| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872 |
- /*
- * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #include <string.h>
- #include <sys/param.h>
- #include "esp_types.h"
- #include "esp_attr.h"
- #include "esp_intr_alloc.h"
- #include "esp_log.h"
- #include "esp_err.h"
- #include "esp_check.h"
- #include "malloc.h"
- #include "freertos/FreeRTOS.h"
- #include "freertos/queue.h"
- #include "freertos/semphr.h"
- #include "freertos/ringbuf.h"
- #include "freertos/idf_additions.h"
- #include "esp_private/critical_section.h"
- #include "hal/uart_hal.h"
- #include "hal/gpio_hal.h"
- #include "hal/clk_tree_ll.h"
- #include "soc/uart_periph.h"
- #include "driver/uart.h"
- #include "driver/gpio.h"
- #include "driver/rtc_io.h"
- #include "driver/uart_select.h"
- #include "driver/lp_io.h"
- #include "esp_private/uart_share_hw_ctrl.h"
- #include "esp_private/periph_ctrl.h"
- #include "esp_clk_tree.h"
- #include "sdkconfig.h"
- #include "esp_rom_gpio.h"
- #include "clk_ctrl_os.h"
- #ifdef CONFIG_UART_ISR_IN_IRAM
- #define UART_ISR_ATTR IRAM_ATTR
- #define UART_MALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
- #else
- #define UART_ISR_ATTR
- #define UART_MALLOC_CAPS MALLOC_CAP_DEFAULT
- #endif
- #define XOFF (0x13)
- #define XON (0x11)
- static const char *UART_TAG = "uart";
- #define UART_EMPTY_THRESH_DEFAULT (10)
- #define LP_UART_EMPTY_THRESH_DEFAULT (2)
- #define UART_FULL_THRESH_DEFAULT (120)
- #define LP_UART_FULL_THRESH_DEFAULT (10)
- #define UART_TOUT_THRESH_DEFAULT (10)
- #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
- #define UART_TX_IDLE_NUM_DEFAULT (0)
- #define UART_PATTERN_DET_QLEN_DEFAULT (10)
- #define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
- #if (SOC_UART_LP_NUM >= 1)
- #define UART_THRESHOLD_NUM(uart_num, field_name) ((uart_num < SOC_UART_HP_NUM) ? field_name : LP_##field_name)
- #else
- #define UART_THRESHOLD_NUM(uart_num, field_name) (field_name)
- #endif
- #if SOC_UART_SUPPORT_WAKEUP_INT
- #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
- | (UART_INTR_RXFIFO_TOUT) \
- | (UART_INTR_RXFIFO_OVF) \
- | (UART_INTR_BRK_DET) \
- | (UART_INTR_PARITY_ERR)) \
- | (UART_INTR_WAKEUP)
- #else
- #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
- | (UART_INTR_RXFIFO_TOUT) \
- | (UART_INTR_RXFIFO_OVF) \
- | (UART_INTR_BRK_DET) \
- | (UART_INTR_PARITY_ERR))
- #endif
- #define UART_ENTER_CRITICAL_SAFE(spinlock) esp_os_enter_critical_safe(spinlock)
- #define UART_EXIT_CRITICAL_SAFE(spinlock) esp_os_exit_critical_safe(spinlock)
- #define UART_ENTER_CRITICAL_ISR(spinlock) esp_os_enter_critical_isr(spinlock)
- #define UART_EXIT_CRITICAL_ISR(spinlock) esp_os_exit_critical_isr(spinlock)
- #define UART_ENTER_CRITICAL(spinlock) esp_os_enter_critical(spinlock)
- #define UART_EXIT_CRITICAL(spinlock) esp_os_exit_critical(spinlock)
- // Check actual UART mode set
- #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
- #define UART_CONTEX_INIT_DEF(uart_num) {\
- .hal.dev = UART_LL_GET_HW(uart_num),\
- INIT_CRIT_SECTION_LOCK_IN_STRUCT(spinlock)\
- .hw_enabled = false,\
- }
- typedef struct {
- uart_event_type_t type; /*!< UART TX data type */
- struct {
- int brk_len;
- size_t size;
- uint8_t data[0];
- } tx_data;
- } uart_tx_data_t;
- typedef struct {
- int wr;
- int rd;
- int len;
- int *data;
- } uart_pat_rb_t;
- typedef struct {
- uart_port_t uart_num; /*!< UART port number*/
- int event_queue_size; /*!< UART event queue size*/
- intr_handle_t intr_handle; /*!< UART interrupt handle*/
- uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
- bool coll_det_flg; /*!< UART collision detection flag */
- bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
- int rx_buffered_len; /*!< UART cached data length */
- int rx_buf_size; /*!< RX ring buffer size */
- bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
- uint32_t rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
- uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
- uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
- uint8_t *rx_data_buf; /*!< Data buffer to stash FIFO data*/
- uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
- uint32_t rx_int_usr_mask; /*!< RX interrupt status. Valid at any time, regardless of RX buffer status. */
- uart_pat_rb_t rx_pattern_pos;
- int tx_buf_size; /*!< TX ring buffer size */
- bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
- uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
- uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
- uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
- uint32_t tx_len_cur;
- uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
- uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
- uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
- uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
- QueueHandle_t event_queue; /*!< UART event queue handler*/
- RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
- RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
- SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
- SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
- SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
- SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
- SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
- } uart_obj_t;
- typedef struct {
- uart_hal_context_t hal; /*!< UART hal context*/
- DECLARE_CRIT_SECTION_LOCK_IN_STRUCT(spinlock)
- bool hw_enabled;
- } uart_context_t;
- static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
- static uart_context_t uart_context[UART_NUM_MAX] = {
- UART_CONTEX_INIT_DEF(UART_NUM_0),
- UART_CONTEX_INIT_DEF(UART_NUM_1),
- #if SOC_UART_HP_NUM > 2
- UART_CONTEX_INIT_DEF(UART_NUM_2),
- #endif
- #if SOC_UART_HP_NUM > 3
- UART_CONTEX_INIT_DEF(UART_NUM_3),
- #endif
- #if SOC_UART_HP_NUM > 4
- UART_CONTEX_INIT_DEF(UART_NUM_4),
- #endif
- #if (SOC_UART_LP_NUM >= 1)
- UART_CONTEX_INIT_DEF(LP_UART_NUM_0),
- #endif
- };
- static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
- static void uart_module_enable(uart_port_t uart_num)
- {
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- if (uart_context[uart_num].hw_enabled != true) {
- if (uart_num < SOC_UART_HP_NUM) {
- HP_UART_BUS_CLK_ATOMIC() {
- uart_ll_enable_bus_clock(uart_num, true);
- }
- if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
- HP_UART_BUS_CLK_ATOMIC() {
- uart_ll_reset_register(uart_num);
- }
- }
- }
- #if (SOC_UART_LP_NUM >= 1)
- else {
- LP_UART_BUS_CLK_ATOMIC() {
- lp_uart_ll_enable_bus_clock(uart_num - SOC_UART_HP_NUM, true);
- lp_uart_ll_reset_register(uart_num - SOC_UART_HP_NUM);
- }
- }
- #endif
- uart_context[uart_num].hw_enabled = true;
- }
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- }
- static void uart_module_disable(uart_port_t uart_num)
- {
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- if (uart_context[uart_num].hw_enabled != false) {
