK_XTAL;
  535. #elif SOC_RMT_SUPPORT_REF_TICK
  536. // clock src: REF_CLK
  537. clk_src = RMT_BASECLK_REF;
  538. #else
  539. #error "No clock source is aware of DFS"
  540. #endif
  541. }
  542. esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_src, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &rmt_source_clk_hz);
  543. RMT_CLOCK_SRC_ATOMIC() {
  544. rmt_ll_set_group_clock_src(dev, channel, clk_src, 1, 0, 0);
  545. rmt_ll_enable_group_clock(dev, true);
  546. }
  547. RMT_EXIT_CRITICAL();
  548. #if SOC_RMT_CHANNEL_CLK_INDEPENDENT
  549. s_rmt_source_clock_hz[channel] = rmt_source_clk_hz;
  550. #else
  551. if (s_rmt_source_clock_hz && rmt_source_clk_hz != s_rmt_source_clock_hz) {
  552. ESP_LOGW(TAG, "RMT clock source has been configured to %"PRIu32" by other channel, now reconfigure it to %"PRIu32, s_rmt_source_clock_hz, rmt_source_clk_hz);
  553. }
  554. s_rmt_source_clock_hz = rmt_source_clk_hz;
  555. #endif
  556. ESP_LOGD(TAG, "rmt_source_clk_hz: %"PRIu32, rmt_source_clk_hz);
  557. if (mode == RMT_MODE_TX) {
  558. uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
  559. uint8_t carrier_level = rmt_param->tx_config.carrier_level;
  560. uint8_t idle_level = rmt_param->tx_config.idle_level;
  561. RMT_ENTER_CRITICAL();
  562. rmt_ll_tx_set_channel_clock_div(dev, channel, clk_div);
  563. rmt_ll_tx_set_mem_blocks(dev, channel, mem_cnt);
  564. rmt_ll_tx_reset_pointer(dev, channel);
  565. rmt_ll_tx_enable_loop(dev, channel, rmt_param->tx_config.loop_en);
  566. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  567. if (rmt_param->tx_config.loop_en) {
  568. rmt_ll_tx_set_loop_count(dev, channel, rmt_param->tx_config.loop_count);
  569. }
  570. #endif
  571. /* always enable tx ping-pong */
  572. rmt_ll_tx_enable_wrap(dev, channel, true);
  573. /*Set idle level */
  574. rmt_ll_tx_fix_idle_level(dev, channel, idle_level, rmt_param->tx_config.idle_output_en);
  575. /*Set carrier*/
  576. rmt_ll_tx_enable_carrier_modulation(dev, channel, carrier_en);
  577. if (carrier_en) {
  578. uint32_t duty_div, duty_h, duty_l;
  579. duty_div = rmt_source_clk_hz / carrier_freq_hz;
  580. duty_h = duty_div * carrier_duty_percent / 100;
  581. duty_l = duty_div - duty_h;
  582. rmt_ll_tx_set_carrier_level(dev, channel, carrier_level);
  583. rmt_ll_tx_set_carrier_high_low_ticks(dev, channel, duty_h, duty_l);
  584. } else {
  585. rmt_ll_tx_set_carrier_level(dev, channel, 0);
  586. }
  587. RMT_EXIT_CRITICAL();
  588. ESP_LOGD(TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %"PRIu32"|Div %u|Carrier_Hz %"PRIu32"|Duty %u",
  589. channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
  590. } else if (RMT_MODE_RX == mode) {
  591. uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
  592. uint16_t threshold = rmt_param->rx_config.idle_threshold;
  593. RMT_ENTER_CRITICAL();
  594. rmt_ll_rx_set_channel_clock_div(dev, RMT_DECODE_RX_CHANNEL(channel), clk_div);
  595. rmt_ll_rx_set_mem_blocks(dev, RMT_DECODE_RX_CHANNEL(channel), mem_cnt);
  596. rmt_ll_rx_reset_pointer(dev, RMT_DECODE_RX_CHANNEL(channel));
  597. rmt_ll_rx_set_mem_owner(dev, RMT_DECODE_RX_CHANNEL(channel), RMT_LL_MEM_OWNER_HW);
  598. /*Set idle threshold*/
  599. rmt_ll_rx_set_idle_thres(dev, RMT_DECODE_RX_CHANNEL(channel), threshold);
  600. /* Set RX filter */
  601. rmt_ll_rx_set_filter_thres(dev, RMT_DECODE_RX_CHANNEL(channel), filter_cnt);
  602. rmt_ll_rx_enable_filter(dev, RMT_DECODE_RX_CHANNEL(channel), rmt_param->rx_config.filter_en);
  603. #if SOC_RMT_SUPPORT_RX_PINGPONG
  604. /* always enable rx ping-pong */
  605. rmt_ll_rx_enable_wrap(dev, RMT_DECODE_RX_CHANNEL(channel), true);
  606. #endif
  607. #if SOC_RMT_SUPPORT_RX_DEMODULATION
  608. rmt_ll_rx_enable_carrier_demodulation(dev, RMT_DECODE_RX_CHANNEL(channel), rmt_param->rx_config.rm_carrier);
  609. if (rmt_param->rx_config.rm_carrier) {
  610. uint32_t duty_total = rmt_source_clk_hz / rmt_ll_rx_get_channel_clock_div(dev, RMT_DECODE_RX_CHANNEL(channel)) / rmt_param->rx_config.carrier_freq_hz;
  611. uint32_t duty_high = duty_total * rmt_param->rx_config.carrier_duty_percent / 100;
  612. // there could be residual in timing the carrier pulse, so double enlarge the theoretical value
  613. rmt_ll_rx_set_carrier_high_low_ticks(dev, RMT_DECODE_RX_CHANNEL(channel), duty_high * 2, (duty_total - duty_high) * 2);
