ledc.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include <sys/param.h>
  8. #include "esp_types.h"
  9. #include "freertos/FreeRTOS.h"
  10. #include "freertos/semphr.h"
  11. #include "freertos/idf_additions.h"
  12. #include "esp_log.h"
  13. #include "esp_check.h"
  14. #include "soc/gpio_periph.h"
  15. #include "soc/ledc_periph.h"
  16. #include "esp_clk_tree.h"
  17. #include "soc/soc_caps.h"
  18. #include "hal/ledc_hal.h"
  19. #include "hal/gpio_hal.h"
  20. #include "driver/ledc.h"
  21. #include "esp_rom_gpio.h"
  22. #include "esp_rom_sys.h"
  23. #include "clk_ctrl_os.h"
  24. #include "esp_private/periph_ctrl.h"
  25. #include "esp_memory_utils.h"
  26. static __attribute__((unused)) const char *LEDC_TAG = "ledc";
  27. #define LEDC_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, LEDC_TAG, "%s", str)
  28. #define LEDC_ARG_CHECK(a, param) ESP_RETURN_ON_FALSE(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid")
  29. #define LEDC_CHECK_ISR(a, str, ret_val) ESP_RETURN_ON_FALSE_ISR(a, ret_val, LEDC_TAG, "%s", str)
  30. #define LEDC_ARG_CHECK_ISR(a, param) ESP_RETURN_ON_FALSE_ISR(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid")
  31. #define LEDC_CLK_NOT_FOUND 0
  32. #define LEDC_SLOW_CLK_UNINIT -1
  33. #define LEDC_TIMER_SPECIFIC_CLK_UNINIT -1
  34. // Precision degree only affects RC_FAST, other clock sources' frequences are fixed values
  35. // For targets that do not support RC_FAST calibration, can only use its approx. value. Precision degree other than
  36. // APPROX will trigger LOGW during the call to `esp_clk_tree_src_get_freq_hz`.
  37. #if SOC_CLK_RC_FAST_SUPPORT_CALIBRATION
  38. #define LEDC_CLK_SRC_FREQ_PRECISION ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED
  39. #else
  40. #define LEDC_CLK_SRC_FREQ_PRECISION ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX
  41. #endif
  42. #if !SOC_RCC_IS_INDEPENDENT
  43. #define LEDC_BUS_CLOCK_ATOMIC() PERIPH_RCC_ATOMIC()
  44. #else
  45. #define LEDC_BUS_CLOCK_ATOMIC()
  46. #endif
  47. #if SOC_PERIPH_CLK_CTRL_SHARED
  48. #define LEDC_FUNC_CLOCK_ATOMIC() PERIPH_RCC_ATOMIC()
  49. #else
  50. #define LEDC_FUNC_CLOCK_ATOMIC()
  51. #endif
  52. typedef enum {
  53. LEDC_FSM_IDLE,
  54. LEDC_FSM_HW_FADE,
  55. LEDC_FSM_ISR_CAL,
  56. LEDC_FSM_KILLED_PENDING,
  57. } ledc_fade_fsm_t;
  58. typedef struct {
  59. ledc_mode_t speed_mode;
  60. ledc_duty_direction_t direction;
  61. uint32_t target_duty;
  62. int cycle_num;
  63. int scale;
  64. ledc_fade_mode_t mode;
  65. SemaphoreHandle_t ledc_fade_sem;
  66. SemaphoreHandle_t ledc_fade_mux;
  67. ledc_cb_t ledc_fade_callback;
  68. void *cb_user_arg;
  69. volatile ledc_fade_fsm_t fsm;
  70. } ledc_fade_t;
  71. typedef struct {
  72. ledc_hal_context_t ledc_hal; /*!< LEDC hal context */
  73. ledc_slow_clk_sel_t glb_clk; /*!< LEDC global clock selection */
  74. bool timer_is_stopped[LEDC_TIMER_MAX]; /*!< Indicates whether each timer has been stopped */
  75. bool glb_clk_is_acquired[LEDC_TIMER_MAX]; /*!< Tracks whether the global clock is being acquired by each timer */
  76. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  77. ledc_clk_src_t timer_specific_clk[LEDC_TIMER_MAX]; /*!< Tracks the timer-specific clock selection for each timer */
  78. #endif
  79. } ledc_obj_t;
  80. static ledc_obj_t *p_ledc_obj[LEDC_SPEED_MODE_MAX] = {0};
  81. static ledc_fade_t *s_ledc_fade_rec[LEDC_SPEED_MODE_MAX][LEDC_CHANNEL_MAX];
  82. static ledc_isr_handle_t s_ledc_fade_isr_handle = NULL;
  83. static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED;
  84. static _lock_t s_ledc_mutex[LEDC_SPEED_MODE_MAX];
  85. #define LEDC_VAL_NO_CHANGE (-1)
  86. #define LEDC_DUTY_NUM_MAX LEDC_LL_DUTY_NUM_MAX // Maximum steps per hardware fade
  87. #define LEDC_DUTY_DECIMAL_BIT_NUM (4)
  88. #define LEDC_TIMER_DIV_NUM_MAX (0x3FFFF)
  89. #define LEDC_FADE_TOO_SLOW_STR "LEDC FADE TOO SLOW"
  90. #define LEDC_FADE_TOO_FAST_STR "LEDC FADE TOO FAST"
  91. #define DIM(array) (sizeof(array)/sizeof(*array))
  92. #define LEDC_IS_DIV_INVALID(div) ((div) <= LEDC_LL_FRACTIONAL_MAX || (div) > LEDC_TIMER_DIV_NUM_MAX)
  93. static __attribute__((unused)) const char *LEDC_NOT_INIT = "LEDC is not initialized";
  94. static __attribute__((unused)) const char *LEDC_FADE_SERVICE_ERR_STR = "LEDC fade service not installed";
  95. static __attribute__((unused)) const char *LEDC_FADE_INIT_ERROR_STR = "LEDC fade channel init error, not enough memory or service not installed";
  96. //This value will be calibrated when in use.
  97. static uint32_t s_ledc_slow_clk_rc_fast_freq = 0;
  98. static const ledc_slow_clk_sel_t s_glb_clks[] = LEDC_LL_GLOBAL_CLOCKS;
  99. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  100. static const ledc_clk_src_t s_timer_specific_clks[] = LEDC_LL_TIMER_SPECIFIC_CLOCKS;
  101. #endif
  102. static void ledc_ls_timer_update(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  103. {
  104. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  105. ledc_hal_ls_timer_update(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  106. }
  107. }
  108. static IRAM_ATTR void ledc_ls_channel_update(ledc_mode_t speed_mode, ledc_channel_t channel)
  109. {
  110. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  111. ledc_hal_ls_channel_update(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  112. }
  113. }
  114. //We know that RC_FAST is about 8M/20M, but don't know the actual value. So we need to do a calibration.
  115. static bool ledc_slow_clk_calibrate(void)
  116. {
  117. if (periph_rtc_dig_clk8m_enable()) {
  118. s_ledc_slow_clk_rc_fast_freq = periph_rtc_dig_clk8m_get_freq();
  119. #if !SOC_CLK_RC_FAST_SUPPORT_CALIBRATION
  120. /* Workaround: RC_FAST calibration cannot be performed, we can only use its theoretic freq */
  121. ESP_LOGD(LEDC_TAG, "Calibration cannot be performed, approximate RC_FAST_CLK : %"PRIu32" Hz", s_ledc_slow_clk_rc_fast_freq);
  122. #else
  123. ESP_LOGD(LEDC_TAG, "Calibrate RC_FAST_CLK : %"PRIu32" Hz", s_ledc_slow_clk_rc_fast_freq);
  124. #endif
  125. return true;
  126. }
  127. ESP_LOGE(LEDC_TAG, "Calibrate RC_FAST_CLK failed");
  128. return false;
  129. }
  130. static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_intr_type_t type)
  131. {
  132. if (type == LEDC_INTR_FADE_END) {
  133. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  134. } else {
  135. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  136. }
  137. return ESP_OK;
  138. }
  139. static void _ledc_fade_hw_acquire(ledc_mode_t mode, ledc_channel_t channel)
  140. {
  141. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  142. if (fade) {
  143. xSemaphoreTake(fade->ledc_fade_sem, portMAX_DELAY);
  144. portENTER_CRITICAL(&ledc_spinlock);
  145. ledc_enable_intr_type(mode, channel, LEDC_INTR_DISABLE);
  146. portEXIT_CRITICAL(&ledc_spinlock);
  147. }
  148. }
  149. static void _ledc_fade_hw_release(ledc_mode_t mode, ledc_channel_t channel)
  150. {
  151. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  152. if (fade) {
  153. xSemaphoreGive(fade->ledc_fade_sem);
  154. }
  155. }
  156. static void _ledc_op_lock_acquire(ledc_mode_t mode, ledc_channel_t channel)
  157. {
  158. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  159. if (fade) {
  160. xSemaphoreTake(fade->ledc_fade_mux, portMAX_DELAY);
  161. }
  162. }
  163. static void _ledc_op_lock_release(ledc_mode_t mode, ledc_channel_t channel)
  164. {
  165. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  166. if (fade) {
  167. xSemaphoreGive(fade->ledc_fade_mux);
  168. }
  169. }
  170. static uint32_t ledc_get_max_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  171. {
  172. // The arguments are checked before internally calling this function.