- if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM && uart_num < SOC_UART_HP_NUM) {
- HP_UART_BUS_CLK_ATOMIC() {
- uart_ll_enable_bus_clock(uart_num, false);
- }
- }
- #if (SOC_UART_LP_NUM >= 1)
- else if (uart_num >= SOC_UART_HP_NUM) {
- LP_UART_BUS_CLK_ATOMIC() {
- lp_uart_ll_enable_bus_clock(uart_num - SOC_UART_HP_NUM, false);
- }
- }
- #endif
- uart_context[uart_num].hw_enabled = false;
- }
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- }
- esp_err_t uart_get_sclk_freq(uart_sclk_t sclk, uint32_t *out_freq_hz)
- {
- return esp_clk_tree_src_get_freq_hz((soc_module_clk_t)sclk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, out_freq_hz);
- }
- esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((data_bit < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
- return ESP_OK;
- }
- esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((stop_bit < UART_STOP_BITS_MAX), ESP_FAIL, UART_TAG, "stop bit error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- soc_module_clk_t src_clk;
- uint32_t sclk_freq;
- uart_hal_get_sclk(&(uart_context[uart_num].hal), &src_clk);
- ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz(src_clk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq), UART_TAG, "Invalid src_clk");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- if (uart_num < SOC_UART_HP_NUM) {
- HP_UART_SRC_CLK_ATOMIC() {
- uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate, sclk_freq);
- }
- }
- #if (SOC_UART_LP_NUM >= 1)
- else {
- lp_uart_ll_set_baudrate(uart_context[uart_num].hal.dev, baud_rate, sclk_freq);
- }
- #endif
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- soc_module_clk_t src_clk;
- uint32_t sclk_freq;
- uart_hal_get_sclk(&(uart_context[uart_num].hal), &src_clk);
- ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz(src_clk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq), UART_TAG, "Invalid src_clk");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate, sclk_freq);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((rx_thresh_xon < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow xon thresh error");
- ESP_RETURN_ON_FALSE((rx_thresh_xoff < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow xoff thresh error");
- uart_sw_flowctrl_t sw_flow_ctl = {
- .xon_char = XON,
- .xoff_char = XOFF,
- .xon_thrd = rx_thresh_xon,
- .xoff_thrd = rx_thresh_xoff,
- };
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((rx_thresh < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow thresh error");
- ESP_RETURN_ON_FALSE((flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
- {
- ESP_RETURN_ON_FALSE_ISR((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
- return ESP_OK;
- }
- esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- /* Keep track of the interrupt toggling. In fact, without such variable,
- * once the RX buffer is full and the RX interrupts disabled, it is
- * impossible what was the previous state (enabled/disabled) of these
- * interrupt masks. Thus, this will be very particularly handy when
- * emptying a filled RX buffer. */
- p_uart_obj[uart_num]->rx_int_usr_mask |= enable_mask;
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- /**
- * @brief Function re-enabling the given interrupts (mask) if and only if
- * they have not been disabled by the user.
- *
- * @param uart_num UART number to perform the operation on
- * @param enable_mask Interrupts (flags) to be re-enabled
- *
- * @return ESP_OK in success, ESP_FAIL if uart_num is incorrect
- */
- static esp_err_t uart_reenable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- /* Mask will only contain the interrupt flags that needs to be re-enabled
- * AND which have NOT been explicitly disabled by the user. */
- uint32_t mask = p_uart_obj[uart_num]->rx_int_usr_mask & enable_mask;
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), mask);
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), mask);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- p_uart_obj[uart_num]->rx_int_usr_mask &= ~disable_mask;
- uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
- {
- int *pdata = NULL;
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
- pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
- p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
- p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
- p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
- }
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- free(pdata);
- return ESP_OK;
- }
- static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
- {
- esp_err_t ret = ESP_OK;
- uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int next = p_pos->wr + 1;
- if (next >= p_pos->len) {
- next = 0;
- }
- if (next == p_pos->rd) {
- #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
- ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
- #endif
- ret = ESP_FAIL;
- } else {
- p_pos->data[p_pos->wr] = pos;
- p_pos->wr = next;
- ret = ESP_OK;
- }
- return ret;
- }
- static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
- {
- if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
- return ESP_ERR_INVALID_STATE;
- } else {
- esp_err_t ret = ESP_OK;
- uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- if (p_pos->rd == p_pos->wr) {
- ret = ESP_FAIL;
- } else {
- p_pos->rd++;
- }
- if (p_pos->rd >= p_pos->len) {
- p_pos->rd = 0;
- }
- return ret;
- }
- }
- static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
- {
- uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int rd = p_pos->rd;
- while (rd != p_pos->wr) {
- p_pos->data[rd] -= diff_len;
- int rd_rec = rd;
- rd ++;
- if (rd >= p_pos->len) {
- rd = 0;
- }
- if (p_pos->data[rd_rec] < 0) {
- p_pos->rd = rd;
- }
- }
- return ESP_OK;
- }
- int uart_pattern_pop_pos(uart_port_t uart_num)
- {
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int pos = -1;
- if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
- pos = pat_pos->data[pat_pos->rd];
- uart_pattern_dequeue(uart_num);
- }
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return pos;
- }
- int uart_pattern_get_pos(uart_port_t uart_num)
- {
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int pos = -1;
- if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
- pos = pat_pos->data[pat_pos->rd];
- }
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return pos;
- }
- esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
- int *pdata = (int *) malloc(queue_length * sizeof(int));
- if (pdata == NULL) {
- return ESP_ERR_NO_MEM;
- }
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
- p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
- p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
- p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
- p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- free(ptmp);