  614. rmt_ll_rx_set_carrier_level(dev, RMT_DECODE_RX_CHANNEL(channel), rmt_param->rx_config.carrier_level);
  615. }
  616. #endif
  617. RMT_EXIT_CRITICAL();
  618. ESP_LOGD(TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %"PRIu32"|Div %u|Thresold %u|Filter %u",
  619. channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
  620. }
  621. return ESP_OK;
  622. }
  623. esp_err_t rmt_config(const rmt_config_t *rmt_param)
  624. {
  625. rmt_module_enable();
  626. ESP_RETURN_ON_ERROR(rmt_set_gpio(rmt_param->channel, rmt_param->rmt_mode, rmt_param->gpio_num, rmt_param->flags & RMT_CHANNEL_FLAGS_INVERT_SIG), TAG, "set gpio for RMT driver failed");
  627. ESP_RETURN_ON_ERROR(rmt_internal_config(&RMT, rmt_param), TAG, "initialize RMT driver failed");
  628. return ESP_OK;
  629. }
  630. static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, const rmt_item32_t *item,
  631. uint16_t item_num, uint16_t mem_offset)
  632. {
  633. uint32_t *from = (uint32_t *)item;
  634. volatile uint32_t *to = (volatile uint32_t *)&RMTMEM.chan[channel].data32[0].val;
  635. to += mem_offset;
  636. while (item_num--) {
  637. *to++ = *from++;
  638. }
  639. }
  640. esp_err_t rmt_fill_tx_items(rmt_channel_t channel, const rmt_item32_t *item, uint16_t item_num, uint16_t mem_offset)
  641. {
  642. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), (0), TAG, RMT_CHANNEL_ERROR_STR);
  643. ESP_RETURN_ON_FALSE(item, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  644. ESP_RETURN_ON_FALSE(item_num > 0, ESP_ERR_INVALID_ARG, TAG, RMT_DRIVER_LENGTH_ERROR_STR);
  645. uint8_t mem_cnt = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel);
  646. ESP_RETURN_ON_FALSE(mem_cnt * RMT_MEM_ITEM_NUM >= item_num, ESP_ERR_INVALID_ARG, TAG, RMT_WR_MEM_OVF_ERROR_STR);
  647. rmt_fill_memory(channel, item, item_num, mem_offset);
  648. return ESP_OK;
  649. }
  650. esp_err_t rmt_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, rmt_isr_handle_t *handle)
  651. {
  652. ESP_RETURN_ON_FALSE(fn, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  653. ESP_RETURN_ON_FALSE(rmt_contex.rmt_driver_channels == 0, ESP_FAIL, TAG, "RMT driver installed, can not install generic ISR handler");
  654. return esp_intr_alloc(rmt_periph_signals.groups[0].irq, intr_alloc_flags, fn, arg, handle);
  655. }
  656. esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)
  657. {
  658. return esp_intr_free(handle);
  659. }
  660. static void IRAM_ATTR rmt_driver_isr_default(void *arg)
  661. {
  662. uint32_t status = 0;
  663. rmt_item32_t *addr = NULL;
  664. uint8_t channel = 0;
  665. rmt_hal_context_t *hal = (rmt_hal_context_t *)arg;
  666. BaseType_t HPTaskAwoken = pdFALSE;
  667. // Tx end interrupt
  668. status = rmt_ll_get_tx_end_interrupt_status(hal->regs);
  669. while (status) {
  670. channel = __builtin_ffs(status) - 1;
  671. status &= ~(1 << channel);
  672. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  673. if (p_rmt) {
  674. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  675. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  676. p_rmt->tx_data = NULL;
  677. p_rmt->tx_len_rem = 0;
  678. p_rmt->tx_offset = 0;
  679. p_rmt->tx_sub_len = 0;
  680. p_rmt->sample_cur = NULL;
  681. p_rmt->translator = false;
  682. if (rmt_contex.rmt_tx_end_callback.function) {
  683. rmt_contex.rmt_tx_end_callback.function(channel, rmt_contex.rmt_tx_end_callback.arg);
  684. }
  685. }
  686. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_DONE(channel));
  687. }
  688. // Tx thres interrupt
  689. status = rmt_ll_get_tx_thres_interrupt_status(hal->regs);
  690. while (status) {
  691. channel = __builtin_ffs(status) - 1;
  692. status &= ~(1 << channel);
  693. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  694. if (p_rmt) {
  695. if (p_rmt->translator) {
  696. if (p_rmt->sample_size_remain > 0) {
  697. size_t translated_size = 0;
  698. p_rmt->sample_to_rmt((void *)p_rmt->sample_cur,
  699. p_rmt->tx_buf,
  700. p_rmt->sample_size_remain,
  701. p_rmt->tx_sub_len,
  702. &translated_size,
  703. &p_rmt->tx_len_rem);
  704. p_rmt->sample_size_remain -= translated_size;
  705. p_rmt->sample_cur += translated_size;
  706. p_rmt->tx_data = p_rmt->tx_buf;
