| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498 |
- /*
- * SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #include "sdkconfig.h"
- #include <stdint.h>
- #include <assert.h>
- #include "soc/soc.h"
- #include "soc/soc_caps.h"
- // TODO: IDF-5645
- #if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2
- #include "soc/lp_aon_reg.h"
- #include "soc/pcr_reg.h"
- #define SYSTEM_CPU_PER_CONF_REG PCR_CPU_WAITI_CONF_REG
- #define SYSTEM_CPU_WAIT_MODE_FORCE_ON PCR_CPU_WAIT_MODE_FORCE_ON
- #elif CONFIG_IDF_TARGET_ESP32P4
- #include "soc/lp_clkrst_reg.h"
- #include "soc/pmu_reg.h"
- #else
- #include "soc/rtc_cntl_reg.h"
- #endif
- #include "hal/soc_hal.h"
- #include "esp_bit_defs.h"
- #include "esp_attr.h"
- #include "esp_err.h"
- #include "esp_cpu.h"
- #if __XTENSA__
- #include "xtensa/config/core-isa.h"
- #else
- #include "soc/system_reg.h" // For SYSTEM_CPU_PER_CONF_REG
- #include "soc/dport_access.h" // For Dport access
- #include "riscv/semihosting.h"
- #endif
- #if SOC_CPU_HAS_FLEXIBLE_INTC
- #include "riscv/instruction_decode.h"
- #endif
- /* --------------------------------------------------- CPU Control -----------------------------------------------------
- *
- * ------------------------------------------------------------------------------------------------------------------ */
- void esp_cpu_stall(int core_id)
- {
- assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
- #if SOC_CPU_CORES_NUM > 1 // We don't allow stalling of the current core
- #if CONFIG_IDF_TARGET_ESP32P4
- //TODO: IDF-7848
- REG_SET_FIELD(PMU_CPU_SW_STALL_REG, core_id ? PMU_HPCORE1_SW_STALL_CODE : PMU_HPCORE0_SW_STALL_CODE, 0x86);
- #else
- /*
- We need to write the value "0x86" to stall a particular core. The write location is split into two separate
- bit fields named "c0" and "c1", and the two fields are located in different registers. Each core has its own pair of
- "c0" and "c1" bit fields.
- Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the
- "rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source
- file's "rodata" section (see IDF-5214).
- */
- int rtc_cntl_c0_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_M : RTC_CNTL_SW_STALL_APPCPU_C0_M;
- int rtc_cntl_c0_s = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_S : RTC_CNTL_SW_STALL_APPCPU_C0_S;
- int rtc_cntl_c1_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_M : RTC_CNTL_SW_STALL_APPCPU_C1_M;
- int rtc_cntl_c1_s = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_S : RTC_CNTL_SW_STALL_APPCPU_C1_S;
- CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_c0_m);
- SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, 2 << rtc_cntl_c0_s);
- CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, rtc_cntl_c1_m);
- SET_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, 0x21 << rtc_cntl_c1_s);
- #endif // CONFIG_IDF_TARGET_ESP32P4
- #endif // SOC_CPU_CORES_NUM > 1
- }
- void esp_cpu_unstall(int core_id)
- {
- assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
- #if SOC_CPU_CORES_NUM > 1 // We don't allow stalling of the current core
- #if CONFIG_IDF_TARGET_ESP32P4
- //TODO: IDF-7848
- REG_SET_FIELD(PMU_CPU_SW_STALL_REG, core_id ? PMU_HPCORE1_SW_STALL_CODE : PMU_HPCORE0_SW_STALL_CODE, 0);
- #else
- /*
- We need to write clear the value "0x86" to unstall a particular core. The location of this value is split into
- two separate bit fields named "c0" and "c1", and the two fields are located in different registers. Each core has
- its own pair of "c0" and "c1" bit fields.
- Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the
- "rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source
- file's "rodata" section (see IDF-5214).
- */
- int rtc_cntl_c0_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_M : RTC_CNTL_SW_STALL_APPCPU_C0_M;
- int rtc_cntl_c1_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_M : RTC_CNTL_SW_STALL_APPCPU_C1_M;
- CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_c0_m);
- CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, rtc_cntl_c1_m);
- #endif // CONFIG_IDF_TARGET_ESP32P4
- #endif // SOC_CPU_CORES_NUM > 1
- }
- void esp_cpu_reset(int core_id)
- {
- #if CONFIG_IDF_TARGET_ESP32P4
- //TODO: IDF-7848
- if (core_id == 0)
- REG_SET_BIT(LP_CLKRST_HPCPU_RESET_CTRL0_REG, LP_CLKRST_HPCORE0_SW_RESET);
- else
- REG_SET_BIT(LP_CLKRST_HPCPU_RESET_CTRL0_REG, LP_CLKRST_HPCORE1_SW_RESET);
- #else
- #if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2// TODO: IDF-5645
- SET_PERI_REG_MASK(LP_AON_CPUCORE0_CFG_REG, LP_AON_CPU_CORE0_SW_RESET);
- #else
- assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
- #if SOC_CPU_CORES_NUM > 1
- /*
- Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the
- "rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source
- file's "rodata" section (see IDF-5214).