- return ESP_OK;
- }
- esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
- {
- ESP_RETURN_ON_FALSE(uart_num < UART_NUM_MAX, ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_THRESHOLD_NUM(uart_num, UART_RX_GAP_TOUT_V), ESP_FAIL, UART_TAG, "uart pattern set error\n");
- ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_THRESHOLD_NUM(uart_num, UART_POST_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart pattern set error\n");
- ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_THRESHOLD_NUM(uart_num, UART_PRE_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart pattern set error\n");
- uart_at_cmd_t at_cmd = {0};
- at_cmd.cmd_char = pattern_chr;
- at_cmd.char_num = chr_num;
- #if CONFIG_IDF_TARGET_ESP32
- uint32_t apb_clk_freq = 0;
- uint32_t uart_baud = 0;
- uint32_t uart_div = 0;
- uart_get_baudrate(uart_num, &uart_baud);
- esp_clk_tree_src_get_freq_hz((soc_module_clk_t)UART_SCLK_APB, ESP_CLK_TREE_SRC_FREQ_PRECISION_EXACT, &apb_clk_freq);
- uart_div = apb_clk_freq / uart_baud;
- at_cmd.gap_tout = chr_tout * uart_div;
- at_cmd.pre_idle = pre_idle * uart_div;
- at_cmd.post_idle = post_idle * uart_div;
- #else
- at_cmd.gap_tout = chr_tout;
- at_cmd.pre_idle = pre_idle;
- at_cmd.post_idle = post_idle;
- #endif
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
- {
- return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
- }
- esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
- {
- return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
- }
- esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
- {
- return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
- }
- esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
- {
- return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
- }
- esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((thresh < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "empty intr threshold error");
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- static bool uart_try_set_iomux_pin(uart_port_t uart_num, int io_num, uint32_t idx)
- {
- /* Store a pointer to the default pin, to optimize access to its fields. */
- const uart_periph_sig_t *upin = &uart_periph_signal[uart_num].pins[idx];
- /* In theory, if default_gpio is -1, iomux_func should also be -1, but
- * let's be safe and test both. */
- if (upin->iomux_func == -1 || upin->default_gpio == -1 || upin->default_gpio != io_num) {
- return false;
- }
- /* Assign the correct funct to the GPIO. */
- assert (upin->iomux_func != -1);
- if (uart_num < SOC_UART_HP_NUM) {
- gpio_iomux_out(io_num, upin->iomux_func, false);
- /* If the pin is input, we also have to redirect the signal,
- * in order to bypasse the GPIO matrix. */
- if (upin->input) {
- gpio_iomux_in(io_num, upin->signal);
- }
- }
- #if (SOC_UART_LP_NUM >= 1)
- else {
- if (upin->input) {
- rtc_gpio_set_direction(io_num, RTC_GPIO_MODE_INPUT_ONLY);
- } else {
- rtc_gpio_set_direction(io_num, RTC_GPIO_MODE_OUTPUT_ONLY);
- }
- rtc_gpio_init(io_num);
- rtc_gpio_iomux_func_sel(io_num, upin->iomux_func);
- }
- #endif
- return true;
- }
- //internal signal can be output to multiple GPIO pads
- //only one GPIO pad can connect with input signal
- esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
- {
- ESP_RETURN_ON_FALSE((uart_num >= 0), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- if (uart_num < SOC_UART_HP_NUM) {
- ESP_RETURN_ON_FALSE((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), ESP_FAIL, UART_TAG, "tx_io_num error");
- ESP_RETURN_ON_FALSE((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), ESP_FAIL, UART_TAG, "rx_io_num error");
- ESP_RETURN_ON_FALSE((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), ESP_FAIL, UART_TAG, "rts_io_num error");
- ESP_RETURN_ON_FALSE((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), ESP_FAIL, UART_TAG, "cts_io_num error");
- }
- #if (SOC_UART_LP_NUM >= 1)
- else { // LP_UART IO check
- #if !SOC_LP_GPIO_MATRIX_SUPPORTED
- const uart_periph_sig_t *pins = uart_periph_signal[uart_num].pins;
- // LP_UART has its fixed IOs
- ESP_RETURN_ON_FALSE((tx_io_num < 0 || (tx_io_num == pins[SOC_UART_TX_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "tx_io_num error");
- ESP_RETURN_ON_FALSE((rx_io_num < 0 || (rx_io_num == pins[SOC_UART_RX_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "rx_io_num error");
- ESP_RETURN_ON_FALSE((rts_io_num < 0 || (rts_io_num == pins[SOC_UART_RTS_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "rts_io_num error");
- ESP_RETURN_ON_FALSE((cts_io_num < 0 || (cts_io_num == pins[SOC_UART_CTS_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "cts_io_num error");
- #else
- // LP_UART signals can be routed to any LP_IOs
- ESP_RETURN_ON_FALSE((tx_io_num < 0 || rtc_gpio_is_valid_gpio(tx_io_num)), ESP_FAIL, UART_TAG, "tx_io_num error");
- ESP_RETURN_ON_FALSE((rx_io_num < 0 || rtc_gpio_is_valid_gpio(rx_io_num)), ESP_FAIL, UART_TAG, "rx_io_num error");
- ESP_RETURN_ON_FALSE((rts_io_num < 0 || rtc_gpio_is_valid_gpio(rts_io_num)), ESP_FAIL, UART_TAG, "rts_io_num error");
- ESP_RETURN_ON_FALSE((cts_io_num < 0 || rtc_gpio_is_valid_gpio(cts_io_num)), ESP_FAIL, UART_TAG, "cts_io_num error");
- #endif // SOC_LP_GPIO_MATRIX_SUPPORTED
- }
- #endif
- /* In the following statements, if the io_num is negative, no need to configure anything. */
- if (tx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, tx_io_num, SOC_UART_TX_PIN_IDX)) {
- if (uart_num < SOC_UART_HP_NUM) {
- gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
- gpio_set_level(tx_io_num, 1);
- esp_rom_gpio_connect_out_signal(tx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_TX_PIN_IDX), 0, 0);
- }
- #if SOC_LP_GPIO_MATRIX_SUPPORTED
- else {
- rtc_gpio_set_direction(tx_io_num, RTC_GPIO_MODE_OUTPUT_ONLY);
- rtc_gpio_init(tx_io_num);
- rtc_gpio_iomux_func_sel(tx_io_num, 1);
- lp_gpio_connect_out_signal(tx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_TX_PIN_IDX), 0, 0);
- }
- #endif
- }
- if (rx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rx_io_num, SOC_UART_RX_PIN_IDX)) {
- if (uart_num < SOC_UART_HP_NUM) {
- gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
- gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
- gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
- esp_rom_gpio_connect_in_signal(rx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), 0);
- }
- #if SOC_LP_GPIO_MATRIX_SUPPORTED
- else {
- rtc_gpio_set_direction(rx_io_num, RTC_GPIO_MODE_INPUT_ONLY);
- rtc_gpio_init(rx_io_num);
- rtc_gpio_iomux_func_sel(rx_io_num, 1);
- lp_gpio_connect_in_signal(rx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), 0);
- }
- #endif
- }
- if (rts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rts_io_num, SOC_UART_RTS_PIN_IDX)) {
- if (uart_num < SOC_UART_HP_NUM) {
- gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
- gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
- esp_rom_gpio_connect_out_signal(rts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0);
- }
- #if SOC_LP_GPIO_MATRIX_SUPPORTED
- else {
- rtc_gpio_set_direction(rts_io_num, RTC_GPIO_MODE_OUTPUT_ONLY);
- rtc_gpio_init(rts_io_num);
- rtc_gpio_iomux_func_sel(rts_io_num, 1);
- lp_gpio_connect_out_signal(rts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0);
- }
- #endif
- }
- if (cts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, cts_io_num, SOC_UART_CTS_PIN_IDX)) {
- if (uart_num < SOC_UART_HP_NUM) {
- gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
- gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
- gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
- esp_rom_gpio_connect_in_signal(cts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_CTS_PIN_IDX), 0);
- }
- #if SOC_LP_GPIO_MATRIX_SUPPORTED
- else {
- rtc_gpio_set_direction(cts_io_num, RTC_GPIO_MODE_INPUT_ONLY);
- rtc_gpio_init(cts_io_num);
- rtc_gpio_iomux_func_sel(cts_io_num, 1);
- lp_gpio_connect_in_signal(cts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_CTS_PIN_IDX), 0);
- }
- #endif
- }
- return ESP_OK;
- }
- esp_err_t uart_set_rts(uart_port_t uart_num, int level)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_FAIL, UART_TAG, "disable hw flowctrl before using sw control");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_rts(&(uart_context[uart_num].hal), level);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((idle_num <= UART_THRESHOLD_NUM(uart_num, UART_TX_IDLE_NUM_V)), ESP_FAIL, UART_TAG, "uart idle num error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((uart_config), ESP_FAIL, UART_TAG, "param null");
- ESP_RETURN_ON_FALSE((uart_config->rx_flow_ctrl_thresh < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow thresh error");
- ESP_RETURN_ON_FALSE((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
- ESP_RETURN_ON_FALSE((uart_config->data_bits < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
- uart_module_enable(uart_num);
- soc_module_clk_t uart_sclk_sel = 0; // initialize to an invalid module clock ID
- if (uart_num < SOC_UART_HP_NUM) {
- uart_sclk_sel = (soc_module_clk_t)((uart_config->source_clk) ? uart_config->source_clk : UART_SCLK_DEFAULT); // if no specifying the clock source (soc_module_clk_t starts from 1), then just use the default clock
- }
- #if (SOC_UART_LP_NUM >= 1)
- else {
- uart_sclk_sel = (soc_module_clk_t)((uart_config->lp_source_clk) ? uart_config->lp_source_clk : LP_UART_SCLK_DEFAULT);
- }
- #endif
- #if SOC_UART_SUPPORT_RTC_CLK
- if (uart_sclk_sel == (soc_module_clk_t)UART_SCLK_RTC) {
- periph_rtc_dig_clk8m_enable();
- }
- #endif
- uint32_t sclk_freq;
- ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz(uart_sclk_sel, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq), UART_TAG, "Invalid src_clk");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_init(&(uart_context[uart_num].hal), uart_num);
- if (uart_num < SOC_UART_HP_NUM) {
- HP_UART_SRC_CLK_ATOMIC() {
- uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_sclk_sel);
- uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate, sclk_freq);
- }
- }
- #if (SOC_UART_LP_NUM >= 1)
- else {
- LP_UART_SRC_CLK_ATOMIC() {
- lp_uart_ll_set_source_clk(uart_context[uart_num].hal.dev, (soc_periph_lp_uart_clk_src_t)uart_sclk_sel);
- }
- lp_uart_ll_set_baudrate(uart_context[uart_num].hal.dev, uart_config->baud_rate, sclk_freq);
- }
- #endif
- uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
- uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
- uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
- uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
- uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
- uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
- return ESP_OK;
- }
- esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((intr_conf), ESP_FAIL, UART_TAG, "param null");
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
- uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
- } else {
- //Disable rx_tout intr
- uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
- }
- if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
- uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
- }
- if (intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
- uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
- }
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, uint8_t pat_num)
- {
- int cnt = 0;
- int len = length;
- while (len >= 0) {
- if (buf[len] == pat_chr) {
- cnt++;
- } else {
- cnt = 0;
- }
- if (cnt >= pat_num) {
- break;
- }
- len --;
- }
- return len;
- }
- static uint32_t UART_ISR_ATTR uart_enable_tx_write_fifo(uart_port_t uart_num, const uint8_t *pbuf, uint32_t len)
- {
- uint32_t sent_len = 0;
- UART_ENTER_CRITICAL_SAFE(&(uart_context[uart_num].spinlock));
- if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
- uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
- // If any new things are written to fifo, then we can always clear the previous TX_DONE interrupt bit (if it was set)
- // Old TX_DONE bit might reset the RTS, leading new tx transmission failure for rs485 mode
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
- }
- uart_hal_write_txfifo(&(uart_context[uart_num].hal), pbuf, len, &sent_len);
- UART_EXIT_CRITICAL_SAFE(&(uart_context[uart_num].spinlock));
- return sent_len;
- }
- //internal isr handler for default driver code.
- static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
- {
- uart_obj_t *p_uart = (uart_obj_t *) param;
- uint8_t uart_num = p_uart->uart_num;
- int rx_fifo_len = 0;
- uint32_t uart_intr_status = 0;
- uart_event_t uart_event;
- BaseType_t HPTaskAwoken = 0;
- bool need_yield = false;
- static uint8_t pat_flg = 0;
- BaseType_t sent = pdFALSE;
- while (1) {
- // The `continue statement` may cause the interrupt to loop infinitely
- // we exit the interrupt here
- uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
- //Exit form while loop
- if (uart_intr_status == 0) {
- break;
- }
- uart_event.type = UART_EVENT_MAX;
- if (uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
- if (p_uart->tx_waiting_brk) {
- continue;
- }
- //TX semaphore will only be used when tx_buf_size is zero.
- if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
- p_uart->tx_waiting_fifo = false;
- xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- } else {
- //We don't use TX ring buffer, because the size is zero.
- if (p_uart->tx_buf_size == 0) {
- continue;
- }
- bool en_tx_flg = false;
- uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
- //We need to put a loop here, in case all the buffer items are very short.
- //That would cause a watch_dog reset because empty interrupt happens so often.
- //Although this is a loop in ISR, this loop will execute at most 128 turns.