  707. } else {
  708. p_rmt->sample_cur = NULL;
  709. p_rmt->translator = false;
  710. }
  711. }
  712. const rmt_item32_t *pdata = p_rmt->tx_data;
  713. size_t len_rem = p_rmt->tx_len_rem;
  714. rmt_idle_level_t idle_level = rmt_ll_tx_get_idle_level(hal->regs, channel);
  715. rmt_item32_t stop_data = (rmt_item32_t) {
  716. .level0 = idle_level,
  717. .duration0 = 0,
  718. };
  719. if (len_rem >= p_rmt->tx_sub_len) {
  720. rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
  721. p_rmt->tx_data += p_rmt->tx_sub_len;
  722. p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
  723. } else if (len_rem == 0) {
  724. rmt_fill_memory(channel, &stop_data, 1, p_rmt->tx_offset);
  725. } else {
  726. rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
  727. rmt_fill_memory(channel, &stop_data, 1, p_rmt->tx_offset + len_rem);
  728. p_rmt->tx_data += len_rem;
  729. p_rmt->tx_len_rem -= len_rem;
  730. }
  731. if (p_rmt->tx_offset == 0) {
  732. p_rmt->tx_offset = p_rmt->tx_sub_len;
  733. } else {
  734. p_rmt->tx_offset = 0;
  735. }
  736. }
  737. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_THRES(channel));
  738. }
  739. // Rx end interrupt
  740. status = rmt_ll_get_rx_end_interrupt_status(hal->regs);
  741. while (status) {
  742. channel = __builtin_ffs(status) - 1;
  743. status &= ~(1 << channel);
  744. rmt_obj_t *p_rmt = p_rmt_obj[RMT_ENCODE_RX_CHANNEL(channel)];
  745. if (p_rmt) {
  746. rmt_ll_rx_enable(rmt_contex.hal.regs, channel, false);
  747. int item_len = rmt_ll_rx_get_memory_writer_offset(rmt_contex.hal.regs, channel);
  748. rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_SW);
  749. if (p_rmt->rx_buf) {
  750. addr = (rmt_item32_t *)RMTMEM.chan[RMT_ENCODE_RX_CHANNEL(channel)].data32;
  751. #if SOC_RMT_SUPPORT_RX_PINGPONG
  752. if (item_len > p_rmt->rx_item_start_idx) {
  753. item_len = item_len - p_rmt->rx_item_start_idx;
  754. }
  755. memcpy((void *)(p_rmt->rx_item_buf + p_rmt->rx_item_len), (void *)(addr + p_rmt->rx_item_start_idx), item_len * 4);
  756. p_rmt->rx_item_len += item_len;
  757. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void *)(p_rmt->rx_item_buf), p_rmt->rx_item_len * 4, &HPTaskAwoken);
  758. #else
  759. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void *)addr, item_len * 4, &HPTaskAwoken);
  760. #endif
  761. if (res == pdFALSE) {
  762. ESP_DRAM_LOGE(TAG, "RMT RX BUFFER FULL");
  763. }
  764. } else {
  765. ESP_DRAM_LOGE(TAG, "RMT RX BUFFER ERROR");
  766. }
  767. #if SOC_RMT_SUPPORT_RX_PINGPONG
  768. p_rmt->rx_item_start_idx = 0;
  769. p_rmt->rx_item_len = 0;
  770. memset((void *)p_rmt->rx_item_buf, 0, p_rmt->rx_item_buf_size);
  771. #endif
  772. rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, channel);
  773. rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_HW);
  774. rmt_ll_rx_enable(rmt_contex.hal.regs, channel, true);
  775. }
  776. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_DONE(channel));
  777. }
  778. #if SOC_RMT_SUPPORT_RX_PINGPONG
  779. // Rx thres interrupt
  780. status = rmt_ll_get_rx_thres_interrupt_status(hal->regs);
  781. while (status) {
  782. channel = __builtin_ffs(status) - 1;
  783. status &= ~(1 << channel);
  784. rmt_obj_t *p_rmt = p_rmt_obj[RMT_ENCODE_RX_CHANNEL(channel)];
  785. int mem_item_size = rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, channel) * RMT_MEM_ITEM_NUM;
  786. int rx_thres_lim = rmt_ll_rx_get_limit(rmt_contex.hal.regs, channel);
  787. int item_len = (p_rmt->rx_item_start_idx == 0) ? rx_thres_lim : (mem_item_size - rx_thres_lim);
  788. if ((p_rmt->rx_item_len + item_len) < (p_rmt->rx_item_buf_size / 4)) {
  789. rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_SW);
  790. memcpy((void *)(p_rmt->rx_item_buf + p_rmt->rx_item_len), (void *)(RMTMEM.chan[RMT_ENCODE_RX_CHANNEL(channel)].data32 + p_rmt->rx_item_start_idx), item_len * 4);
  791. rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_HW);
  792. p_rmt->rx_item_len += item_len;
  793. p_rmt->rx_item_start_idx += item_len;
  794. if (p_rmt->rx_item_start_idx >= mem_item_size) {
  795. p_rmt->rx_item_start_idx = 0;
  796. }
  797. } else {
  798. ESP_DRAM_LOGE(TAG, "---RX buffer too small: %d", sizeof(p_rmt->rx_item_buf));
  799. }