  173. ledc_timer_t timer_sel;
  174. ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
  175. uint32_t max_duty;
  176. ledc_hal_get_max_duty(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, &max_duty);
  177. return max_duty;
  178. }
  179. esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider, uint32_t duty_resolution,
  180. ledc_clk_src_t clk_src)
  181. {
  182. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  183. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  184. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  185. portENTER_CRITICAL(&ledc_spinlock);
  186. ledc_hal_set_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clock_divider);
  187. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  188. /* Clock source can only be configured on targets which support timer-specific source clock. */
  189. ledc_hal_set_clock_source(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clk_src);
  190. // TODO: acquire clk_src, and release old clk_src if initialized and different than new one [clk_tree]
  191. p_ledc_obj[speed_mode]->timer_specific_clk[timer_sel] = clk_src;
  192. #endif
  193. ledc_hal_set_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, duty_resolution);
  194. ledc_ls_timer_update(speed_mode, timer_sel);
  195. portEXIT_CRITICAL(&ledc_spinlock);
  196. return ESP_OK;
  197. }
  198. static IRAM_ATTR esp_err_t ledc_duty_config(ledc_mode_t speed_mode, ledc_channel_t channel, int hpoint_val,
  199. int duty_val, ledc_duty_direction_t duty_direction, uint32_t duty_num, uint32_t duty_cycle, uint32_t duty_scale)
  200. {
  201. if (hpoint_val >= 0) {
  202. ledc_hal_set_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, hpoint_val);
  203. }
  204. if (duty_val >= 0) {
  205. ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_val);
  206. }
  207. ledc_hal_set_fade_param(&(p_ledc_obj[speed_mode]->ledc_hal), channel, 0, duty_direction, duty_cycle, duty_scale, duty_num);
  208. #if SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED
  209. ledc_hal_set_range_number(&(p_ledc_obj[speed_mode]->ledc_hal), channel, 1);
  210. #endif
  211. return ESP_OK;
  212. }
  213. esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_timer_t timer_sel)
  214. {
  215. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  216. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  217. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  218. portENTER_CRITICAL(&ledc_spinlock);
  219. ledc_hal_bind_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, timer_sel);
  220. ledc_ls_channel_update(speed_mode, channel);
  221. portEXIT_CRITICAL(&ledc_spinlock);
  222. return ESP_OK;
  223. }
  224. esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  225. {
  226. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  227. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  228. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  229. portENTER_CRITICAL(&ledc_spinlock);
  230. ledc_hal_timer_rst(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  231. portEXIT_CRITICAL(&ledc_spinlock);
  232. return ESP_OK;
  233. }
  234. esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  235. {
  236. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  237. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  238. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  239. portENTER_CRITICAL(&ledc_spinlock);
  240. p_ledc_obj[speed_mode]->timer_is_stopped[timer_sel] = true;
  241. ledc_hal_timer_pause(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  242. portEXIT_CRITICAL(&ledc_spinlock);
  243. return ESP_OK;
  244. }
  245. esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  246. {
  247. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  248. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  249. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  250. portENTER_CRITICAL(&ledc_spinlock);
  251. p_ledc_obj[speed_mode]->timer_is_stopped[timer_sel] = false;
  252. ledc_hal_timer_resume(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  253. portEXIT_CRITICAL(&ledc_spinlock);
  254. return ESP_OK;
  255. }
  256. esp_err_t ledc_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, ledc_isr_handle_t *handle)
  257. {
  258. esp_err_t ret;
  259. LEDC_ARG_CHECK(fn, "fn");
  260. portENTER_CRITICAL(&ledc_spinlock);
  261. ret = esp_intr_alloc(ETS_LEDC_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  262. portEXIT_CRITICAL(&ledc_spinlock);
  263. return ret;
  264. }
  265. static bool ledc_speed_mode_ctx_create(ledc_mode_t speed_mode)
  266. {
  267. bool new_ctx = false;
  268. // Prevent p_ledc_obj malloc concurrently
  269. _lock_acquire(&s_ledc_mutex[speed_mode]);
  270. if (!p_ledc_obj[speed_mode]) {
  271. ledc_obj_t *ledc_new_mode_obj = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  272. if (ledc_new_mode_obj) {
  273. new_ctx = true;
  274. ledc_hal_init(&(ledc_new_mode_obj->ledc_hal), speed_mode);
  275. ledc_new_mode_obj->glb_clk = LEDC_SLOW_CLK_UNINIT;
  276. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  277. memset(ledc_new_mode_obj->timer_specific_clk, LEDC_TIMER_SPECIFIC_CLK_UNINIT, sizeof(ledc_clk_src_t) * LEDC_TIMER_MAX);
  278. #endif
  279. p_ledc_obj[speed_mode] = ledc_new_mode_obj;
  280. LEDC_BUS_CLOCK_ATOMIC() {
  281. ledc_ll_enable_bus_clock(true);
  282. ledc_ll_enable_reset_reg(false);
  283. }
  284. }
  285. }
  286. _lock_release(&s_ledc_mutex[speed_mode]);
  287. return new_ctx;
  288. }
  289. static inline uint32_t ledc_calculate_divisor(uint32_t src_clk_freq, int freq_hz, uint32_t precision)
  290. {
  291. /**
  292. * In order to find the right divisor, we need to divide the source clock
  293. * frequency by the desired frequency. However, two things to note here:
  294. * - The lowest LEDC_LL_FRACTIONAL_BITS bits of the result are the FRACTIONAL
  295. * part. The higher bits represent the integer part, this is why we need
  296. * to right shift the source frequency.
  297. * - The `precision` parameter represents the granularity of the clock. It
  298. * **must** be a power of 2. It means that the resulted divisor is
  299. * a multiplier of `precision`.
  300. *
  301. * Let's take a concrete example, we need to generate a 5KHz clock out of
  302. * a 80MHz clock (APB).
  303. * If the precision is 1024 (10 bits), the resulted multiplier is:
  304. * (80000000 << 8) / (5000 * 1024) = 4000 (0xfa0)
  305. * Let's ignore the fractional part to simplify the explanation, so we get
  306. * a result of 15 (0xf).
  307. * This can be interpreted as: every 15 "precision" ticks, the resulted
  308. * clock will go high, where one precision tick is made out of 1024 source
  309. * clock ticks.
  310. * Thus, every `15 * 1024` source clock ticks, the resulted clock will go
  311. * high.
  312. *
  313. * NOTE: We are also going to round up the value when necessary, thanks to:
  314. * (freq_hz * precision / 2)
  315. */
  316. return ( ( (uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS ) + freq_hz * precision / 2 )
  317. / (freq_hz * precision);
  318. }
  319. static inline uint32_t ledc_auto_global_clk_divisor(int freq_hz, uint32_t precision, ledc_slow_clk_sel_t *clk_target)
  320. {
  321. uint32_t ret = LEDC_CLK_NOT_FOUND;
  322. uint32_t clk_freq = 0;
  323. /* This function will go through all the following clock sources to look
  324. * for a valid divisor which generates the requested frequency. */
  325. for (int i = 0; i < DIM(s_glb_clks); i++) {
  326. /* Before calculating the divisor, we need to have the RC_FAST frequency.
  327. * If it hasn't been measured yet, try calibrating it now. */
  328. if (s_glb_clks[i] == LEDC_SLOW_CLK_RC_FAST && s_ledc_slow_clk_rc_fast_freq == 0 && !ledc_slow_clk_calibrate()) {
  329. ESP_LOGD(LEDC_TAG, "Unable to retrieve RC_FAST clock frequency, skipping it");
  330. continue;
  331. }
  332. esp_clk_tree_src_get_freq_hz((soc_module_clk_t)s_glb_clks[i], LEDC_CLK_SRC_FREQ_PRECISION, &clk_freq);
  333. uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
  334. /* If the divisor is valid, we can return this value. */
  335. if (!LEDC_IS_DIV_INVALID(div_param)) {
  336. *clk_target = s_glb_clks[i];
  337. ret = div_param;
  338. break;
  339. }
  340. }
  341. return ret;
  342. }
  343. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  344. static inline uint32_t ledc_auto_timer_specific_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  345. ledc_clk_src_t *clk_source)
  346. {
  347. uint32_t ret = LEDC_CLK_NOT_FOUND;
  348. uint32_t clk_freq = 0;
  349. for (int i = 0; i < DIM(s_timer_specific_clks); i++) {
  350. esp_clk_tree_src_get_freq_hz((soc_module_clk_t)s_timer_specific_clks[i], LEDC_CLK_SRC_FREQ_PRECISION, &clk_freq);
  351. uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
  352. /* If the divisor is valid, we can return this value. */
  353. if (!LEDC_IS_DIV_INVALID(div_param)) {
  354. *clk_source = s_timer_specific_clks[i];
  355. ret = div_param;
  356. break;
  357. }
  358. }
  359. #if SOC_LEDC_SUPPORT_HS_MODE
  360. /* On board that support LEDC high-speed mode, APB clock becomes a timer-
  361. * specific clock when in high speed mode. Check if it is necessary here
  362. * to test APB. */
  363. if (speed_mode == LEDC_HIGH_SPEED_MODE && ret == LEDC_CLK_NOT_FOUND) {
  364. /* No divider was found yet, try with APB! */
  365. esp_clk_tree_src_get_freq_hz((soc_module_clk_t)LEDC_APB_CLK, LEDC_CLK_SRC_FREQ_PRECISION, &clk_freq);
  366. uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
  367. if (!LEDC_IS_DIV_INVALID(div_param)) {
  368. *clk_source = LEDC_APB_CLK;
  369. ret = div_param;
  370. }
  371. }
  372. #endif
  373. return ret;
  374. }
  375. #endif
  376. /**
  377. * @brief Try to find the clock with its divisor giving the frequency requested
  378. * by the caller.