- while (tx_fifo_rem) {
- if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
- size_t size;
- p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
- if (p_uart->tx_head) {
- //The first item is the data description
- //Get the first item to get the data information
- if (p_uart->tx_len_tot == 0) {
- p_uart->tx_ptr = NULL;
- p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
- if (p_uart->tx_head->type == UART_DATA_BREAK) {
- p_uart->tx_brk_flg = 1;
- p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
- }
- //We have saved the data description from the 1st item, return buffer.
- vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- } else if (p_uart->tx_ptr == NULL) {
- //Update the TX item pointer, we will need this to return item to buffer.
- p_uart->tx_ptr = (uint8_t *)p_uart->tx_head;
- en_tx_flg = true;
- p_uart->tx_len_cur = size;
- }
- } else {
- //Can not get data from ring buffer, return;
- break;
- }
- }
- if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
- // To fill the TX FIFO.
- uint32_t send_len = uart_enable_tx_write_fifo(uart_num, (const uint8_t *) p_uart->tx_ptr,
- MIN(p_uart->tx_len_cur, tx_fifo_rem));
- p_uart->tx_ptr += send_len;
- p_uart->tx_len_tot -= send_len;
- p_uart->tx_len_cur -= send_len;
- tx_fifo_rem -= send_len;
- if (p_uart->tx_len_cur == 0) {
- //Return item to ring buffer.
- vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- p_uart->tx_head = NULL;
- p_uart->tx_ptr = NULL;
- //Sending item done, now we need to send break if there is a record.
- //Set TX break signal after FIFO is empty
- if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- p_uart->tx_waiting_brk = 1;
- //do not enable TX empty interrupt
- en_tx_flg = false;
- } else {
- //enable TX empty interrupt
- en_tx_flg = true;
- }
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_WRITE_NOTIF, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- } else {
- //enable TX empty interrupt
- en_tx_flg = true;
- }
- }
- }
- if (en_tx_flg) {
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- }
- }
- } else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
- || (uart_intr_status & UART_INTR_RXFIFO_FULL)
- || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
- ) {
- if (pat_flg == 1) {
- uart_intr_status |= UART_INTR_CMD_CHAR_DET;
- pat_flg = 0;
- }
- if (p_uart->rx_buffer_full_flg == false) {
- rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
- if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
- rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
- }
- uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
- uint8_t pat_chr = 0;
- uint8_t pat_num = 0;
- int pat_idx = -1;
- uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
- //Get the buffer from the FIFO
- if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
- uart_event.type = UART_PATTERN_DET;
- uart_event.size = rx_fifo_len;
- pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
- } else {
- //After Copying the Data From FIFO ,Clear intr_status
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
- uart_event.type = UART_DATA;
- uart_event.size = rx_fifo_len;
- uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- }
- p_uart->rx_stash_len = rx_fifo_len;
- //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
- //Mainly for applications that uses flow control or small ring buffer.
- sent = xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- if (sent == pdFALSE) {
- p_uart->rx_buffer_full_flg = true;
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- if (uart_event.type == UART_PATTERN_DET) {
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- if (rx_fifo_len < pat_num) {
- //some of the characters are read out in last interrupt
- uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
- } else {
- uart_pattern_enqueue(uart_num,
- pat_idx <= -1 ?
- //can not find the pattern in buffer,
- p_uart->rx_buffered_len + p_uart->rx_stash_len :
- // find the pattern in buffer
- p_uart->rx_buffered_len + pat_idx);
- }
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- sent = xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- if ((p_uart->event_queue != NULL) && (sent == pdFALSE)) {
- #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
- ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
- #endif
- }
- }
- uart_event.type = UART_BUFFER_FULL;
- } else {
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
- if (rx_fifo_len < pat_num) {
- //some of the characters are read out in last interrupt
- uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
- } else if (pat_idx >= 0) {
- // find the pattern in stash buffer.
- uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
- }
- }
- p_uart->rx_buffered_len += p_uart->rx_stash_len;
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- }
- } else {
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
- if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
- uart_event.type = UART_PATTERN_DET;
- uart_event.size = rx_fifo_len;
- pat_flg = 1;
- }
- }
- } else if (uart_intr_status & UART_INTR_RXFIFO_OVF) {
- // When fifo overflows, we reset the fifo.
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
- uart_event.type = UART_FIFO_OVF;
- } else if (uart_intr_status & UART_INTR_BRK_DET) {
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
- uart_event.type = UART_BREAK;
- } else if (uart_intr_status & UART_INTR_FRAM_ERR) {
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
- uart_event.type = UART_FRAME_ERR;
- } else if (uart_intr_status & UART_INTR_PARITY_ERR) {
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
- uart_event.type = UART_PARITY_ERR;
- } else if (uart_intr_status & UART_INTR_TX_BRK_DONE) {
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
- uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
- if (p_uart->tx_brk_flg == 1) {
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
- }
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
- if (p_uart->tx_brk_flg == 1) {
- p_uart->tx_brk_flg = 0;
- p_uart->tx_waiting_brk = 0;
- } else {
- xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- }
- } else if (uart_intr_status & UART_INTR_TX_BRK_IDLE) {
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
- } else if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
- uart_event.type = UART_PATTERN_DET;
- } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
- || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
- || (uart_intr_status & UART_INTR_RS485_CLASH)) {
- // RS485 collision or frame error interrupt triggered
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
- // Set collision detection flag
- p_uart_obj[uart_num]->coll_det_flg = true;
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
- uart_event.type = UART_EVENT_MAX;
- } else if (uart_intr_status & UART_INTR_TX_DONE) {
- if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
- // The TX_DONE interrupt is triggered but transmit is active
- // then postpone interrupt processing for next interrupt
- uart_event.type = UART_EVENT_MAX;
- } else {
- // Workaround for RS485: If the RS485 half duplex mode is active
- // and transmitter is in idle state then reset received buffer and reset RTS pin
- // skip this behavior for other UART modes
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
- UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
- if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
- uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
- uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
- }
- UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
- xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- }
- }
- #if SOC_UART_SUPPORT_WAKEUP_INT
- else if (uart_intr_status & UART_INTR_WAKEUP) {
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_WAKEUP);
- uart_event.type = UART_WAKEUP;
- }
- #endif
- else {
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
- uart_event.type = UART_EVENT_MAX;
- }
- if (uart_event.type != UART_EVENT_MAX && p_uart->event_queue) {
- sent = xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken);
- need_yield |= (HPTaskAwoken == pdTRUE);
- if (sent == pdFALSE) {
- #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
- ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
- #endif
- }
- }
- }
- if (need_yield) {
- portYIELD_FROM_ISR();
- }
- }
- /**************************************************************/
- esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
- BaseType_t res;
- TickType_t ticks_start = xTaskGetTickCount();
- //Take tx_mux
- res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)ticks_to_wait);
- if (res == pdFALSE) {
- return ESP_ERR_TIMEOUT;
- }
- // Check the enable status of TX_DONE: If already enabled, then let the isr handle the status bit;
- // If not enabled, then make sure to clear the status bit before enabling the TX_DONE interrupt bit
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- bool is_rs485_mode = UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX);
- bool disabled = !(uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TX_DONE);
- // For RS485 mode, TX_DONE interrupt is enabled for every tx transmission, so there shouldn't be a case of
- // interrupt not enabled but raw bit is set.