- */
- int rtc_cntl_rst_m = (core_id == 0) ? RTC_CNTL_SW_PROCPU_RST_M : RTC_CNTL_SW_APPCPU_RST_M;
- #else // SOC_CPU_CORES_NUM > 1
- int rtc_cntl_rst_m = RTC_CNTL_SW_PROCPU_RST_M;
- #endif // SOC_CPU_CORES_NUM > 1
- SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_rst_m);
- #endif
- #endif // CONFIG_IDF_TARGET_ESP32P4
- }
- void esp_cpu_wait_for_intr(void)
- {
- #if __XTENSA__
- xt_utils_wait_for_intr();
- #else
- //TODO: IDF-7848
- #if !CONFIG_IDF_TARGET_ESP32P4
- // TODO: IDF-5645 (better to implement with ll) C6 register names converted in the #include section at the top
- if (esp_cpu_dbgr_is_attached() && DPORT_REG_GET_BIT(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPU_WAIT_MODE_FORCE_ON) == 0) {
- /* when SYSTEM_CPU_WAIT_MODE_FORCE_ON is disabled in WFI mode SBA access to memory does not work for debugger,
- so do not enter that mode when debugger is connected */
- return;
- }
- #endif
- rv_utils_wait_for_intr();
- #endif // __XTENSA__
- }
- /* -------------------------------------------------- CPU Registers ----------------------------------------------------
- *
- * ------------------------------------------------------------------------------------------------------------------ */
- /* ------------------------------------------------- CPU Interrupts ----------------------------------------------------
- *
- * ------------------------------------------------------------------------------------------------------------------ */
- // ---------------- Interrupt Descriptors ------------------
- #if SOC_CPU_HAS_FLEXIBLE_INTC
- #if SOC_INT_CLIC_SUPPORTED
- static bool is_intr_num_resv(int ext_intr_num) {
- /* On targets that uses CLIC as the interrupt controller, the first 16 lines (0..15) are reserved for software
- * interrupts, all the other lines starting from 16 and above can be used by external peripheral.
- * in the case of this function, the parameter only refers to the external peripheral index, so if
- * `ext_intr_num` is 0, it refers to interrupt index 16.
- *
- * Only interrupt line 6 is reserved at the moment since it is used for disabling interrupts */
- return ext_intr_num == 6;
- }
- #else // !SOC_INT_CLIC_SUPPORTED
- static bool is_intr_num_resv(int intr_num)
- {
- // Workaround to reserve interrupt number 1 for Wi-Fi, 5,8 for Bluetooth, 6 for "permanently disabled interrupt"
- // [TODO: IDF-2465]
- uint32_t reserved = BIT(1) | BIT(5) | BIT(6) | BIT(8);
- // int_num 0,3,4,7 are unavailable for PULP cpu
- #if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2// TODO: IDF-5728 replace with a better macro name
- reserved |= BIT(0) | BIT(3) | BIT(4) | BIT(7);
- #endif
- if (reserved & BIT(intr_num)) {
- return true;
- }
- extern int _vector_table;
- extern int _interrupt_handler;
- const intptr_t pc = (intptr_t)(&_vector_table + intr_num);
- /* JAL instructions are relative to the PC there are executed from. */
- const intptr_t destination = pc + riscv_decode_offset_from_jal_instruction(pc);
- return destination != (intptr_t)&_interrupt_handler;
- }
- #endif // SOC_INT_CLIC_SUPPORTED
- void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret)
- {
- intr_desc_ret->priority = 1; //Todo: We should make this -1
- intr_desc_ret->type = ESP_CPU_INTR_TYPE_NA;
- #if __riscv
- intr_desc_ret->flags = is_intr_num_resv(intr_num) ? ESP_CPU_INTR_DESC_FLAG_RESVD : 0;
- #else
- intr_desc_ret->flags = 0;
- #endif
- }
- #else // SOC_CPU_HAS_FLEXIBLE_INTC
- typedef struct {
- int priority;
- esp_cpu_intr_type_t type;
- uint32_t flags[SOC_CPU_CORES_NUM];
- } intr_desc_t;
- #if SOC_CPU_CORES_NUM > 1
- // Note: We currently only have dual core targets, so the table initializer is hard coded
- const static intr_desc_t intr_desc_table [SOC_CPU_INTR_NUM] = {
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //0
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //1
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //2
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //3
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //4
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //5
- #if CONFIG_FREERTOS_CORETIMER_0
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //6
- #else
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //6
- #endif
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //7
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //8
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //9
- { 1, ESP_CPU_INTR_TYPE_EDGE, { 0, 0 } }, //10
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //11
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0} }, //12
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0} }, //13
- { 7, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //14, NMI
- #if CONFIG_FREERTOS_CORETIMER_1
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //15