  800. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_THRES(channel));
  801. }
  802. #endif
  803. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  804. // loop count interrupt
  805. status = rmt_ll_get_tx_loop_interrupt_status(hal->regs);
  806. while (status) {
  807. channel = __builtin_ffs(status) - 1;
  808. status &= ~(1 << channel);
  809. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  810. if (p_rmt) {
  811. if (p_rmt->loop_autostop) {
  812. #ifndef SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP
  813. // hardware doesn't support automatically stop output so driver should stop output here (possibility already overshotted several us)
  814. rmt_ll_tx_stop(rmt_contex.hal.regs, channel);
  815. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  816. #endif
  817. }
  818. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  819. if (rmt_contex.rmt_tx_end_callback.function) {
  820. rmt_contex.rmt_tx_end_callback.function(channel, rmt_contex.rmt_tx_end_callback.arg);
  821. }
  822. }
  823. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_LOOP_END(channel));
  824. }
  825. #endif
  826. // RX Err interrupt
  827. status = rmt_ll_get_rx_err_interrupt_status(hal->regs);
  828. while (status) {
  829. channel = __builtin_ffs(status) - 1;
  830. status &= ~(1 << channel);
  831. rmt_obj_t *p_rmt = p_rmt_obj[RMT_ENCODE_RX_CHANNEL(channel)];
  832. if (p_rmt) {
  833. // Reset the receiver's write/read addresses to prevent endless err interrupts.
  834. rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, channel);
  835. ESP_DRAM_LOGD(TAG, "RMT RX channel %d error", channel);
  836. ESP_DRAM_LOGD(TAG, "status: 0x%08x", rmt_ll_rx_get_status_word(rmt_contex.hal.regs, channel));
  837. }
  838. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_ERROR(channel));
  839. }
  840. // TX Err interrupt
  841. status = rmt_ll_get_tx_err_interrupt_status(hal->regs);
  842. while (status) {
  843. channel = __builtin_ffs(status) - 1;
  844. status &= ~(1 << channel);
  845. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  846. if (p_rmt) {
  847. // Reset the transmitter's write/read addresses to prevent endless err interrupts.
  848. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  849. ESP_DRAM_LOGD(TAG, "RMT TX channel %d error", channel);
  850. ESP_DRAM_LOGD(TAG, "status: 0x%08x", rmt_ll_tx_get_status_word(rmt_contex.hal.regs, channel));
  851. }
  852. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_ERROR(channel));
  853. }
  854. if (HPTaskAwoken == pdTRUE) {
  855. portYIELD_FROM_ISR();
  856. }
  857. }
  858. esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
  859. {
  860. esp_err_t err = ESP_OK;
  861. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  862. // we allow to call this uninstall function on the same channel for multiple times
  863. if (p_rmt_obj[channel] == NULL) {
  864. return ESP_OK;
  865. }
  866. //Avoid blocking here(when the interrupt is disabled and do not wait tx done).
  867. if (p_rmt_obj[channel]->wait_done) {
  868. xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
  869. }
  870. RMT_ENTER_CRITICAL();
  871. // check channel's working mode
  872. if (p_rmt_obj[channel]->rx_buf) {
  873. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_MASK(RMT_DECODE_RX_CHANNEL(channel)) | RMT_LL_EVENT_RX_ERROR(RMT_DECODE_RX_CHANNEL(channel)), false);
  874. } else {
  875. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_MASK(channel) | RMT_LL_EVENT_TX_ERROR(channel), false);
  876. }
  877. RMT_EXIT_CRITICAL();
  878. _lock_acquire_recursive(&(rmt_contex.rmt_driver_isr_lock));
  879. rmt_contex.rmt_driver_channels &= ~BIT(channel);
  880. if (rmt_contex.rmt_driver_channels == 0 && rmt_contex.rmt_driver_intr_handle) {
  881. rmt_module_disable();
  882. // all channels have driver disabled
  883. err = rmt_isr_deregister(rmt_contex.rmt_driver_intr_handle);
  884. rmt_contex.rmt_driver_intr_handle = NULL;
  885. }
  886. _lock_release_recursive(&(rmt_contex.rmt_driver_isr_lock));
  887. if (p_rmt_obj[channel]->tx_sem) {
  888. vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
  889. p_rmt_obj[channel]->tx_sem = NULL;
  890. }
  891. if (p_rmt_obj[channel]->rx_buf) {
  892. vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
  893. p_rmt_obj[channel]->rx_buf = NULL;