- assert(!(is_rs485_mode &&
- disabled &&
- uart_hal_get_intraw_mask(&(uart_context[uart_num].hal)) & UART_INTR_TX_DONE));
- // If decided to register for the TX_DONE event, then we should clear any possible old tx transmission status.
- // The clear operation of RS485 mode should only be handled in isr or when writing to tx fifo.
- if (disabled && !is_rs485_mode) {
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
- }
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
- // FSM status register update comes later than TX_DONE interrupt raw bit raise
- // The maximum time takes for FSM status register to update is (6 APB clock cycles + 3 UART core clock cycles)
- // Therefore, to avoid the situation of TX_DONE bit being cleared but FSM didn't be recognized as IDLE (which
- // would lead to timeout), a delay of 2us is added in between.
- esp_rom_delay_us(2);
- if (uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return ESP_OK;
- }
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- TickType_t ticks_end = xTaskGetTickCount();
- if (ticks_end - ticks_start > ticks_to_wait) {
- ticks_to_wait = 0;
- } else {
- ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
- }
- //take 2nd tx_done_sem, wait given from ISR
- res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (TickType_t)ticks_to_wait);
- if (res == pdFALSE) {
- // The TX_DONE interrupt will be disabled in ISR
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return ESP_ERR_TIMEOUT;
- }
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return ESP_OK;
- }
- int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
- ESP_RETURN_ON_FALSE(buffer, (-1), UART_TAG, "buffer null");
- if (len == 0) {
- return 0;
- }
- int tx_len = 0;
- xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)portMAX_DELAY);
- tx_len = (int)uart_enable_tx_write_fifo(uart_num, (const uint8_t *) buffer, len);
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return tx_len;
- }
- static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
- {
- if (size == 0) {
- return 0;
- }
- size_t original_size = size;
- //lock for uart_tx
- xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)portMAX_DELAY);
- p_uart_obj[uart_num]->coll_det_flg = false;
- if (p_uart_obj[uart_num]->tx_buf_size > 0) {
- size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
- int offset = 0;
- uart_tx_data_t evt;
- evt.tx_data.size = size;
- evt.tx_data.brk_len = brk_len;
- if (brk_en) {
- evt.type = UART_DATA_BREAK;
- } else {
- evt.type = UART_DATA;
- }
- xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
- while (size > 0) {
- size_t send_size = size > max_size / 2 ? max_size / 2 : size;
- xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
- size -= send_size;
- offset += send_size;
- uart_enable_tx_intr(uart_num, 1, UART_THRESHOLD_NUM(uart_num, UART_EMPTY_THRESH_DEFAULT));
- }
- } else {
- while (size) {
- //semaphore for tx_fifo available
- if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (TickType_t)portMAX_DELAY)) {
- uint32_t sent = uart_enable_tx_write_fifo(uart_num, (const uint8_t *) src, size);
- if (sent < size) {
- p_uart_obj[uart_num]->tx_waiting_fifo = true;
- uart_enable_tx_intr(uart_num, 1, UART_THRESHOLD_NUM(uart_num, UART_EMPTY_THRESH_DEFAULT));
- }
- size -= sent;
- src += sent;
- }
- }
- if (brk_en) {
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (TickType_t)portMAX_DELAY);
- }
- xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
- }
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return original_size;
- }
- int uart_write_bytes(uart_port_t uart_num, const void *src, size_t size)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num] != NULL), (-1), UART_TAG, "uart driver error");
- ESP_RETURN_ON_FALSE(src, (-1), UART_TAG, "buffer null");
- return uart_tx_all(uart_num, src, size, 0, 0);
- }
- int uart_write_bytes_with_break(uart_port_t uart_num, const void *src, size_t size, int brk_len)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
- ESP_RETURN_ON_FALSE((size > 0), (-1), UART_TAG, "uart size error");
- ESP_RETURN_ON_FALSE((src), (-1), UART_TAG, "uart data null");
- ESP_RETURN_ON_FALSE((brk_len > 0 && brk_len < 256), (-1), UART_TAG, "break_num error");
- return uart_tx_all(uart_num, src, size, 1, brk_len);
- }
- static bool uart_check_buf_full(uart_port_t uart_num)
- {
- if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
- BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
- if (res == pdTRUE) {
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- /* Only re-activate UART_INTR_RXFIFO_TOUT or UART_INTR_RXFIFO_FULL
- * interrupts if they were NOT explicitly disabled by the user. */
- uart_reenable_intr_mask(p_uart_obj[uart_num]->uart_num, UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
- return true;
- }
- }
- return false;
- }
- int uart_read_bytes(uart_port_t uart_num, void *buf, uint32_t length, TickType_t ticks_to_wait)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((buf), (-1), UART_TAG, "uart data null");
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
- uint8_t *data = NULL;
- size_t size;
- size_t copy_len = 0;
- int len_tmp;
- if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (TickType_t)ticks_to_wait) != pdTRUE) {
- return -1;
- }
- while (length) {
- if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
- data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (TickType_t) ticks_to_wait);
- if (data) {
- p_uart_obj[uart_num]->rx_head_ptr = data;
- p_uart_obj[uart_num]->rx_ptr = data;
- p_uart_obj[uart_num]->rx_cur_remain = size;
- } else {
- //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
- //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
- //to solve the possible asynchronous issues.
- if (uart_check_buf_full(uart_num)) {
- //This condition will never be true if `uart_read_bytes`
- //and `uart_rx_intr_handler_default` are scheduled on the same core.