  379. */
  380. static uint32_t ledc_auto_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  381. ledc_clk_src_t *clk_source, ledc_slow_clk_sel_t *clk_target)
  382. {
  383. uint32_t ret = LEDC_CLK_NOT_FOUND;
  384. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  385. /* If the SoC presents timer-specific clock(s), try to achieve the given frequency
  386. * thanks to it/them.
  387. * clk_source parameter will returned by this function. */
  388. uint32_t div_param_timer = ledc_auto_timer_specific_clk_divisor(speed_mode, freq_hz, precision, clk_source);
  389. if (div_param_timer != LEDC_CLK_NOT_FOUND) {
  390. /* The dividor is valid, no need try any other clock, return directly. */
  391. ret = div_param_timer;
  392. }
  393. #endif
  394. /* On ESP32, only low speed channel can use the global clocks. For other
  395. * chips, there are no high speed channels. */
  396. if (ret == LEDC_CLK_NOT_FOUND && speed_mode == LEDC_LOW_SPEED_MODE) {
  397. uint32_t div_param_global = ledc_auto_global_clk_divisor(freq_hz, precision, clk_target);
  398. if (div_param_global != LEDC_CLK_NOT_FOUND) {
  399. *clk_source = LEDC_SCLK;
  400. ret = div_param_global;
  401. }
  402. }
  403. return ret;
  404. }
  405. /**
  406. * @brief Function setting the LEDC timer divisor with the given source clock,
  407. * frequency and resolution. If the clock configuration passed is
  408. * LEDC_AUTO_CLK, the clock will be determined automatically (if possible).
  409. */
  410. static esp_err_t ledc_set_timer_div(ledc_mode_t speed_mode, ledc_timer_t timer_num, ledc_clk_cfg_t clk_cfg, int freq_hz, int duty_resolution)
  411. {
  412. uint32_t div_param = 0;
  413. const uint32_t precision = ( 0x1 << duty_resolution );
  414. /* The clock sources are not initialized on purpose. To produce compiler warning if used but the selector functions
  415. * don't set them properly. */
  416. /* Timer-specific mux. Set to timer-specific clock or LEDC_SCLK if a global clock is used. */
  417. ledc_clk_src_t timer_clk_src;
  418. /* Global clock mux. Should be set when LEDC_SCLK is used in LOW_SPEED_MODE. Otherwise left uninitialized. */
  419. ledc_slow_clk_sel_t glb_clk = LEDC_SLOW_CLK_UNINIT;
  420. if (clk_cfg == LEDC_AUTO_CLK) {
  421. /* User hasn't specified the speed, we should try to guess it. */
  422. div_param = ledc_auto_clk_divisor(speed_mode, freq_hz, precision, &timer_clk_src, &glb_clk);
  423. } else if (clk_cfg == LEDC_USE_RC_FAST_CLK) {
  424. /* User specified source clock(RC_FAST_CLK) for low speed channel.
  425. * Make sure the speed mode is correct. */
  426. ESP_RETURN_ON_FALSE((speed_mode == LEDC_LOW_SPEED_MODE), ESP_ERR_INVALID_ARG, LEDC_TAG, "RC_FAST clock can only be used in low speed mode");
  427. /* Before calculating the divisor, we need to have the RC_FAST frequency.
  428. * If it hasn't been measured yet, try calibrating it now. */
  429. if(s_ledc_slow_clk_rc_fast_freq == 0 && ledc_slow_clk_calibrate() == false) {
  430. goto error;
  431. }
  432. /* Set the global clock source */
  433. timer_clk_src = LEDC_SCLK;
  434. glb_clk = LEDC_SLOW_CLK_RC_FAST;
  435. /* We have the RC_FAST clock frequency now. */
  436. div_param = ledc_calculate_divisor(s_ledc_slow_clk_rc_fast_freq, freq_hz, precision);
  437. if (LEDC_IS_DIV_INVALID(div_param)) {
  438. div_param = LEDC_CLK_NOT_FOUND;
  439. }
  440. } else {
  441. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  442. if (LEDC_LL_IS_TIMER_SPECIFIC_CLOCK(speed_mode, clk_cfg)) {
  443. /* Currently we can convert a timer-specific clock to a source clock that
  444. * easily because their values are identical in the enumerations (on purpose)
  445. * If we decide to change the values in the future, we should consider defining
  446. * a macro/function to convert timer-specific clock to clock source .*/
  447. timer_clk_src = (ledc_clk_src_t) clk_cfg;
  448. } else
  449. #endif
  450. {
  451. timer_clk_src = LEDC_SCLK;
  452. #if SOC_LEDC_SUPPORT_REF_TICK
  453. assert(clk_cfg != LEDC_USE_REF_TICK); // REF_TICK is NOT a global clock, it is a timer-specific clock
  454. #endif
  455. glb_clk = (ledc_slow_clk_sel_t)clk_cfg;
  456. }
  457. uint32_t src_clk_freq = 0;
  458. esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_cfg, LEDC_CLK_SRC_FREQ_PRECISION, &src_clk_freq);
  459. div_param = ledc_calculate_divisor(src_clk_freq, freq_hz, precision);
  460. if (LEDC_IS_DIV_INVALID(div_param)) {
  461. div_param = LEDC_CLK_NOT_FOUND;
  462. }
  463. }
  464. if (div_param == LEDC_CLK_NOT_FOUND) {
  465. goto error;
  466. }
  467. /* The following debug message makes more sense for AUTO mode. */
  468. ESP_LOGD(LEDC_TAG, "Using clock source %d (in %s mode), divisor: 0x%"PRIx32,
  469. timer_clk_src, (speed_mode == LEDC_LOW_SPEED_MODE ? "slow" : "fast"), div_param);
  470. /* The following block configures the global clock.
  471. * Thus, in theory, this only makes sense when configuring the LOW_SPEED timer and the source clock is LEDC_SCLK (as
  472. * HIGH_SPEED timers won't be clocked by the global clock). However, there are some limitations due to HW design.
  473. */
  474. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  475. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  476. /* On ESP32 and ESP32-S2, when the source clock of LOW_SPEED timer is a timer-specific one (i.e. REF_TICK), the
  477. * global clock MUST be set to APB_CLK. For HIGH_SPEED timers, this is not necessary.
  478. */
  479. if (timer_clk_src != LEDC_SCLK) {
  480. glb_clk = LEDC_SLOW_CLK_APB;
  481. }
  482. #else
  483. /* On later chips, there is only one type of timer/channel (referred as LOW_SPEED in the code), which can only be
  484. * clocked by the global clock. So there's no limitation on the global clock, except that it must be set.