  894. }
  895. if (p_rmt_obj[channel]->tx_buf) {
  896. free(p_rmt_obj[channel]->tx_buf);
  897. p_rmt_obj[channel]->tx_buf = NULL;
  898. }
  899. if (p_rmt_obj[channel]->sample_to_rmt) {
  900. p_rmt_obj[channel]->sample_to_rmt = NULL;
  901. }
  902. #if SOC_RMT_SUPPORT_RX_PINGPONG
  903. if (p_rmt_obj[channel]->rx_item_buf) {
  904. free(p_rmt_obj[channel]->rx_item_buf);
  905. p_rmt_obj[channel]->rx_item_buf = NULL;
  906. p_rmt_obj[channel]->rx_item_buf_size = 0;
  907. }
  908. #endif
  909. free(p_rmt_obj[channel]);
  910. p_rmt_obj[channel] = NULL;
  911. return err;
  912. }
  913. esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags)
  914. {
  915. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  916. esp_err_t err = ESP_OK;
  917. if (p_rmt_obj[channel]) {
  918. ESP_LOGD(TAG, "RMT driver already installed");
  919. return ESP_ERR_INVALID_STATE;
  920. }
  921. #if CONFIG_RINGBUF_PLACE_ISR_FUNCTIONS_INTO_FLASH
  922. if (intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
  923. ESP_LOGE(TAG, "ringbuf ISR functions in flash, but used in IRAM interrupt");
  924. return ESP_ERR_INVALID_ARG;
  925. }
  926. #endif
  927. #if !CONFIG_SPIRAM_USE_MALLOC
  928. p_rmt_obj[channel] = calloc(1, sizeof(rmt_obj_t));
  929. #else
  930. if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  931. p_rmt_obj[channel] = calloc(1, sizeof(rmt_obj_t));
  932. } else {
  933. p_rmt_obj[channel] = heap_caps_calloc(1, sizeof(rmt_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  934. }
  935. #endif
  936. if (p_rmt_obj[channel] == NULL) {
  937. ESP_LOGE(TAG, "RMT driver malloc error");
  938. return ESP_ERR_NO_MEM;
  939. }
  940. p_rmt_obj[channel]->tx_len_rem = 0;
  941. p_rmt_obj[channel]->tx_data = NULL;
  942. p_rmt_obj[channel]->channel = channel;
  943. p_rmt_obj[channel]->tx_offset = 0;
  944. p_rmt_obj[channel]->tx_sub_len = 0;
  945. p_rmt_obj[channel]->wait_done = false;
  946. p_rmt_obj[channel]->loop_autostop = false;
  947. p_rmt_obj[channel]->translator = false;
  948. p_rmt_obj[channel]->sample_to_rmt = NULL;
  949. if (p_rmt_obj[channel]->tx_sem == NULL) {
  950. #if !CONFIG_SPIRAM_USE_MALLOC
  951. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  952. #else
  953. p_rmt_obj[channel]->intr_alloc_flags = intr_alloc_flags;
  954. if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  955. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  956. } else {
  957. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinaryStatic(&p_rmt_obj[channel]->tx_sem_buffer);
  958. }
  959. #endif
  960. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  961. }
  962. if (p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
  963. p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
  964. }
  965. #if SOC_RMT_SUPPORT_RX_PINGPONG
  966. if (p_rmt_obj[channel]->rx_item_buf == NULL && rx_buf_size > 0) {
  967. #if !CONFIG_SPIRAM_USE_MALLOC
  968. p_rmt_obj[channel]->rx_item_buf = calloc(1, rx_buf_size);
  969. #else
  970. if (!(p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  971. p_rmt_obj[channel]->rx_item_buf = calloc(1, rx_buf_size);
  972. } else {
  973. p_rmt_obj[channel]->rx_item_buf = heap_caps_calloc(1, rx_buf_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  974. }
  975. #endif
  976. if (p_rmt_obj[channel]->rx_item_buf == NULL) {
  977. ESP_LOGE(TAG, "RMT malloc fail");
  978. return ESP_FAIL;
  979. }
  980. p_rmt_obj[channel]->rx_item_buf_size = rx_buf_size;
  981. }
  982. #endif
  983. _lock_acquire_recursive(&(rmt_contex.rmt_driver_isr_lock));
  984. if (rmt_contex.rmt_driver_channels == 0) {
  985. // first RMT channel using driver
  986. err = rmt_isr_register(rmt_driver_isr_default, &rmt_contex.hal, intr_alloc_flags, &(rmt_contex.rmt_driver_intr_handle));
  987. }
  988. if (err == ESP_OK) {
  989. rmt_contex.rmt_driver_channels |= BIT(channel);
  990. }
  991. _lock_release_recursive(&(rmt_contex.rmt_driver_isr_lock));
  992. rmt_module_enable();
  993. if (RMT_IS_RX_CHANNEL(channel)) {
  994. rmt_hal_rx_channel_reset(&rmt_contex.hal, RMT_DECODE_RX_CHANNEL(channel));
  995. } else {
  996. rmt_hal_tx_channel_reset(&rmt_contex.hal, channel);
  997. }
  998. return err;
  999. }
  1000. esp_err_t rmt_write_items(rmt_channel_t channel, const rmt_item32_t *rmt_item, int item_num, bool wait_tx_done)