- continue;
- } else {
- xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
- return copy_len;
- }
- }
- }
- if (p_uart_obj[uart_num]->rx_cur_remain > length) {
- len_tmp = length;
- } else {
- len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
- }
- memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
- uart_pattern_queue_update(uart_num, len_tmp);
- p_uart_obj[uart_num]->rx_ptr += len_tmp;
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
- copy_len += len_tmp;
- length -= len_tmp;
- if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
- vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
- p_uart_obj[uart_num]->rx_head_ptr = NULL;
- p_uart_obj[uart_num]->rx_ptr = NULL;
- uart_check_buf_full(uart_num);
- }
- }
- xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
- return copy_len;
- }
- esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- *size = p_uart_obj[uart_num]->rx_buffered_len;
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_get_tx_buffer_free_size(uart_port_t uart_num, size_t *size)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_ARG, UART_TAG, "uart driver error");
- ESP_RETURN_ON_FALSE((size != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "arg pointer is NULL");
- *size = p_uart_obj[uart_num]->tx_buf_size - p_uart_obj[uart_num]->tx_len_tot;
- return ESP_OK;
- }
- esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
- esp_err_t uart_flush_input(uart_port_t uart_num)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
- uart_obj_t *p_uart = p_uart_obj[uart_num];
- uint8_t *data;
- size_t size;
- //rx sem protect the ring buffer read related functions
- xSemaphoreTake(p_uart->rx_mux, (TickType_t)portMAX_DELAY);
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- while (true) {
- if (p_uart->rx_head_ptr) {
- vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
- uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- p_uart->rx_ptr = NULL;
- p_uart->rx_cur_remain = 0;
- p_uart->rx_head_ptr = NULL;
- }
- data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (TickType_t) 0);
- if(data == NULL) {
- bool error = false;
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
- p_uart_obj[uart_num]->rx_buffered_len = 0;
- error = true;
- }
- //We also need to clear the `rx_buffer_full_flg` here.
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- if (error) {
- // this must be called outside the critical section
- ESP_LOGE(UART_TAG, "rx_buffered_len error");
- }
- break;
- }
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- p_uart_obj[uart_num]->rx_buffered_len -= size;
- uart_pattern_queue_update(uart_num, size);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- vRingbufferReturnItem(p_uart->rx_ring_buf, data);
- if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
- BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
- if (res == pdTRUE) {
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- }
- }
- }
- p_uart->rx_ptr = NULL;
- p_uart->rx_cur_remain = 0;
- p_uart->rx_head_ptr = NULL;
- uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
- /* Only re-enable UART_INTR_RXFIFO_TOUT or UART_INTR_RXFIFO_FULL if they
- * were explicitly enabled by the user. */
- uart_reenable_intr_mask(uart_num, UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
- xSemaphoreGive(p_uart->rx_mux);
- return ESP_OK;
- }
- static void uart_free_driver_obj(uart_obj_t *uart_obj)
- {
- if (uart_obj->tx_fifo_sem) {
- vSemaphoreDeleteWithCaps(uart_obj->tx_fifo_sem);
- }
- if (uart_obj->tx_done_sem) {
- vSemaphoreDeleteWithCaps(uart_obj->tx_done_sem);
- }
- if (uart_obj->tx_brk_sem) {
- vSemaphoreDeleteWithCaps(uart_obj->tx_brk_sem);
- }
- if (uart_obj->tx_mux) {
- vSemaphoreDeleteWithCaps(uart_obj->tx_mux);
- }
- if (uart_obj->rx_mux) {
- vSemaphoreDeleteWithCaps(uart_obj->rx_mux);
- }
- if (uart_obj->event_queue) {
- vQueueDeleteWithCaps(uart_obj->event_queue);
- }
- if (uart_obj->rx_ring_buf) {
- vRingbufferDeleteWithCaps(uart_obj->rx_ring_buf);
- }
- if (uart_obj->tx_ring_buf) {
- vRingbufferDeleteWithCaps(uart_obj->tx_ring_buf);
- }
- heap_caps_free(uart_obj->rx_data_buf);
- heap_caps_free(uart_obj);
- }
- static uart_obj_t *uart_alloc_driver_obj(uart_port_t uart_num, int event_queue_size, int tx_buffer_size, int rx_buffer_size)
- {
- uart_obj_t *uart_obj = heap_caps_calloc(1, sizeof(uart_obj_t), UART_MALLOC_CAPS);
- if (!uart_obj) {
- return NULL;
- }
- uart_obj->rx_data_buf = heap_caps_calloc(UART_HW_FIFO_LEN(uart_num), sizeof(uint32_t), UART_MALLOC_CAPS);
- if (!uart_obj->rx_data_buf) {
- goto err;
- }
- if (event_queue_size > 0) {
- uart_obj->event_queue = xQueueCreateWithCaps(event_queue_size, sizeof(uart_event_t), UART_MALLOC_CAPS);
- if (!uart_obj->event_queue) {
- goto err;
- }
- }
- if (tx_buffer_size > 0) {
- uart_obj->tx_ring_buf = xRingbufferCreateWithCaps(tx_buffer_size, RINGBUF_TYPE_NOSPLIT, UART_MALLOC_CAPS);
- if (!uart_obj->tx_ring_buf) {
- goto err;
- }
- }
- uart_obj->rx_ring_buf = xRingbufferCreateWithCaps(rx_buffer_size, RINGBUF_TYPE_BYTEBUF, UART_MALLOC_CAPS);
- uart_obj->tx_mux = xSemaphoreCreateMutexWithCaps(UART_MALLOC_CAPS);
- uart_obj->rx_mux = xSemaphoreCreateMutexWithCaps(UART_MALLOC_CAPS);
- uart_obj->tx_brk_sem = xSemaphoreCreateBinaryWithCaps(UART_MALLOC_CAPS);
- uart_obj->tx_done_sem = xSemaphoreCreateBinaryWithCaps(UART_MALLOC_CAPS);
- uart_obj->tx_fifo_sem = xSemaphoreCreateBinaryWithCaps(UART_MALLOC_CAPS);
- if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem ||
- !uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) {
- goto err;
- }
- return uart_obj;
- err:
- uart_free_driver_obj(uart_obj);
- return NULL;
- }
- esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int event_queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
- {
- esp_err_t ret;
- #ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
- ESP_RETURN_ON_FALSE((uart_num != CONFIG_ESP_CONSOLE_UART_NUM), ESP_FAIL, UART_TAG, "UART used by GDB-stubs! Please disable GDB in menuconfig.");
- #endif // CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((rx_buffer_size > UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "uart rx buffer length error");
- ESP_RETURN_ON_FALSE((tx_buffer_size > UART_HW_FIFO_LEN(uart_num)) || (tx_buffer_size == 0), ESP_FAIL, UART_TAG, "uart tx buffer length error");
- #if CONFIG_UART_ISR_IN_IRAM
- if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
- ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
- intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
- }
- #else
- if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
- ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
- intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
- }
- #endif
- if (p_uart_obj[uart_num] == NULL) {
- p_uart_obj[uart_num] = uart_alloc_driver_obj(uart_num, event_queue_size, tx_buffer_size, rx_buffer_size);
- if (p_uart_obj[uart_num] == NULL) {
- ESP_LOGE(UART_TAG, "UART driver malloc error");
- return ESP_FAIL;
- }
- p_uart_obj[uart_num]->uart_num = uart_num;
- p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
- p_uart_obj[uart_num]->coll_det_flg = false;
- p_uart_obj[uart_num]->rx_always_timeout_flg = false;