  485. */
  486. assert(timer_clk_src == LEDC_SCLK);
  487. #endif
  488. // Arriving here, variable glb_clk must have been assigned to one of the ledc_slow_clk_sel_t enum values
  489. assert(glb_clk != LEDC_SLOW_CLK_UNINIT);
  490. portENTER_CRITICAL(&ledc_spinlock);
  491. if (p_ledc_obj[speed_mode]->glb_clk != LEDC_SLOW_CLK_UNINIT && p_ledc_obj[speed_mode]->glb_clk != glb_clk) {
  492. for (int i = 0; i < LEDC_TIMER_MAX; i++) {
  493. if (i != timer_num && p_ledc_obj[speed_mode]->glb_clk_is_acquired[i]) {
  494. portEXIT_CRITICAL(&ledc_spinlock);
  495. ESP_RETURN_ON_FALSE(false, ESP_FAIL, LEDC_TAG,
  496. "timer clock conflict, already is %d but attempt to %d", p_ledc_obj[speed_mode]->glb_clk, glb_clk);
  497. }
  498. }
  499. }
  500. p_ledc_obj[speed_mode]->glb_clk_is_acquired[timer_num] = true;
  501. if (p_ledc_obj[speed_mode]->glb_clk != glb_clk) {
  502. // TODO: release old glb_clk (if not UNINIT), and acquire new glb_clk [clk_tree]
  503. p_ledc_obj[speed_mode]->glb_clk = glb_clk;
  504. LEDC_FUNC_CLOCK_ATOMIC() {
  505. ledc_ll_enable_clock(p_ledc_obj[speed_mode]->ledc_hal.dev, true);
  506. ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), glb_clk);
  507. }
  508. }
  509. portEXIT_CRITICAL(&ledc_spinlock);
  510. ESP_LOGD(LEDC_TAG, "In slow speed mode, global clk set: %d", glb_clk);
  511. #if !CONFIG_IDF_TARGET_ESP32P4 //depend on sleep support IDF-7528 and IDF-7529
  512. /* keep ESP_PD_DOMAIN_RC_FAST on during light sleep */
  513. extern void esp_sleep_periph_use_8m(bool use_or_not);
  514. esp_sleep_periph_use_8m(glb_clk == LEDC_SLOW_CLK_RC_FAST);
  515. #endif
  516. }
  517. /* The divisor is correct, we can write in the hardware. */
  518. ledc_timer_set(speed_mode, timer_num, div_param, duty_resolution, timer_clk_src);
  519. return ESP_OK;
  520. error:
  521. ESP_LOGE(LEDC_TAG, "requested frequency %d and duty resolution %d can not be achieved, try reducing freq_hz or duty_resolution. div_param=%"PRIu32, freq_hz, duty_resolution, div_param);
  522. return ESP_FAIL;
  523. }
  524. static esp_err_t ledc_timer_del(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  525. {
  526. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  527. bool is_configured = true;
  528. bool is_deleted = false;
  529. portENTER_CRITICAL(&ledc_spinlock);
  530. if (p_ledc_obj[speed_mode]->glb_clk_is_acquired[timer_sel] == false
  531. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  532. && p_ledc_obj[speed_mode]->timer_specific_clk[timer_sel] == LEDC_TIMER_SPECIFIC_CLK_UNINIT
  533. #endif
  534. ) {
  535. is_configured = false;
  536. } else if (p_ledc_obj[speed_mode]->timer_is_stopped[timer_sel] == true) {
  537. is_deleted = true;
  538. p_ledc_obj[speed_mode]->glb_clk_is_acquired[timer_sel] = false;
  539. // TODO: release timer specific clk and global clk if possible [clk_tree]
  540. }
  541. portEXIT_CRITICAL(&ledc_spinlock);
  542. ESP_RETURN_ON_FALSE(is_configured && is_deleted, ESP_ERR_INVALID_STATE, LEDC_TAG, "timer hasn't been configured, or it is still running, please stop it with ledc_timer_pause first");
  543. return ESP_OK;
  544. }
  545. esp_err_t ledc_timer_config(const ledc_timer_config_t *timer_conf)
  546. {
  547. LEDC_ARG_CHECK(timer_conf != NULL, "timer_conf");
  548. uint32_t freq_hz = timer_conf->freq_hz;
  549. uint32_t duty_resolution = timer_conf->duty_resolution;
  550. uint32_t timer_num = timer_conf->timer_num;
  551. uint32_t speed_mode = timer_conf->speed_mode;
  552. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  553. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  554. if (timer_conf->deconfigure) {
  555. return ledc_timer_del(speed_mode, timer_num);
  556. }
  557. LEDC_ARG_CHECK(!((timer_conf->clk_cfg == LEDC_USE_RC_FAST_CLK) && (speed_mode != LEDC_LOW_SPEED_MODE)), "Only low speed channel support RC_FAST_CLK");
  558. if (freq_hz == 0 || duty_resolution == 0 || duty_resolution >= LEDC_TIMER_BIT_MAX) {
  559. ESP_LOGE(LEDC_TAG, "freq_hz=%"PRIu32" duty_resolution=%"PRIu32, freq_hz, duty_resolution);
  560. return ESP_ERR_INVALID_ARG;
  561. }
  562. if (!ledc_speed_mode_ctx_create(speed_mode) && !p_ledc_obj[speed_mode]) {
  563. return ESP_ERR_NO_MEM;
  564. }
  565. esp_err_t ret = ledc_set_timer_div(speed_mode, timer_num, timer_conf->clk_cfg, freq_hz, duty_resolution);
  566. if (ret == ESP_OK) {
  567. /* Make sure timer is running and reset the timer. */
  568. ledc_timer_resume(speed_mode, timer_num);
  569. ledc_timer_rst(speed_mode, timer_num);
  570. }
  571. return ret;
  572. }
  573. esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel)
  574. {
  575. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  576. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  577. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  578. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  579. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  580. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, 0, 0);
  581. return ESP_OK;
  582. }
  583. esp_err_t ledc_channel_config(const ledc_channel_config_t *ledc_conf)
  584. {
  585. LEDC_ARG_CHECK(ledc_conf, "ledc_conf");
  586. uint32_t speed_mode = ledc_conf->speed_mode;
  587. int gpio_num = ledc_conf->gpio_num;
  588. uint32_t ledc_channel = ledc_conf->channel;
  589. uint32_t timer_select = ledc_conf->timer_sel;
  590. uint32_t intr_type = ledc_conf->intr_type;
  591. uint32_t duty = ledc_conf->duty;
  592. uint32_t hpoint = ledc_conf->hpoint;
  593. bool output_invert = ledc_conf->flags.output_invert;
  594. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  595. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  596. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  597. LEDC_ARG_CHECK(timer_select < LEDC_TIMER_MAX, "timer_select");
  598. LEDC_ARG_CHECK(intr_type < LEDC_INTR_MAX, "intr_type");
  599. esp_err_t ret = ESP_OK;
  600. bool new_speed_mode_ctx_created = ledc_speed_mode_ctx_create(speed_mode);
  601. if (!new_speed_mode_ctx_created && !p_ledc_obj[speed_mode]) {
  602. return ESP_ERR_NO_MEM;
  603. }
  604. #if !(CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32H2 || CONFIG_IDF_TARGET_ESP32P4)
  605. // On such targets, the default ledc core(global) clock does not connect to any clock source
  606. // Set channel configurations and update bits before core clock is on could lead to error
  607. // Therefore, we should connect the core clock to a real clock source to make it on before any ledc register operation
  608. // It can be switched to the other desired clock sources to meet the output pwm freq requirement later at timer configuration
  609. // So we consider the glb_clk still as LEDC_SLOW_CLK_UNINIT
  610. else if (new_speed_mode_ctx_created) {
  611. portENTER_CRITICAL(&ledc_spinlock);
  612. if (p_ledc_obj[speed_mode]->glb_clk == LEDC_SLOW_CLK_UNINIT) {
  613. ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), LEDC_LL_GLOBAL_CLK_DEFAULT);
  614. }
  615. portEXIT_CRITICAL(&ledc_spinlock);
  616. }
  617. #endif
  618. /*set channel parameters*/
  619. /* channel parameters decide how the waveform looks like in one period */
  620. /* set channel duty and hpoint value, duty range is [0, (2**duty_res)], hpoint range is [0, (2**duty_res)-1] */
  621. /* Note: On ESP32, ESP32S2, ESP32S3, ESP32C3, ESP32C2, ESP32C6, ESP32H2, ESP32P4, due to a hardware bug,
  622. * 100% duty cycle (i.e. 2**duty_res) is not reachable when the binded timer selects the maximum duty
  623. * resolution. For example, the max duty resolution on ESP32C3 is 14-bit width, then set duty to (2**14)
  624. * will mess up the duty calculation in hardware.