  1001. {
  1002. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1003. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  1004. ESP_RETURN_ON_FALSE(rmt_item, ESP_FAIL, TAG, RMT_ADDR_ERROR_STR);
  1005. ESP_RETURN_ON_FALSE(item_num > 0, ESP_ERR_INVALID_ARG, TAG, RMT_DRIVER_LENGTH_ERROR_STR);
  1006. uint32_t mem_blocks = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel);
  1007. ESP_RETURN_ON_FALSE(mem_blocks + channel <= SOC_RMT_CHANNELS_PER_GROUP, ESP_ERR_INVALID_STATE, TAG, RMT_MEM_CNT_ERROR_STR);
  1008. #if CONFIG_SPIRAM_USE_MALLOC
  1009. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  1010. if (!esp_ptr_internal(rmt_item)) {
  1011. ESP_LOGE(TAG, RMT_PSRAM_BUFFER_WARN_STR);
  1012. return ESP_ERR_INVALID_ARG;
  1013. }
  1014. }
  1015. #endif
  1016. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  1017. int item_block_len = mem_blocks * RMT_MEM_ITEM_NUM;
  1018. int item_sub_len = mem_blocks * RMT_MEM_ITEM_NUM / 2;
  1019. int len_rem = item_num;
  1020. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1021. // fill the memory block first
  1022. if (item_num >= item_block_len) {
  1023. rmt_fill_memory(channel, rmt_item, item_block_len, 0);
  1024. len_rem -= item_block_len;
  1025. rmt_set_tx_loop_mode(channel, false);
  1026. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  1027. p_rmt->tx_data = rmt_item + item_block_len;
  1028. p_rmt->tx_len_rem = len_rem;
  1029. p_rmt->tx_offset = 0;
  1030. p_rmt->tx_sub_len = item_sub_len;
  1031. } else {
  1032. rmt_fill_memory(channel, rmt_item, len_rem, 0);
  1033. rmt_idle_level_t idle_level = rmt_ll_tx_get_idle_level(rmt_contex.hal.regs, channel);
  1034. rmt_item32_t stop_data = (rmt_item32_t) {
  1035. .level0 = idle_level,
  1036. .duration0 = 0,
  1037. };
  1038. rmt_fill_memory(channel, &stop_data, 1, len_rem);
  1039. p_rmt->tx_len_rem = 0;
  1040. }
  1041. rmt_tx_start(channel, true);
  1042. p_rmt->wait_done = wait_tx_done;
  1043. if (wait_tx_done) {
  1044. // wait loop done
  1045. if (rmt_ll_tx_is_loop_enabled(rmt_contex.hal.regs, channel)) {
  1046. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  1047. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1048. xSemaphoreGive(p_rmt->tx_sem);
  1049. #endif
  1050. } else {
  1051. // wait tx end
  1052. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1053. xSemaphoreGive(p_rmt->tx_sem);
  1054. }
  1055. }
  1056. return ESP_OK;
  1057. }
  1058. esp_err_t rmt_wait_tx_done(rmt_channel_t channel, TickType_t wait_time)
  1059. {
  1060. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1061. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  1062. if (xSemaphoreTake(p_rmt_obj[channel]->tx_sem, wait_time) == pdTRUE) {
  1063. p_rmt_obj[channel]->wait_done = false;
  1064. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  1065. return ESP_OK;
  1066. } else {
  1067. if (wait_time != 0) {
  1068. // Don't emit error message if just polling.
  1069. ESP_LOGE(TAG, "Timeout on wait_tx_done");
  1070. }
  1071. return ESP_ERR_TIMEOUT;
  1072. }
  1073. }
  1074. esp_err_t rmt_get_ringbuf_handle(rmt_channel_t channel, RingbufHandle_t *buf_handle)
  1075. {
  1076. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1077. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  1078. ESP_RETURN_ON_FALSE(buf_handle, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  1079. *buf_handle = p_rmt_obj[channel]->rx_buf;
  1080. return ESP_OK;
  1081. }
  1082. rmt_tx_end_callback_t rmt_register_tx_end_callback(rmt_tx_end_fn_t function, void *arg)
  1083. {
  1084. rmt_tx_end_callback_t previous = rmt_contex.rmt_tx_end_callback;
  1085. rmt_contex.rmt_tx_end_callback.function = function;
  1086. rmt_contex.rmt_tx_end_callback.arg = arg;
  1087. return previous;
  1088. }
  1089. esp_err_t rmt_translator_init(rmt_channel_t channel, sample_to_rmt_t fn)
  1090. {
  1091. ESP_RETURN_ON_FALSE(fn, ESP_ERR_INVALID_ARG, TAG, RMT_TRANSLATOR_NULL_STR);
  1092. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1093. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  1094. uint32_t mem_blocks = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel);
  1095. ESP_RETURN_ON_FALSE(mem_blocks + channel <= SOC_RMT_CHANNELS_PER_GROUP, ESP_ERR_INVALID_STATE, TAG, RMT_MEM_CNT_ERROR_STR);