- p_uart_obj[uart_num]->event_queue_size = event_queue_size;
- p_uart_obj[uart_num]->tx_ptr = NULL;
- p_uart_obj[uart_num]->tx_head = NULL;
- p_uart_obj[uart_num]->tx_len_tot = 0;
- p_uart_obj[uart_num]->tx_brk_flg = 0;
- p_uart_obj[uart_num]->tx_brk_len = 0;
- p_uart_obj[uart_num]->tx_waiting_brk = 0;
- p_uart_obj[uart_num]->rx_buffered_len = 0;
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- p_uart_obj[uart_num]->tx_waiting_fifo = false;
- p_uart_obj[uart_num]->rx_ptr = NULL;
- p_uart_obj[uart_num]->rx_cur_remain = 0;
- p_uart_obj[uart_num]->rx_int_usr_mask = UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT;
- p_uart_obj[uart_num]->rx_head_ptr = NULL;
- p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
- p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
- xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
- uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
- if (uart_queue) {
- *uart_queue = p_uart_obj[uart_num]->event_queue;
- ESP_LOGI(UART_TAG, "queue free spaces: %" PRIu32, (uint32_t)uxQueueSpacesAvailable(p_uart_obj[uart_num]->event_queue));
- }
- } else {
- ESP_LOGE(UART_TAG, "UART driver already installed");
- return ESP_FAIL;
- }
- uart_intr_config_t uart_intr = {
- .intr_enable_mask = UART_INTR_CONFIG_FLAG,
- .rxfifo_full_thresh = UART_THRESHOLD_NUM(uart_num, UART_FULL_THRESH_DEFAULT),
- .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
- .txfifo_empty_intr_thresh = UART_THRESHOLD_NUM(uart_num, UART_EMPTY_THRESH_DEFAULT),
- };
- uart_module_enable(uart_num);
- uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
- uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
- ret = esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags,
- uart_rx_intr_handler_default, p_uart_obj[uart_num],
- &p_uart_obj[uart_num]->intr_handle);
- ESP_GOTO_ON_ERROR(ret, err, UART_TAG, "Could not allocate an interrupt for UART");
- ret = uart_intr_config(uart_num, &uart_intr);
- ESP_GOTO_ON_ERROR(ret, err, UART_TAG, "Could not configure the interrupt for UART");
- return ret;
- err:
- uart_driver_delete(uart_num);
- return ret;
- }
- //Make sure no other tasks are still using UART before you call this function
- esp_err_t uart_driver_delete(uart_port_t uart_num)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
- if (p_uart_obj[uart_num] == NULL) {
- ESP_LOGI(UART_TAG, "ALREADY NULL");
- return ESP_OK;
- }
- esp_intr_free(p_uart_obj[uart_num]->intr_handle);
- uart_disable_rx_intr(uart_num);
- uart_disable_tx_intr(uart_num);
- uart_pattern_link_free(uart_num);
- uart_free_driver_obj(p_uart_obj[uart_num]);
- p_uart_obj[uart_num] = NULL;
- #if SOC_UART_SUPPORT_RTC_CLK
- soc_module_clk_t sclk = 0;
- uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk);
- if (sclk == (soc_module_clk_t)UART_SCLK_RTC) {
- periph_rtc_dig_clk8m_disable();
- }
- #endif
- uart_module_disable(uart_num);
- return ESP_OK;
- }
- bool uart_is_driver_installed(uart_port_t uart_num)
- {
- return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
- }
- void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
- {
- if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
- p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
- }
- }
- portMUX_TYPE *uart_get_selectlock(void)
- {
- return &uart_selectlock;
- }
- // Set UART mode
- esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
- if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
- || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
- ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_ERR_INVALID_ARG, UART_TAG,
- "disable hw flowctrl before using RS485 mode");
- }
- if (uart_num >= SOC_UART_HP_NUM) {
- ESP_RETURN_ON_FALSE((mode == UART_MODE_UART), ESP_ERR_INVALID_ARG, UART_TAG, "LP_UART can only be in normal UART mode");
- }
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
- if (mode == UART_MODE_RS485_COLLISION_DETECT) {
- // This mode allows read while transmitting that allows collision detection
- p_uart_obj[uart_num]->coll_det_flg = false;
- // Enable collision detection interrupts
- uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
- | UART_INTR_RXFIFO_FULL
- | UART_INTR_RS485_CLASH
- | UART_INTR_RS485_FRM_ERR
- | UART_INTR_RS485_PARITY_ERR);
- }
- p_uart_obj[uart_num]->uart_mode = mode;
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((threshold < UART_THRESHOLD_NUM(uart_num, UART_RXFIFO_FULL_THRHD_V)) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
- "rx fifo full threshold value error");
- if (p_uart_obj[uart_num] == NULL) {
- ESP_LOGE(UART_TAG, "call uart_driver_install API first");
- return ESP_ERR_INVALID_STATE;
- }
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
- uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
- }
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((threshold < UART_THRESHOLD_NUM(uart_num, UART_TXFIFO_EMPTY_THRHD_V)) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
- "tx fifo empty threshold value error");
- if (p_uart_obj[uart_num] == NULL) {
- ESP_LOGE(UART_TAG, "call uart_driver_install API first");
- return ESP_ERR_INVALID_STATE;
- }
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
- uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
- }
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
- // get maximum timeout threshold
- uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
- if (tout_thresh > tout_max_thresh) {
- ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
- return ESP_ERR_INVALID_ARG;
- }
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
- ESP_RETURN_ON_FALSE((collision_flag != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "wrong parameter pointer");
- ESP_RETURN_ON_FALSE((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
- ESP_ERR_INVALID_ARG, UART_TAG, "wrong mode");
- *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
- return ESP_OK;
- }
- esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((wakeup_threshold <= UART_THRESHOLD_NUM(uart_num, UART_ACTIVE_THRESHOLD_V) && wakeup_threshold > UART_MIN_WAKEUP_THRESH), ESP_ERR_INVALID_ARG, UART_TAG,
- "wakeup_threshold out of bounds");
- UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
- uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
- UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
- return ESP_OK;
- }
- esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
- ESP_RETURN_ON_FALSE((out_wakeup_threshold != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "argument is NULL");
- uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
- return ESP_OK;
- }
- esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
- while (!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
- return ESP_OK;
- }
- esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
- {
- ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
- uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
- return ESP_OK;
- }
- void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
- {
- uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
- if (rx_tout) {
- p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
- } else {
- p_uart_obj[uart_num]->rx_always_timeout_flg = false;
- }
- }
|