  625. */
  626. ledc_set_duty_with_hpoint(speed_mode, ledc_channel, duty, hpoint);
  627. /*update duty settings*/
  628. ledc_update_duty(speed_mode, ledc_channel);
  629. /*bind the channel with the timer*/
  630. ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select);
  631. /*set interrupt type*/
  632. portENTER_CRITICAL(&ledc_spinlock);
  633. ledc_enable_intr_type(speed_mode, ledc_channel, intr_type);
  634. portEXIT_CRITICAL(&ledc_spinlock);
  635. ESP_LOGD(LEDC_TAG, "LEDC_PWM CHANNEL %"PRIu32"|GPIO %02u|Duty %04"PRIu32"|Time %"PRIu32,
  636. ledc_channel, gpio_num, duty, timer_select);
  637. /*set LEDC signal in gpio matrix*/
  638. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  639. gpio_set_level(gpio_num, output_invert);
  640. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  641. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, output_invert, 0);
  642. return ret;
  643. }
  644. static void _ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  645. {
  646. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  647. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  648. ledc_ls_channel_update(speed_mode, channel);
  649. }
  650. esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  651. {
  652. LEDC_ARG_CHECK_ISR(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  653. LEDC_ARG_CHECK_ISR(channel < LEDC_CHANNEL_MAX, "channel");
  654. LEDC_CHECK_ISR(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  655. portENTER_CRITICAL_SAFE(&ledc_spinlock);
  656. _ledc_update_duty(speed_mode, channel);
  657. portEXIT_CRITICAL_SAFE(&ledc_spinlock);
  658. return ESP_OK;
  659. }
  660. esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
  661. {
  662. LEDC_ARG_CHECK_ISR(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  663. LEDC_ARG_CHECK_ISR(channel < LEDC_CHANNEL_MAX, "channel");
  664. LEDC_CHECK_ISR(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  665. portENTER_CRITICAL_SAFE(&ledc_spinlock);
  666. ledc_hal_set_idle_level(&(p_ledc_obj[speed_mode]->ledc_hal), channel, idle_level);
  667. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  668. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  669. ledc_ls_channel_update(speed_mode, channel);
  670. portEXIT_CRITICAL_SAFE(&ledc_spinlock);
  671. return ESP_OK;
  672. }
  673. esp_err_t ledc_set_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, ledc_duty_direction_t fade_direction,
  674. uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale)
  675. {
  676. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  677. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  678. LEDC_ARG_CHECK(fade_direction < LEDC_DUTY_DIR_MAX, "fade_direction");
  679. LEDC_ARG_CHECK(step_num <= LEDC_LL_DUTY_NUM_MAX, "step_num");
  680. LEDC_ARG_CHECK(duty_cyle_num <= LEDC_LL_DUTY_CYCLE_MAX, "duty_cycle_num");
  681. LEDC_ARG_CHECK(duty_scale <= LEDC_LL_DUTY_SCALE_MAX, "duty_scale");
  682. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  683. _ledc_fade_hw_acquire(speed_mode, channel);
  684. portENTER_CRITICAL(&ledc_spinlock);
  685. ledc_duty_config(speed_mode,
  686. channel, //uint32_t chan_num,
  687. LEDC_VAL_NO_CHANGE,
  688. duty, //uint32_t duty_val,
  689. fade_direction, //uint32_t increase,
  690. step_num, //uint32_t duty_num,
  691. duty_cyle_num, //uint32_t duty_cycle,
  692. duty_scale //uint32_t duty_scale
  693. );
  694. portEXIT_CRITICAL(&ledc_spinlock);
  695. _ledc_fade_hw_release(speed_mode, channel);
  696. return ESP_OK;
  697. }
  698. esp_err_t ledc_set_duty_with_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  699. {
  700. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  701. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  702. LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint");
  703. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  704. /* The channel configuration should not be changed before the fade operation is done. */
  705. _ledc_fade_hw_acquire(speed_mode, channel);
  706. portENTER_CRITICAL(&ledc_spinlock);
  707. ledc_duty_config(speed_mode,
  708. channel, //uint32_t chan_num,
  709. hpoint, //uint32_t hpoint_val,
  710. duty, //uint32_t duty_val,
  711. 1, //uint32_t increase,
  712. 1, //uint32_t duty_num,
  713. 1, //uint32_t duty_cycle,
  714. 0 //uint32_t duty_scale
  715. );
  716. portEXIT_CRITICAL(&ledc_spinlock);
  717. _ledc_fade_hw_release(speed_mode, channel);
  718. return ESP_OK;
  719. }
  720. esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)
  721. {
  722. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  723. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  724. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  725. /* The channel configuration should not be changed before the fade operation is done. */
  726. _ledc_fade_hw_acquire(speed_mode, channel);
  727. portENTER_CRITICAL(&ledc_spinlock);
  728. ledc_duty_config(speed_mode,
  729. channel, //uint32_t chan_num,
  730. LEDC_VAL_NO_CHANGE,
  731. duty, //uint32_t duty_val,
  732. 1, //uint32_t increase,
  733. 1, //uint32_t duty_num,
  734. 1, //uint32_t duty_cycle,
  735. 0 //uint32_t duty_scale
  736. );
  737. portEXIT_CRITICAL(&ledc_spinlock);
  738. _ledc_fade_hw_release(speed_mode, channel);
  739. return ESP_OK;
  740. }
  741. uint32_t ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  742. {
  743. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  744. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  745. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  746. uint32_t duty = 0;
  747. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty);
  748. return duty;
  749. }
  750. int ledc_get_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel)
  751. {
  752. LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode argument is invalid", LEDC_ERR_VAL);
  753. LEDC_CHECK(channel < LEDC_CHANNEL_MAX, "channel argument is invalid", LEDC_ERR_VAL);
  754. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  755. uint32_t hpoint = 0;
  756. ledc_hal_get_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &hpoint);
  757. return hpoint;
  758. }
  759. esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
  760. {
  761. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  762. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  763. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  764. ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK;
  765. uint32_t duty_resolution = 0;
  766. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  767. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  768. return ledc_set_timer_div(speed_mode, timer_num, clk_cfg, freq_hz, duty_resolution);
  769. }
  770. uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
  771. {
  772. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  773. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  774. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  775. portENTER_CRITICAL(&ledc_spinlock);
  776. uint32_t clock_divider = 0;
  777. uint32_t duty_resolution = 0;
  778. ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK;
  779. ledc_hal_get_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clock_divider);
  780. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  781. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  782. uint32_t precision = (0x1 << duty_resolution);
  783. uint32_t src_clk_freq = 0;
  784. esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_cfg, LEDC_CLK_SRC_FREQ_PRECISION, &src_clk_freq);
  785. portEXIT_CRITICAL(&ledc_spinlock);
  786. if (clock_divider == 0) {
  787. ESP_LOGW(LEDC_TAG, "LEDC timer not configured, call ledc_timer_config to set timer frequency");
  788. return 0;
  789. }
  790. return (((uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS) + precision * clock_divider / 2) / (precision * clock_divider);
  791. }
  792. static inline uint32_t ilog2(uint32_t i)
  793. {
  794. assert(i > 0);
  795. uint32_t log = 0;
  796. while (i >>= 1) {
  797. ++log;
  798. }
  799. return log;
  800. }
  801. // https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf#ledpwm
  802. uint32_t ledc_find_suitable_duty_resolution(uint32_t src_clk_freq, uint32_t timer_freq)
  803. {
  804. // Highest resolution is calculated when LEDC_CLK_DIV = 1 (i.e. div_param = 1 << LEDC_LL_FRACTIONAL_BITS)
  805. uint32_t div = (src_clk_freq + timer_freq / 2) / timer_freq; // rounded
  806. uint32_t duty_resolution = MIN(ilog2(div), SOC_LEDC_TIMER_BIT_WIDTH);
  807. uint32_t div_param = ledc_calculate_divisor(src_clk_freq, timer_freq, 1 << duty_resolution);
  808. if (LEDC_IS_DIV_INVALID(div_param)) {
  809. div = src_clk_freq / timer_freq; // truncated
  810. duty_resolution = MIN(ilog2(div), SOC_LEDC_TIMER_BIT_WIDTH);
  811. div_param = ledc_calculate_divisor(src_clk_freq, timer_freq, 1 << duty_resolution);
  812. if (LEDC_IS_DIV_INVALID(div_param)) {
  813. duty_resolution = 0;
  814. }
  815. }
  816. return duty_resolution;
  817. }
  818. static inline void IRAM_ATTR ledc_calc_fade_end_channel(uint32_t *fade_end_status, uint32_t *channel)
  819. {
  820. uint32_t i = __builtin_ffs((*fade_end_status)) - 1;
  821. (*fade_end_status) &= ~(1 << i);
  822. *channel = i;
  823. }
  824. static void IRAM_ATTR ledc_fade_isr(void *arg)
  825. {
  826. bool cb_yield = false;
  827. BaseType_t HPTaskAwoken = pdFALSE;
  828. uint32_t speed_mode = 0;
  829. uint32_t channel = 0;
  830. uint32_t intr_status = 0;
  831. ledc_fade_fsm_t state;
  832. for (speed_mode = 0; speed_mode < LEDC_SPEED_MODE_MAX; speed_mode++) {
  833. if (p_ledc_obj[speed_mode] == NULL) {
  834. continue;
  835. }
  836. ledc_hal_get_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), &intr_status);
  837. while (intr_status) {
  838. ledc_calc_fade_end_channel(&intr_status, &channel);
  839. // clear interrupt
  840. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  841. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  842. //fade object not initialized yet.
  843. continue;
  844. }
  845. // Switch fade state to ISR_CAL if current state is HW_FADE
  846. bool already_stopped = false;
  847. portENTER_CRITICAL_ISR(&ledc_spinlock);
  848. state = s_ledc_fade_rec[speed_mode][channel]->fsm;
  849. assert(state != LEDC_FSM_ISR_CAL && state != LEDC_FSM_KILLED_PENDING);
  850. if (state == LEDC_FSM_HW_FADE) {
  851. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_ISR_CAL;
  852. } else if (state == LEDC_FSM_IDLE) {
  853. // interrupt seen, but has already been stopped by task
  854. already_stopped = true;
  855. }
  856. portEXIT_CRITICAL_ISR(&ledc_spinlock);
  857. if (already_stopped) {
  858. continue;
  859. }
  860. bool set_to_idle = false;
  861. int cycle = 0;
  862. int delta = 0;
  863. int step = 0;
  864. int next_duty = 0;
  865. uint32_t duty_cur = 0;
  866. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  867. uint32_t duty_tar = s_ledc_fade_rec[speed_mode][channel]->target_duty;
  868. #if SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED
  869. // If a multi-fade is done, check that target duty computed in sw is equal to the duty at the end of the fade
  870. uint32_t range_num;
  871. ledc_hal_get_range_number(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &range_num);
  872. if (range_num > 1) {
  873. assert(duty_cur == duty_tar);
  874. }
  875. #endif
  876. int scale = s_ledc_fade_rec[speed_mode][channel]->scale;
  877. if (duty_cur == duty_tar || scale == 0) {
  878. // Target duty has reached
  879. set_to_idle = true;
  880. } else {
  881. // Calculate new duty config parameters
  882. delta = (s_ledc_fade_rec[speed_mode][channel]->direction == LEDC_DUTY_DIR_DECREASE) ?