  1096. const uint32_t block_size = mem_blocks * RMT_MEM_ITEM_NUM * sizeof(rmt_item32_t);
  1097. if (p_rmt_obj[channel]->tx_buf == NULL) {
  1098. #if !CONFIG_SPIRAM_USE_MALLOC
  1099. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)calloc(1, block_size);
  1100. #else
  1101. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  1102. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)heap_caps_calloc(1, block_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  1103. } else {
  1104. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)calloc(1, block_size);
  1105. }
  1106. #endif
  1107. if (p_rmt_obj[channel]->tx_buf == NULL) {
  1108. ESP_LOGE(TAG, "RMT translator buffer create fail");
  1109. return ESP_FAIL;
  1110. }
  1111. }
  1112. p_rmt_obj[channel]->sample_to_rmt = fn;
  1113. p_rmt_obj[channel]->tx_context = NULL;
  1114. p_rmt_obj[channel]->sample_size_remain = 0;
  1115. p_rmt_obj[channel]->sample_cur = NULL;
  1116. ESP_LOGD(TAG, "RMT translator init done");
  1117. return ESP_OK;
  1118. }
  1119. esp_err_t rmt_translator_set_context(rmt_channel_t channel, void *context)
  1120. {
  1121. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1122. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  1123. p_rmt_obj[channel]->tx_context = context;
  1124. return ESP_OK;
  1125. }
  1126. esp_err_t rmt_translator_get_context(const size_t *item_num, void **context)
  1127. {
  1128. ESP_RETURN_ON_FALSE(item_num && context, ESP_ERR_INVALID_ARG, TAG, "invalid arguments");
  1129. // the address of tx_len_rem is directlly passed to the callback,
  1130. // so it's possible to get the object address from that
  1131. rmt_obj_t *obj = __containerof(item_num, rmt_obj_t, tx_len_rem);
  1132. *context = obj->tx_context;
  1133. return ESP_OK;
  1134. }
  1135. esp_err_t rmt_write_sample(rmt_channel_t channel, const uint8_t *src, size_t src_size, bool wait_tx_done)
  1136. {
  1137. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1138. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  1139. ESP_RETURN_ON_FALSE(p_rmt_obj[channel]->sample_to_rmt, ESP_FAIL, TAG, RMT_TRANSLATOR_UNINIT_STR);
  1140. uint32_t mem_blocks = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel);
  1141. ESP_RETURN_ON_FALSE(mem_blocks + channel <= SOC_RMT_CHANNELS_PER_GROUP, ESP_ERR_INVALID_STATE, TAG, RMT_MEM_CNT_ERROR_STR);
  1142. #if CONFIG_SPIRAM_USE_MALLOC
  1143. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  1144. if (!esp_ptr_internal(src)) {
  1145. ESP_LOGE(TAG, RMT_PSRAM_BUFFER_WARN_STR);
  1146. return ESP_ERR_INVALID_ARG;
  1147. }
  1148. }
  1149. #endif
  1150. size_t translated_size = 0;
  1151. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  1152. const uint32_t item_block_len = mem_blocks * RMT_MEM_ITEM_NUM;
  1153. const uint32_t item_sub_len = item_block_len / 2;
  1154. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1155. p_rmt->sample_to_rmt((void *)src, p_rmt->tx_buf, src_size, item_block_len, &translated_size, &p_rmt->tx_len_rem);
  1156. p_rmt->sample_size_remain = src_size - translated_size;
  1157. p_rmt->sample_cur = src + translated_size;
  1158. rmt_fill_memory(channel, p_rmt->tx_buf, p_rmt->tx_len_rem, 0);
  1159. if (p_rmt->tx_len_rem == item_block_len) {
  1160. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  1161. p_rmt->tx_data = p_rmt->tx_buf;
  1162. p_rmt->tx_offset = 0;
  1163. p_rmt->tx_sub_len = item_sub_len;
  1164. p_rmt->translator = true;
  1165. } else {
  1166. rmt_idle_level_t idle_level = rmt_ll_tx_get_idle_level(rmt_contex.hal.regs, channel);
  1167. rmt_item32_t stop_data = (rmt_item32_t) {
  1168. .level0 = idle_level,
  1169. .duration0 = 0,
  1170. };
  1171. rmt_fill_memory(channel, &stop_data, 1, p_rmt->tx_len_rem);
  1172. p_rmt->tx_len_rem = 0;
  1173. p_rmt->sample_cur = NULL;
  1174. p_rmt->translator = false;
  1175. }
  1176. rmt_tx_start(channel, true);
  1177. p_rmt->wait_done = wait_tx_done;
  1178. if (wait_tx_done) {
  1179. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1180. xSemaphoreGive(p_rmt->tx_sem);
  1181. }
  1182. return ESP_OK;
  1183. }
  1184. esp_err_t rmt_get_channel_status(rmt_channel_status_result_t *channel_status)
  1185. {