- #else
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //15
- #endif
- { 5, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //16
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //17
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //18
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //19
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //20
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //21
- { 3, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //22
- { 3, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //23
- { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //24
- { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //25
- { 5, ESP_CPU_INTR_TYPE_LEVEL, { 0, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //26
- { 3, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //27
- { 4, ESP_CPU_INTR_TYPE_EDGE, { 0, 0 } }, //28
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //29
- { 4, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //30
- { 5, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //31
- };
- #else // SOC_CPU_CORES_NUM > 1
- const static intr_desc_t intr_desc_table [SOC_CPU_INTR_NUM] = {
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //0
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //1
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //2
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //3
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //4
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //5
- #if CONFIG_FREERTOS_CORETIMER_0
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //6
- #else
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //6
- #endif
- { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //7
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //8
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //9
- { 1, ESP_CPU_INTR_TYPE_EDGE, { 0 } }, //10
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //11
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //12
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //13
- { 7, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //14, NMI
- #if CONFIG_FREERTOS_CORETIMER_1
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //15
- #else
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //15
- #endif
- { 5, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //16
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //17
- { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //18
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //19
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //20
- { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //21
- { 3, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //22
- { 3, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //23
- { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //24
- { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //25
- { 5, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //26
- { 3, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //27
- { 4, ESP_CPU_INTR_TYPE_EDGE, { 0 } }, //28
- { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //29
- { 4, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //30
- { 5, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //31
- };
- #endif // SOC_CPU_CORES_NUM > 1
- void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret)
- {
- assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
- #if SOC_CPU_CORES_NUM == 1
- core_id = 0; //If this is a single core target, hard code CPU ID to 0
- #endif
- intr_desc_ret->priority = intr_desc_table[intr_num].priority;
- intr_desc_ret->type = intr_desc_table[intr_num].type;
- intr_desc_ret->flags = intr_desc_table[intr_num].flags[core_id];
- }
- #endif // SOC_CPU_HAS_FLEXIBLE_INTC
- /* ---------------------------------------------------- Debugging ------------------------------------------------------
- *
- * ------------------------------------------------------------------------------------------------------------------ */
- // --------------- Breakpoints/Watchpoints -----------------
- #if SOC_CPU_BREAKPOINTS_NUM > 0
- esp_err_t esp_cpu_set_breakpoint(int bp_num, const void *bp_addr)
- {
- /*
- Todo:
- - Check that bp_num is in range
- */
- #if __XTENSA__
- xt_utils_set_breakpoint(bp_num, (uint32_t)bp_addr);
- #else
- if (esp_cpu_dbgr_is_attached()) {
- /* If we want to set breakpoint which when hit transfers control to debugger
- * we need to set `action` in `mcontrol` to 1 (Enter Debug Mode).
- * That `action` value is supported only when `dmode` of `tdata1` is set.
- * But `dmode` can be modified by debugger only (from Debug Mode).
- *
- * So when debugger is connected we use special syscall to ask it to set breakpoint for us.