  883. (duty_cur - duty_tar) : (duty_tar - duty_cur);
  884. if (delta > scale) {
  885. next_duty = duty_cur;
  886. step = (delta / scale > LEDC_DUTY_NUM_MAX) ? LEDC_DUTY_NUM_MAX : (delta / scale);
  887. cycle = s_ledc_fade_rec[speed_mode][channel]->cycle_num;
  888. } else {
  889. next_duty = duty_tar;
  890. step = 1;
  891. cycle = 1;
  892. scale = 0;
  893. }
  894. }
  895. bool finished = false;
  896. portENTER_CRITICAL_ISR(&ledc_spinlock);
  897. state = s_ledc_fade_rec[speed_mode][channel]->fsm;
  898. assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_HW_FADE);
  899. if (set_to_idle || state == LEDC_FSM_KILLED_PENDING) {
  900. // Either fade has completed or has been killed, skip HW duty config
  901. finished = true;
  902. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
  903. } else if (state == LEDC_FSM_ISR_CAL) {
  904. // Loading new fade to start
  905. ledc_duty_config(speed_mode,
  906. channel,
  907. LEDC_VAL_NO_CHANGE,
  908. next_duty,
  909. s_ledc_fade_rec[speed_mode][channel]->direction,
  910. step,
  911. cycle,
  912. scale);
  913. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_HW_FADE;
  914. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  915. ledc_ls_channel_update(speed_mode, channel);
  916. }
  917. portEXIT_CRITICAL_ISR(&ledc_spinlock);
  918. if (finished) {
  919. xSemaphoreGiveFromISR(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, &HPTaskAwoken);
  920. ledc_cb_t fade_cb = s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback;
  921. if (fade_cb) {
  922. ledc_cb_param_t param = {
  923. .event = LEDC_FADE_END_EVT,
  924. .speed_mode = speed_mode,
  925. .channel = channel,
  926. .duty = duty_cur
  927. };
  928. cb_yield |= fade_cb(&param, s_ledc_fade_rec[speed_mode][channel]->cb_user_arg);
  929. }
  930. }
  931. }
  932. }
  933. if (HPTaskAwoken == pdTRUE || cb_yield) {
  934. portYIELD_FROM_ISR();
  935. }
  936. }
  937. static esp_err_t ledc_fade_channel_deinit(ledc_mode_t speed_mode, ledc_channel_t channel)
  938. {
  939. if (s_ledc_fade_rec[speed_mode][channel]) {
  940. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux) {
  941. vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux);
  942. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = NULL;
  943. }
  944. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  945. vSemaphoreDeleteWithCaps(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  946. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = NULL;
  947. }
  948. free(s_ledc_fade_rec[speed_mode][channel]);
  949. s_ledc_fade_rec[speed_mode][channel] = NULL;
  950. }
  951. return ESP_OK;
  952. }
  953. static esp_err_t ledc_fade_channel_init_check(ledc_mode_t speed_mode, ledc_channel_t channel)
  954. {
  955. if (s_ledc_fade_isr_handle == NULL) {
  956. ESP_LOGE(LEDC_TAG, "Fade service not installed, call ledc_fade_func_install");
  957. return ESP_FAIL;
  958. }
  959. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  960. // Always malloc internally since LEDC ISR is always placed in IRAM
  961. s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) heap_caps_calloc(1, sizeof(ledc_fade_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  962. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  963. ledc_fade_channel_deinit(speed_mode, channel);
  964. return ESP_ERR_NO_MEM;
  965. }
  966. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinaryWithCaps(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  967. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = xSemaphoreCreateMutex();
  968. xSemaphoreGive(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  969. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
  970. }
  971. if (s_ledc_fade_rec[speed_mode][channel]
  972. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux
  973. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  974. return ESP_OK;
  975. } else {
  976. ledc_fade_channel_deinit(speed_mode, channel);
  977. return ESP_FAIL;
  978. }
  979. }
  980. static esp_err_t _ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int scale, int cycle_num)
  981. {
  982. portENTER_CRITICAL(&ledc_spinlock);
  983. uint32_t duty_cur = 0;
  984. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  985. // When duty == max_duty, meanwhile, if scale == 1 and fade_down == 1, counter would overflow.
  986. if (duty_cur == ledc_get_max_duty(speed_mode, channel)) {
  987. duty_cur -= 1;
  988. }
  989. s_ledc_fade_rec[speed_mode][channel]->speed_mode = speed_mode;
  990. s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty;
  991. s_ledc_fade_rec[speed_mode][channel]->cycle_num = cycle_num;
  992. s_ledc_fade_rec[speed_mode][channel]->scale = scale;
  993. int step_num = 0;
  994. int dir = LEDC_DUTY_DIR_DECREASE;
  995. if (scale > 0) {
  996. if (duty_cur > target_duty) {
  997. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_DECREASE;
  998. step_num = (duty_cur - target_duty) / scale;
  999. step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num;
  1000. } else {
  1001. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_INCREASE;
  1002. dir = LEDC_DUTY_DIR_INCREASE;
  1003. step_num = (target_duty - duty_cur) / scale;
  1004. step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num;
  1005. }
  1006. }
  1007. portEXIT_CRITICAL(&ledc_spinlock);
  1008. if (scale > 0 && step_num > 0) {
  1009. portENTER_CRITICAL(&ledc_spinlock);
  1010. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, duty_cur, dir, step_num, cycle_num, scale);
  1011. portEXIT_CRITICAL(&ledc_spinlock);
  1012. ESP_LOGD(LEDC_TAG, "cur duty: %"PRIu32"; target: %"PRIu32", step: %d, cycle: %d; scale: %d; dir: %d",
  1013. duty_cur, target_duty, step_num, cycle_num, scale, dir);
  1014. } else {
  1015. // Directly set duty to the target, does not care on the dir
  1016. portENTER_CRITICAL(&ledc_spinlock);
  1017. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, target_duty, 1, 1, 1, 0);
  1018. portEXIT_CRITICAL(&ledc_spinlock);
  1019. ESP_LOGD(LEDC_TAG, "Set to target duty: %"PRIu32, target_duty);
  1020. }
  1021. return ESP_OK;
  1022. }
  1023. static esp_err_t _ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  1024. {
  1025. ledc_timer_t timer_sel;
  1026. uint32_t duty_cur = 0;
  1027. ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
  1028. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  1029. uint32_t freq = ledc_get_freq(speed_mode, timer_sel);
  1030. uint32_t duty_delta = target_duty > duty_cur ? target_duty - duty_cur : duty_cur - target_duty;
  1031. if (duty_delta == 0) {
  1032. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  1033. }
  1034. uint32_t total_cycles = max_fade_time_ms * freq / 1000;
  1035. if (total_cycles == 0) {
  1036. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  1037. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  1038. }
  1039. int scale, cycle_num;
  1040. if (total_cycles > duty_delta) {
  1041. scale = 1;
  1042. cycle_num = total_cycles / duty_delta;
  1043. if (cycle_num > LEDC_LL_DUTY_CYCLE_MAX) {
  1044. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR);
  1045. cycle_num = LEDC_LL_DUTY_CYCLE_MAX;
  1046. }
  1047. } else {
  1048. cycle_num = 1;
  1049. scale = duty_delta / total_cycles;
  1050. if (scale > LEDC_LL_DUTY_SCALE_MAX) {
  1051. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  1052. scale = LEDC_LL_DUTY_SCALE_MAX;
  1053. }
  1054. }
  1055. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1056. }
  1057. static void _ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  1058. {
  1059. ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
  1060. fade->mode = fade_mode;
  1061. // Clear interrupt status of channel
  1062. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  1063. // Enable interrupt for channel
  1064. portENTER_CRITICAL(&ledc_spinlock);
  1065. ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_FADE_END);
  1066. // Set fade state to HW_FADE state for starting the fade
  1067. assert(fade->fsm == LEDC_FSM_IDLE);
  1068. fade->fsm = LEDC_FSM_HW_FADE;
  1069. portEXIT_CRITICAL(&ledc_spinlock);
  1070. // Trigger the fade
  1071. ledc_update_duty(speed_mode, channel);
  1072. if (fade_mode == LEDC_FADE_WAIT_DONE) {
  1073. // Waiting for fade done
  1074. _ledc_fade_hw_acquire(speed_mode, channel);
  1075. // Release hardware to support next time fade configure
  1076. _ledc_fade_hw_release(speed_mode, channel);
  1077. }
  1078. }
  1079. esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  1080. {
  1081. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1082. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1083. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1084. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1085. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1086. _ledc_fade_hw_acquire(speed_mode, channel);
  1087. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  1088. _ledc_fade_hw_release(speed_mode, channel);