  1186. ESP_RETURN_ON_FALSE(channel_status, ESP_ERR_INVALID_ARG, TAG, RMT_PARAM_ERR_STR);
  1187. for (int i = 0; i < RMT_CHANNEL_MAX; i++) {
  1188. channel_status->status[i] = RMT_CHANNEL_UNINIT;
  1189. if (p_rmt_obj[i]) {
  1190. if (p_rmt_obj[i]->tx_sem) {
  1191. if (xSemaphoreTake(p_rmt_obj[i]->tx_sem, (TickType_t)0) == pdTRUE) {
  1192. channel_status->status[i] = RMT_CHANNEL_IDLE;
  1193. xSemaphoreGive(p_rmt_obj[i]->tx_sem);
  1194. } else {
  1195. channel_status->status[i] = RMT_CHANNEL_BUSY;
  1196. }
  1197. }
  1198. }
  1199. }
  1200. return ESP_OK;
  1201. }
  1202. esp_err_t rmt_get_counter_clock(rmt_channel_t channel, uint32_t *clock_hz)
  1203. {
  1204. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1205. ESP_RETURN_ON_FALSE(clock_hz, ESP_ERR_INVALID_ARG, TAG, "parameter clock_hz can't be null");
  1206. RMT_ENTER_CRITICAL();
  1207. uint32_t rmt_source_clk_hz = 0;
  1208. #if SOC_RMT_CHANNEL_CLK_INDEPENDENT
  1209. rmt_source_clk_hz = s_rmt_source_clock_hz[channel];
  1210. #else
  1211. rmt_source_clk_hz = s_rmt_source_clock_hz;
  1212. #endif
  1213. if (RMT_IS_RX_CHANNEL(channel)) {
  1214. *clock_hz = rmt_source_clk_hz / rmt_ll_rx_get_channel_clock_div(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  1215. } else {
  1216. *clock_hz = rmt_source_clk_hz / rmt_ll_tx_get_channel_clock_div(rmt_contex.hal.regs, channel);
  1217. }
  1218. RMT_EXIT_CRITICAL();
  1219. return ESP_OK;
  1220. }
  1221. #if SOC_RMT_SUPPORT_TX_SYNCHRO
  1222. esp_err_t rmt_add_channel_to_group(rmt_channel_t channel)
  1223. {
  1224. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1225. RMT_ENTER_CRITICAL();
  1226. rmt_ll_tx_enable_sync(rmt_contex.hal.regs, true);
  1227. rmt_contex.synchro_channel_mask |= (1 << channel);
  1228. rmt_ll_tx_sync_group_add_channels(rmt_contex.hal.regs, 1 << channel);
  1229. rmt_ll_tx_reset_channels_clock_div(rmt_contex.hal.regs, rmt_contex.synchro_channel_mask);
  1230. RMT_EXIT_CRITICAL();
  1231. return ESP_OK;
  1232. }
  1233. esp_err_t rmt_remove_channel_from_group(rmt_channel_t channel)
  1234. {
  1235. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1236. RMT_ENTER_CRITICAL();
  1237. rmt_contex.synchro_channel_mask &= ~(1 << channel);
  1238. rmt_ll_tx_sync_group_remove_channels(rmt_contex.hal.regs, 1 << channel);
  1239. if (rmt_contex.synchro_channel_mask == 0) {
  1240. rmt_ll_tx_enable_sync(rmt_contex.hal.regs, false);
  1241. }
  1242. RMT_EXIT_CRITICAL();
  1243. return ESP_OK;
  1244. }
  1245. #endif
  1246. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  1247. esp_err_t rmt_set_tx_loop_count(rmt_channel_t channel, uint32_t count)
  1248. {
  1249. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1250. ESP_RETURN_ON_FALSE(count <= RMT_LL_MAX_LOOP_COUNT_PER_BATCH, ESP_ERR_INVALID_ARG, TAG, "Invalid count value");
  1251. RMT_ENTER_CRITICAL();
  1252. rmt_ll_tx_set_loop_count(rmt_contex.hal.regs, channel, count);
  1253. RMT_EXIT_CRITICAL();
  1254. return ESP_OK;
  1255. }
  1256. esp_err_t rmt_enable_tx_loop_autostop(rmt_channel_t channel, bool en)
  1257. {
  1258. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1259. p_rmt_obj[channel]->loop_autostop = en;
  1260. #if SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP
  1261. RMT_ENTER_CRITICAL();
  1262. rmt_ll_tx_enable_loop_autostop(rmt_contex.hal.regs, channel, en);
  1263. RMT_EXIT_CRITICAL();
  1264. #endif
  1265. return ESP_OK;
  1266. }
  1267. #endif
  1268. /**
  1269. * @brief This function will be called during start up, to check that this legacy RMT driver is not running along with the new driver
  1270. */
  1271. __attribute__((constructor))
  1272. static void check_rmt_legacy_driver_conflict(void)
  1273. {
  1274. // This function was declared as weak here. The new RMT driver has one implementation.
  1275. // So if the new RMT driver is not linked in, then `rmt_acquire_group_handle()` should be NULL at runtime.
  1276. extern __attribute__((weak)) void *rmt_acquire_group_handle(int group_id);
  1277. if ((void *)rmt_acquire_group_handle != NULL) {
  1278. ESP_EARLY_LOGE(TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver");
  1279. abort();
  1280. }
  1281. ESP_EARLY_LOGW(TAG, "legacy driver is deprecated, please migrate to `driver/rmt_tx.h` and/or `driver/rmt_rx.h`");
  1282. }