- */
- long args[] = {true, bp_num, (long)bp_addr};
- int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_BREAKPOINT_SET, args);
- if (ret == 0) {
- return ESP_ERR_INVALID_RESPONSE;
- }
- } else {
- rv_utils_set_breakpoint(bp_num, (uint32_t)bp_addr);
- }
- #endif // __XTENSA__
- return ESP_OK;
- }
- esp_err_t esp_cpu_clear_breakpoint(int bp_num)
- {
- /*
- Todo:
- - Check if the bp_num is valid
- */
- #if __XTENSA__
- xt_utils_clear_breakpoint(bp_num);
- #else
- if (esp_cpu_dbgr_is_attached()) {
- // See description in esp_cpu_set_breakpoint()
- long args[] = {false, bp_num};
- int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_BREAKPOINT_SET, args);
- if (ret == 0) {
- return ESP_ERR_INVALID_RESPONSE;
- }
- } else {
- rv_utils_clear_breakpoint(bp_num);
- }
- #endif // __XTENSA__
- return ESP_OK;
- }
- #endif // SOC_CPU_BREAKPOINTS_NUM > 0
- #if SOC_CPU_WATCHPOINTS_NUM > 0
- esp_err_t esp_cpu_set_watchpoint(int wp_num, const void *wp_addr, size_t size, esp_cpu_watchpoint_trigger_t trigger)
- {
- /*
- Todo:
- - Check if the wp_num is already in use
- */
- if (wp_num < 0 || wp_num >= SOC_CPU_WATCHPOINTS_NUM) {
- return ESP_ERR_INVALID_ARG;
- }
- // Check that the watched region's start address is naturally aligned to the size of the region
- if ((uint32_t)wp_addr % size) {
- return ESP_ERR_INVALID_ARG;
- }
- // Check if size is 2^n, and size is in the range of [1 ... SOC_CPU_WATCHPOINT_MAX_REGION_SIZE]
- if (size < 1 || size > SOC_CPU_WATCHPOINT_MAX_REGION_SIZE || (size & (size - 1)) != 0) {
- return ESP_ERR_INVALID_ARG;
- }
- bool on_read = (trigger == ESP_CPU_WATCHPOINT_LOAD || trigger == ESP_CPU_WATCHPOINT_ACCESS);
- bool on_write = (trigger == ESP_CPU_WATCHPOINT_STORE || trigger == ESP_CPU_WATCHPOINT_ACCESS);
- #if __XTENSA__
- xt_utils_set_watchpoint(wp_num, (uint32_t)wp_addr, size, on_read, on_write);
- #else
- if (esp_cpu_dbgr_is_attached()) {
- // See description in esp_cpu_set_breakpoint()
- long args[] = {true, wp_num, (long)wp_addr, (long)size,
- (long)((on_read ? ESP_SEMIHOSTING_WP_FLG_RD : 0) | (on_write ? ESP_SEMIHOSTING_WP_FLG_WR : 0))
- };
- int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_WATCHPOINT_SET, args);
- if (ret == 0) {
- return ESP_ERR_INVALID_RESPONSE;
- }
- } else {
- rv_utils_set_watchpoint(wp_num, (uint32_t)wp_addr, size, on_read, on_write);
- }
- #endif // __XTENSA__
- return ESP_OK;
- }
- esp_err_t esp_cpu_clear_watchpoint(int wp_num)
- {
- /*
- Todo:
- - Check if the wp_num is valid
- */
- #if __XTENSA__
- xt_utils_clear_watchpoint(wp_num);
- #else
- if (esp_cpu_dbgr_is_attached()) {
- // See description in esp_cpu_dbgr_is_attached()
- long args[] = {false, wp_num};
- int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_WATCHPOINT_SET, args);
- if (ret == 0) {
- return ESP_ERR_INVALID_RESPONSE;
- }
- } else {
- rv_utils_clear_watchpoint(wp_num);
- }
- #endif // __XTENSA__
- return ESP_OK;
- }
- #endif // SOC_CPU_WATCHPOINTS_NUM > 0
- /* ------------------------------------------------------ Misc ---------------------------------------------------------
- *
- * ------------------------------------------------------------------------------------------------------------------ */
- #if __XTENSA__ && XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
- static DRAM_ATTR uint32_t external_ram_cas_lock = 0;
- #endif
- bool esp_cpu_compare_and_set(volatile uint32_t *addr, uint32_t compare_value, uint32_t new_value)
- {
- #if __XTENSA__
- bool ret;
- #if XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
- // Check if the target address is in external RAM
- if ((uint32_t)addr >= SOC_EXTRAM_DATA_LOW && (uint32_t)addr < SOC_EXTRAM_DATA_HIGH) {
- /* The target address is in external RAM, thus the native CAS instruction cannot be used. Instead, we achieve
- atomicity by disabling interrupts and then acquiring an external RAM CAS lock. */
- uint32_t intr_level;
- __asm__ __volatile__ ("rsil %0, " XTSTR(XCHAL_EXCM_LEVEL) "\n"
- : "=r"(intr_level));
- if (!xt_utils_compare_and_set(&external_ram_cas_lock, 0, 1)) {
- // External RAM CAS lock already taken. Exit
- ret = false;
- goto exit;
- }
- // Now we compare and set the target address
- ret = (*addr == compare_value);
- if (ret) {
- *addr = new_value;
- }
- // Release the external RAM CAS lock
- external_ram_cas_lock = 0;
- exit:
- // Reenable interrupts
- __asm__ __volatile__ ("memw \n"
- "wsr %0, ps\n"
- :: "r"(intr_level));
- } else
- #endif // XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
- {
- // The target address is in internal RAM. Use the CPU's native CAS instruction
- ret = xt_utils_compare_and_set(addr, compare_value, new_value);
- }
- return ret;
- #else // __riscv
- return rv_utils_compare_and_set(addr, compare_value, new_value);
- #endif
- }
|