  1089. return ESP_OK;
  1090. }
  1091. esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num)
  1092. {
  1093. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1094. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1095. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale");
  1096. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num");
  1097. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1098. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1099. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1100. _ledc_fade_hw_acquire(speed_mode, channel);
  1101. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1102. _ledc_fade_hw_release(speed_mode, channel);
  1103. return ESP_OK;
  1104. }
  1105. esp_err_t ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  1106. {
  1107. LEDC_CHECK(s_ledc_fade_rec[speed_mode][channel] != NULL, LEDC_FADE_SERVICE_ERR_STR, ESP_ERR_INVALID_STATE);
  1108. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1109. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1110. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1111. _ledc_fade_hw_acquire(speed_mode, channel);
  1112. _ledc_fade_start(speed_mode, channel, fade_mode);
  1113. return ESP_OK;
  1114. }
  1115. // ESP32 does not support this functionality, fade cannot be overwritten with new duty config
  1116. #if SOC_LEDC_SUPPORT_FADE_STOP
  1117. esp_err_t ledc_fade_stop(ledc_mode_t speed_mode, ledc_channel_t channel)
  1118. {
  1119. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1120. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1121. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1122. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1123. ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
  1124. ledc_fade_fsm_t state = fade->fsm;
  1125. bool wait_for_idle = false;
  1126. assert(state != LEDC_FSM_KILLED_PENDING);
  1127. if (state == LEDC_FSM_IDLE) {
  1128. // if there is no fade going on, do nothing
  1129. return ESP_OK;
  1130. }
  1131. // Fade state is either HW_FADE or ISR_CAL (there is a fade in process)
  1132. portENTER_CRITICAL(&ledc_spinlock);
  1133. // Disable ledc channel interrupt first
  1134. ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_DISABLE);
  1135. // Config duty to the duty cycle at this moment
  1136. uint32_t duty_cur = ledc_get_duty(speed_mode, channel);
  1137. ledc_duty_config(speed_mode,
  1138. channel, //uint32_t chan_num,
  1139. LEDC_VAL_NO_CHANGE,
  1140. duty_cur, //uint32_t duty_val,
  1141. 1, //uint32_t increase,
  1142. 1, //uint32_t duty_num,
  1143. 1, //uint32_t duty_cycle,
  1144. 0 //uint32_t duty_scale
  1145. );
  1146. _ledc_update_duty(speed_mode, channel);
  1147. state = fade->fsm;
  1148. assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_KILLED_PENDING);
  1149. if (state == LEDC_FSM_HW_FADE) {
  1150. fade->fsm = LEDC_FSM_IDLE;
  1151. } else if (state == LEDC_FSM_ISR_CAL) {
  1152. fade->fsm = LEDC_FSM_KILLED_PENDING;
  1153. wait_for_idle = true;
  1154. }
  1155. portEXIT_CRITICAL(&ledc_spinlock);
  1156. if (wait_for_idle) {
  1157. // Wait for ISR return, which gives the semaphore and switchs state to IDLE
  1158. _ledc_fade_hw_acquire(speed_mode, channel);
  1159. assert(fade->fsm == LEDC_FSM_IDLE);
  1160. }
  1161. _ledc_fade_hw_release(speed_mode, channel);
  1162. return ESP_OK;
  1163. }
  1164. #endif
  1165. esp_err_t ledc_fade_func_install(int intr_alloc_flags)
  1166. {
  1167. LEDC_CHECK(s_ledc_fade_isr_handle == NULL, "fade function already installed", ESP_ERR_INVALID_STATE);
  1168. //OR intr_alloc_flags with ESP_INTR_FLAG_IRAM because the fade isr is in IRAM
  1169. return ledc_isr_register(ledc_fade_isr, NULL, intr_alloc_flags | ESP_INTR_FLAG_IRAM, &s_ledc_fade_isr_handle);
  1170. }
  1171. void ledc_fade_func_uninstall(void)
  1172. {
  1173. if (s_ledc_fade_isr_handle) {
  1174. esp_intr_free(s_ledc_fade_isr_handle);
  1175. s_ledc_fade_isr_handle = NULL;
  1176. }
  1177. int channel, mode;
  1178. for (mode = 0; mode < LEDC_SPEED_MODE_MAX; mode++) {
  1179. for (channel = 0; channel < LEDC_CHANNEL_MAX; channel++) {
  1180. ledc_fade_channel_deinit(mode, channel);
  1181. }
  1182. }
  1183. return;
  1184. }
  1185. esp_err_t ledc_cb_register(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_cbs_t *cbs, void *user_arg)
  1186. {
  1187. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1188. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1189. LEDC_ARG_CHECK(cbs, "callback");
  1190. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1191. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1192. if (cbs->fade_cb && !esp_ptr_in_iram(cbs->fade_cb)) {
  1193. ESP_LOGW(LEDC_TAG, "fade callback not in IRAM");
  1194. }
  1195. if (user_arg && !esp_ptr_internal(user_arg)) {
  1196. ESP_LOGW(LEDC_TAG, "user context not in internal RAM");
  1197. }
  1198. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback = cbs->fade_cb;
  1199. s_ledc_fade_rec[speed_mode][channel]->cb_user_arg = user_arg;
  1200. return ESP_OK;
  1201. }
  1202. /*
  1203. * The functions below are thread-safe version of APIs for duty and fade control.
  1204. * These APIs can be called from different tasks.
  1205. */
  1206. esp_err_t ledc_set_duty_and_update(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  1207. {
  1208. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1209. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1210. LEDC_ARG_CHECK(duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1211. LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint");
  1212. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1213. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1214. _ledc_fade_hw_acquire(speed_mode, channel);
  1215. portENTER_CRITICAL(&ledc_spinlock);
  1216. ledc_duty_config(speed_mode, channel, hpoint, duty, 1, 1, 1, 0);
  1217. _ledc_update_duty(speed_mode, channel);
  1218. portEXIT_CRITICAL(&ledc_spinlock);
  1219. _ledc_fade_hw_release(speed_mode, channel);
  1220. return ESP_OK;
  1221. }
  1222. esp_err_t ledc_set_fade_time_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t max_fade_time_ms, ledc_fade_mode_t fade_mode)
  1223. {
  1224. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1225. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1226. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1227. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1228. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1229. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1230. _ledc_op_lock_acquire(speed_mode, channel);
  1231. _ledc_fade_hw_acquire(speed_mode, channel);
  1232. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  1233. _ledc_fade_start(speed_mode, channel, fade_mode);
  1234. _ledc_op_lock_release(speed_mode, channel);
  1235. return ESP_OK;
  1236. }
  1237. esp_err_t ledc_set_fade_step_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num, ledc_fade_mode_t fade_mode)
  1238. {
  1239. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1240. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1241. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1242. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1243. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1244. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale");
  1245. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num");
  1246. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1247. _ledc_op_lock_acquire(speed_mode, channel);
  1248. _ledc_fade_hw_acquire(speed_mode, channel);
  1249. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1250. _ledc_fade_start(speed_mode, channel, fade_mode);
  1251. _ledc_op_lock_release(speed_mode, channel);
  1252. return ESP_OK;
  1253. }
  1254. #if SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED
  1255. static esp_err_t _ledc_set_multi_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t start_duty, const ledc_fade_param_config_t *fade_params_list, uint32_t list_len)
  1256. {
  1257. uint32_t max_duty = ledc_get_max_duty(speed_mode, channel);
  1258. LEDC_ARG_CHECK(start_duty <= max_duty, "start_duty");
  1259. portENTER_CRITICAL(&ledc_spinlock);
  1260. ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, start_duty);
  1261. for (int i = 0; i < list_len; i++) {
  1262. ledc_fade_param_config_t fade_param = fade_params_list[i];
  1263. ledc_hal_set_fade_param(&(p_ledc_obj[speed_mode]->ledc_hal), channel, i, fade_param.dir, fade_param.cycle_num, fade_param.scale, fade_param.step_num);
  1264. }
  1265. ledc_hal_set_range_number(&(p_ledc_obj[speed_mode]->ledc_hal), channel, list_len);
  1266. portEXIT_CRITICAL(&ledc_spinlock);
  1267. // Calculate target duty, and take account for overflow
  1268. uint32_t target_duty = start_duty;
  1269. for (int i = 0; i < list_len; i++) {
  1270. uint32_t delta_duty = (fade_params_list[i].step_num * fade_params_list[i].scale) % (max_duty + 1);
  1271. if (fade_params_list[i].dir == LEDC_DUTY_DIR_INCREASE) {
  1272. target_duty += delta_duty;
  1273. if (target_duty > max_duty) {
  1274. target_duty -= max_duty + 1;
  1275. }
  1276. } else {
  1277. if (delta_duty > target_duty) {
  1278. target_duty += max_duty + 1;
  1279. }
  1280. target_duty -= delta_duty;
  1281. }
  1282. }
  1283. // Set interrupt exit criteria
  1284. s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty;
  1285. s_ledc_fade_rec[speed_mode][channel]->scale = fade_params_list[list_len - 1].scale;
  1286. return ESP_OK;
  1287. }
  1288. esp_err_t ledc_set_multi_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t start_duty, const ledc_fade_param_config_t *fade_params_list, uint32_t list_len)
  1289. {
  1290. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1291. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1292. LEDC_ARG_CHECK(list_len <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "list_len");
  1293. LEDC_ARG_CHECK(fade_params_list, "fade_params_list");
  1294. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1295. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1296. _ledc_fade_hw_acquire(speed_mode, channel);
  1297. esp_err_t ret = _ledc_set_multi_fade(speed_mode, channel, start_duty, fade_params_list, list_len);
  1298. _ledc_fade_hw_release(speed_mode, channel);
  1299. return ret;
  1300. }
  1301. esp_err_t ledc_set_multi_fade_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t start_duty, const ledc_fade_param_config_t *fade_params_list, uint32_t list_len, ledc_fade_mode_t fade_mode)
  1302. {
  1303. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1304. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1305. LEDC_ARG_CHECK(list_len <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "list_len");
  1306. LEDC_ARG_CHECK(fade_params_list, "fade_params_list");
  1307. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1308. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1309. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1310. _ledc_op_lock_acquire(speed_mode, channel);
  1311. _ledc_fade_hw_acquire(speed_mode, channel);
  1312. esp_err_t ret = _ledc_set_multi_fade(speed_mode, channel, start_duty, fade_params_list, list_len);
  1313. if (ret != ESP_OK) {
  1314. _ledc_fade_hw_release(speed_mode, channel);
  1315. } else {
  1316. _ledc_fade_start(speed_mode, channel, fade_mode);
  1317. }
  1318. _ledc_op_lock_release(speed_mode, channel);
  1319. return ret;
  1320. }
  1321. esp_err_t ledc_fill_multi_fade_param_list(ledc_mode_t speed_mode, ledc_channel_t channel,
  1322. uint32_t start_duty, uint32_t end_duty,
  1323. uint32_t linear_phase_num, uint32_t max_fade_time_ms,
  1324. uint32_t (* gamma_correction_operator)(uint32_t),
  1325. uint32_t fade_params_list_size,
  1326. ledc_fade_param_config_t *fade_params_list, uint32_t *hw_fade_range_num)
  1327. {
  1328. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1329. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1330. LEDC_ARG_CHECK(linear_phase_num > 0 && linear_phase_num <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "linear_phase_num");
  1331. LEDC_ARG_CHECK(gamma_correction_operator, "gamma_correction_operator");
  1332. LEDC_ARG_CHECK(fade_params_list_size <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "fade_params_list_size");
  1333. LEDC_ARG_CHECK(fade_params_list, "fade_params_list");
  1334. LEDC_ARG_CHECK(hw_fade_range_num, "hw_fade_range_num");
  1335. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1336. uint32_t max_duty = ledc_get_max_duty(speed_mode, channel);
  1337. LEDC_ARG_CHECK(start_duty <= max_duty && end_duty <= max_duty, "duty");
  1338. esp_err_t ret = ESP_OK;
  1339. ledc_timer_t timer_sel;
  1340. ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
  1341. uint32_t freq = ledc_get_freq(speed_mode, timer_sel);
  1342. uint32_t dir = (end_duty > start_duty) ? LEDC_DUTY_DIR_INCREASE : LEDC_DUTY_DIR_DECREASE;
  1343. uint32_t total_cycles = max_fade_time_ms * freq / 1000;
  1344. // If no duty change is need, then simplify the case
  1345. if (start_duty == end_duty) {
  1346. total_cycles = 1;
  1347. linear_phase_num = 1;
  1348. }
  1349. uint32_t avg_cycles_per_phase = total_cycles / linear_phase_num;
  1350. if (avg_cycles_per_phase == 0) {
  1351. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  1352. avg_cycles_per_phase = 1;
  1353. }
  1354. int sgn = (dir == LEDC_DUTY_DIR_INCREASE) ? 1 : (-1);
  1355. int32_t delta_brightness_per_phase = sgn * ((sgn * (end_duty - start_duty)) / linear_phase_num);
  1356. // First phase start and end values
  1357. uint32_t gamma_corrected_phase_head = gamma_correction_operator(start_duty);
  1358. uint32_t gamma_corrected_phase_tail = 0;
  1359. int32_t phase_tail = start_duty + delta_brightness_per_phase;
  1360. // Compute raw fade parameters for each linear phase
  1361. uint32_t total_fade_range = 0; // To record the required hw fade ranges
  1362. uint32_t surplus_cycles_last_phase = 0;
  1363. for (int i = 0; i < linear_phase_num; i++) {
  1364. uint32_t cycle, scale, step;
  1365. gamma_corrected_phase_tail = gamma_correction_operator(phase_tail);
  1366. uint32_t duty_delta = (dir == LEDC_DUTY_DIR_INCREASE) ? (gamma_corrected_phase_tail - gamma_corrected_phase_head) :
  1367. (gamma_corrected_phase_head - gamma_corrected_phase_tail);
  1368. uint32_t cycles_per_phase = avg_cycles_per_phase + surplus_cycles_last_phase;
  1369. if (duty_delta == 0) {
  1370. scale = 0;
  1371. cycle = (cycles_per_phase > LEDC_LL_DUTY_CYCLE_MAX) ? LEDC_LL_DUTY_CYCLE_MAX : cycles_per_phase;
  1372. step = 1;
  1373. } else if (cycles_per_phase > duty_delta) {
  1374. scale = 1;
  1375. step = duty_delta;
  1376. cycle = cycles_per_phase / duty_delta;
  1377. if (cycle > LEDC_LL_DUTY_CYCLE_MAX) {
  1378. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR);
  1379. cycle = LEDC_LL_DUTY_CYCLE_MAX;
  1380. }
  1381. } else {
  1382. cycle = 1;
  1383. scale = duty_delta / cycles_per_phase;
  1384. if (scale > LEDC_LL_DUTY_SCALE_MAX) {
  1385. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  1386. scale = LEDC_LL_DUTY_SCALE_MAX;
  1387. }
  1388. step = duty_delta / scale;
  1389. }
  1390. // Prepare for next phase calculation
  1391. phase_tail = phase_tail + delta_brightness_per_phase;
  1392. if (dir == LEDC_DUTY_DIR_INCREASE) {
  1393. gamma_corrected_phase_head += step * scale;
  1394. } else {
  1395. gamma_corrected_phase_head -= step * scale;
  1396. }
  1397. surplus_cycles_last_phase = cycles_per_phase - step * cycle;
  1398. // If next phase is the last one, then account for all remaining duty and cycles
  1399. if (i == linear_phase_num - 2) {
  1400. phase_tail = end_duty;
  1401. surplus_cycles_last_phase += total_cycles - avg_cycles_per_phase * linear_phase_num;
  1402. }
  1403. // Fill into the fade parameter list
  1404. // One linear phase might need multiple hardware fade ranges
  1405. do {
  1406. if (total_fade_range >= fade_params_list_size) {
  1407. ret = ESP_FAIL;
  1408. break;
  1409. }
  1410. fade_params_list[total_fade_range].dir = dir;
  1411. fade_params_list[total_fade_range].cycle_num = cycle;
  1412. fade_params_list[total_fade_range].scale = scale;
  1413. fade_params_list[total_fade_range].step_num = (step > LEDC_LL_DUTY_NUM_MAX) ? LEDC_LL_DUTY_NUM_MAX : step;
  1414. step -= fade_params_list[total_fade_range].step_num;
  1415. total_fade_range += 1;
  1416. } while (step > 0);
  1417. if (ret != ESP_OK) {
  1418. break;
  1419. }
  1420. }
  1421. uint32_t remaining_duty_delta = (dir == LEDC_DUTY_DIR_INCREASE) ? (gamma_corrected_phase_tail - gamma_corrected_phase_head) :
  1422. (gamma_corrected_phase_head - gamma_corrected_phase_tail);
  1423. if (remaining_duty_delta) {
  1424. total_fade_range += 1;
  1425. }
  1426. ESP_RETURN_ON_FALSE(total_fade_range <= fade_params_list_size, ESP_FAIL, LEDC_TAG,
  1427. "hw fade ranges required exceeds the space offered to fill the fade params."
  1428. " Please allocate more space, or split into smaller multi-fades, or reduce linear_phase_num");
  1429. if (remaining_duty_delta) {
  1430. fade_params_list[total_fade_range].dir = dir;
  1431. fade_params_list[total_fade_range].step_num = 1;
  1432. fade_params_list[total_fade_range].cycle_num = 1;
  1433. fade_params_list[total_fade_range].scale = remaining_duty_delta;
  1434. }
  1435. *hw_fade_range_num = total_fade_range;
  1436. return ret;
  1437. }
  1438. esp_err_t ledc_read_fade_param(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t range, uint32_t *dir, uint32_t *cycle, uint32_t *scale, uint32_t *step)
  1439. {
  1440. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1441. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1442. LEDC_ARG_CHECK(range < SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "range");
  1443. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1444. ledc_hal_get_fade_param(&(p_ledc_obj[speed_mode]->ledc_hal), channel, range, dir, cycle, scale, step);
  1445. return ESP_OK;
  1446. }
  1447. #endif // SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED